Search results for: Gauss point numerical integration
973 The Use of Modern Technologies and Computers in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar MehrAfarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: Iran, sistan, archaeological surveys, computer use, modern technologies
Procedia PDF Downloads 82972 Assessment of the Change in Strength Properties of Biocomposites Based on PLA and PHA after 4 Years of Storage in a Highly Cooled Condition
Authors: Karolina Mazur, Stanislaw Kuciel
Abstract:
Polylactides (PLA) and polyhydroxyalkanoates (PHA) are the two groups of biodegradable and biocompatible thermoplastic polymers most commonly utilised in medicine and rehabilitation. The aim of this work is to determine the changes in the strength properties and the microstructures taking place in biodegradable polymer composites during their long-term storage in a highly cooled environment (i.e. a freezer at -24ºC) and to initially assess the durability of such biocomposites when used as single-use elements of rehabilitation or medical equipment. It is difficult to find any information relating to the feasibility of long-term storage of technical products made of PLA or PHA, but nonetheless, when using these materials to make products such as casings of hair dryers, laptops or mobile phones, it is safe to assume that without storing in optimal conditions their degradation time might last even several years. SEM images and the assessment of the strength properties (tensile, bending and impact testing) were carried out and the density and water sorption of two polymers, PLA and PHA (NaturePlast PLE 001 and PHE 001), filled with cellulose fibres (corncob grain – Rehofix MK100, Rettenmaier&Sohne) up to 10 and 20% mass were determined. The biocomposites had been stored at a temperature of -24ºC for 4 years. In order to find out the changes in the strength properties and the microstructure taking place after such a long time of storage, the results of the assessment have been compared with the results of the same research carried out 4 years before. Results shows a significant change in the manner of fractures – from ductile with developed surface for the PHA composite with corncob grain when the tensile testing was performed directly after the injection into a more brittle state after 4 years of storage, which is confirmed by the strength tests, where a decrease of deformation is observed at point of fracture. The research showed that there is a way of storing medical devices made out of PLA or PHA for a reasonably long time, as long as the required temperature of storage is met. The decrease of mechanical properties found during tensile testing and bending for PLA was less than 10% of the tensile strength, while the modulus of elasticity and deformation at fracturing slightly rose, which may implicate the beginning of degradation processes. The strength properties of PHA are even higher after 4 years of storage, although in that case the decrease of deformation at fracturing is significant, reaching even 40%, which suggests its degradation rate is higher than that of PLA. The addition of natural particles in both cases only slightly increases the biodegradation.Keywords: biocomposites, PLA, PHA, storage
Procedia PDF Downloads 266971 Powder Assisted Sheet Forming to Fabricate Ti Capsule Magnetic Hyperthermia Implant
Authors: Keigo Nishitani, Kohei Mizuta Mizuta, Kazuyoshi Kurita, Yukinori Taniguchi
Abstract:
To establish mass production process of Ti capsule which has Fe powder inside as magnetic hyperthermia implant, we assumed that Ti thin sheet can be drawn into a φ1.0 mm die hole through the medium of Fe Powder and becomes outer shell of capsule. This study discusses mechanism of powder assisted deep drawing process by both of numerical simulation and experiment. Ti thin sheet blank was placed on die, and was covered by Fe powder layer without pressurizing. Then upper punch was indented on the Fe powder layer, and the blank can be drawn into die cavity as pressurized powder particles were extruded into die cavity from behind of the drawn blank. Distinct Element Method (DEM) has been used to demonstrate the process. To identify bonding parameters on Fe particles which are cohesion, tensile bond stress and inter particle friction angle, axial and diametrical compression failure test of Fe powder compact was conducted. Several density ratios of powder compacts in range of 0.70 - 0.85 were investigated and relationship between mean stress and equivalent stress was calculated with consideration of critical state line which rules failure criterion in consolidation of Fe powder. Since variation of bonding parameters with density ratio has been experimentally identified, and good agreement has been recognized between several failure tests and its simulation, demonstration of powder assisted sheet forming by using DEM becomes applicable. Results of simulation indicated that indent/drawing length of Ti thin sheet is promoted by smaller Fe particle size, larger indent punch diameter, lower friction coefficient between die surface and Ti sheet and certain degrees of die inlet taper angle. In the deep drawing test, we have made die-set with φ2.4 mm punch and φ1.0 mm die bore diameter. Pure Ti sheet with 100 μm thickness, annealed at 650 deg. C has been tested. After indentation, indented/drawn capsule has been observed by microscope, and its length was measured to discuss the feasibility of this capsulation process. Longer drawing length exists on progressive loading pass comparing with the case of single stroke loading. It is expected that progressive loading has an advantage of which extrusion of powder particle into die cavity with Ti sheet is promoted since powder particle layer can be rebuilt while the punch is withdrawn from the layer in each loading steps. This capsulation phenomenon is qualitatively demonstrated by DEM simulation. Finally, we have fabricated Ti capsule which has Fe powder inside for magnetic hyperthermia cancer care treatment. It is concluded that suggested method is possible to use the manufacturing of Ti capsule implant for magnetic hyperthermia cancer care.Keywords: metal powder compaction, metal forming, distinct element method, cancer care, magnetic hyperthermia
Procedia PDF Downloads 299970 An Evaluation of the Use of Telematics for Improving the Driving Behaviours of Young People
Authors: James Boylan, Denny Meyer, Won Sun Chen
Abstract:
Background: Globally, there is an increasing trend of road traffic deaths, reaching 1.35 million in 2016 in comparison to 1.3 million a decade ago, and overall, road traffic injuries are ranked as the eighth leading cause of death for all age groups. The reported death rate for younger drivers aged 16-19 years is almost twice the rate reported for older drivers aged 25 and above, with a rate of 3.5 road traffic fatalities per annum for every 10,000 licenses held. Telematics refers to a system with the ability to capture real-time data about vehicle usage. The data collected from telematics can be used to better assess a driver's risk. It is typically used to measure acceleration, turn, braking, and speed, as well as to provide locational information. With the Australian government creating the National Telematics Framework, there has been an increase in the government's focus on using telematics data to improve road safety outcomes. The purpose of this study is to test the hypothesis that improvements in telematics measured driving behaviour to relate to improvements in road safety attitudes measured by the Driving Behaviour Questionnaire (DBQ). Methodology: 28 participants were recruited and given a telematics device to insert into their vehicles for the duration of the study. The participant's driving behaviour over the course of the first month will be compared to their driving behaviour in the second month to determine whether feedback from telematics devices improves driving behaviour. Participants completed the DBQ, evaluated using a 6-point Likert scale (0 = never, 5 = nearly all the time) at the beginning, after the first month, and after the second month of the study. This is a well-established instrument used worldwide. Trends in the telematics data will be captured and correlated with the changes in the DBQ using regression models in SAS. Results: The DBQ has provided a reliable measure (alpha = .823) of driving behaviour based on a sample of 23 participants, with an average of 50.5 and a standard deviation of 11.36, and a range of 29 to 76, with higher scores, indicating worse driving behaviours. This initial sample is well stratified in terms of gender and age (range 19-27). It is expected that in the next six weeks, a larger sample of around 40 will have completed the DBQ after experiencing in-vehicle telematics for 30 days, allowing a comparison with baseline levels. The trends in the telematics data over the first 30 days will be compared with the changes observed in the DBQ. Conclusions: It is expected that there will be a significant relationship between the improvements in the DBQ and the trends in reduced telematics measured aggressive driving behaviours supporting the hypothesis.Keywords: telematics, driving behavior, young drivers, driving behaviour questionnaire
Procedia PDF Downloads 107969 The Sources of Anti-Immigrant Sentiments in Russia
Authors: Anya Glikman, Anastasia Gorodzeisky
Abstract:
Since the late 1990th labor immigration and its consequences on the society have become one of the most frequently discussed and debated issues in Russia. Social scientists point that the negative attitudes towards immigrants among Russian majority population is widespread, and their level, at least, twice as high as their level in most other European countries. Moreover, recent study by Gorodzeisky, Glikman and Maskyleison (2014) demonstrates that the two sets of individual level predictors of anti-foreigner sentiment – socio-economic status and conservative views and ideologies – that have been repeatedly proved in research in Western countries are not effective in predicting of anti-foreigner sentiment in Post-Socialist Russia. Apparently, the social mechanisms underlying anti-foreigner sentiment in Western countries, which are characterized by stable regimes and relatively long immigration histories, do not play a significant role in the explanation of anti-foreigner sentiment in Post-Socialist Russia. The present study aims to examine alternative possible sources of anti-foreigner sentiment in Russia while controlling for socio-economic position of individuals and conservative views. More specifically, following the research literature on the topic worldwide, we aim to examine whether and to what extent human values (such as tradition, universalism, safety and power), ethnic residential segregation, fear of crime and exposure to mass media affect anti-foreigner sentiments in Russia. To do so, we estimate a series of multivariate regression equations using the data obtained from 2012 European Social Survey. The national representative sample consists of 2337 Russian born respondents. Descriptive results reveal that about 60% percent of Russians view the impact of immigrants on the country in negative terms. Further preliminary analysis show that anti-foreigner sentiments are associated with exposer to mass media as well as with fear of crime. Specifically, respondents who devoted more time watching news on TV channels and respondents who express higher levels of fear of crime tend to report higher levels of anti-immigrants sentiments. The findings would be discussed in light of sociological perspective and the context of Russian society.Keywords: anti-immigrant sentiments, fear of crime, human values, mass media, Russia
Procedia PDF Downloads 466968 Development and Experimental Evaluation of a Semiactive Friction Damper
Authors: Juan S. Mantilla, Peter Thomson
Abstract:
Seismic events may result in discomfort on occupants of the buildings, structural damage or even buildings collapse. Traditional design aims to reduce dynamic response of structures by increasing stiffness, thus increasing the construction costs and the design forces. Structural control systems arise as an alternative to reduce these dynamic responses. A commonly used control systems in buildings are the passive friction dampers, which adds energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Passive friction dampers are usually implemented on the diagonal of braced buildings, but such devices have the disadvantage that are optimal for a range of sliding force and out of that range its efficiency decreases. The above implies that each passive friction damper is designed, built and commercialized for a specific sliding/clamping force, in which the damper shift from a locked state to a slip state, where dissipates energy through friction. The risk of having a variation in the efficiency of the device according to the sliding force is that the dynamic properties of the building can change as result of many factor, even damage caused by a seismic event. In this case the expected forces in the building can change and thus considerably reduce the efficiency of the damper (that is designed for a specific sliding force). It is also evident than when a seismic event occurs the forces in each floor varies in the time what means that the damper's efficiency is not the best at all times. Semi-Active Friction devices adapt its sliding force trying to maintain its motion in the slipping phase as much as possible, because of this, the effectiveness of the device depends on the control strategy used. This paper deals with the development and performance evaluation of a low cost Semiactive Variable Friction Damper (SAVFD) in reduced scale to reduce vibrations of structures subject to earthquakes. The SAVFD consist in a (1) hydraulic brake adapted to (2) a servomotor which is controlled with an (3) Arduino board and acquires accelerations or displacement from (4) sensors in the immediately upper and lower floors and a (5) power supply that can be a pair of common batteries. A test structure, based on a Benchmark structure for structural control, was design and constructed. The SAVFD and the structure are experimentally characterized. A numerical model of the structure and the SAVFD is developed based on the dynamic characterization. Decentralized control algorithms were modeled and later tested experimentally using shaking table test using earthquake and frequency chirp signals. The controlled structure with the SAVFD achieved reductions greater than 80% in relative displacements and accelerations in comparison to the uncontrolled structure.Keywords: earthquake response, friction damper, semiactive control, shaking table
Procedia PDF Downloads 378967 Energy Usage in Isolated Areas of Honduras
Authors: Bryan Jefry Sabillon, Arlex Molina Cedillo
Abstract:
Currently, the raise in the demand of electrical energy as a consequence of the development of technology and population growth, as well as some projections made by ‘La Agencia Internacional de la Energía’ (AIE) and research institutes, reveal alarming data about the expected raise of it in the next few decades. Because of this, something should be made to raise the awareness of the rational and efficient usage of this resource. Because of the global concern of providing electrical energy to isolated areas, projects consisting of energy generation using renewable resources are commonly carried out. On a socioeconomically and cultural point of view, it can be foreseen a positive impact that would result for the society to have this resource. This article is focused on the great potential that Honduras shows, as a country that is looking forward to produce renewable energy due to the crisis that it’s living nowadays. Because of this, we present a detailed research that exhibits the main necessities that the rural communities are facing today, to allay the negative aspects due to the scarcity of electrical energy. We also discuss which should be the type of electrical generation method to be used, according to the disposition, geography, climate, and of course the accessibility of each area. Honduras is actually in the process of developing new methods for the generation of energy; therefore, it is of our concern to talk about renewable energy, the exploitation of which is a global trend. Right now the countries’ main energetic generation methods are: hydrological, thermic, wind, biomass and photovoltaic (this is one of the main sources of clean electrical generation). The use of these resources was possible partially due to the studies made by the organizations that focus on electrical energy and its demand, such as ‘La Cooperación Alemana’ (GIZ), ‘La Secretaria de Energía y Recursos Naturales’ (SERNA), and ‘El Banco Centroamericano de Integración Económica’ (BCIE), which eased the complete guide that is to be used in the protocol to be followed to carry out the three stages of this type of projects: 1) Licences and Permitions, 2) Fincancial Aspects and 3) The inscription for the Protocol in Kyoto. This article pretends to take the reader through the necessary information (according to the difficult accessibility that each zone might present), about the best option of electrical generation in zones that are totally isolated from the net, pretending to use renewable resources to generate electrical energy. We finally conclude that the usage of hybrid systems of generation of energy for small remote communities brings about a positive impact, not only because of the fact of providing electrical energy but also because of the improvements in education, health, sustainable agriculture and livestock, and of course the advances in the generation of energy which is the main concern of this whole article.Keywords: energy, isolated, renewable, accessibility
Procedia PDF Downloads 231966 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study
Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang
Abstract:
Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.Keywords: brain, cortical folding, finite element, three hinge
Procedia PDF Downloads 237965 Arc Plasma Application for Solid Waste Processing
Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator
Procedia PDF Downloads 250964 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number
Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza
Abstract:
The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil
Procedia PDF Downloads 388963 Rangeland Monitoring by Computerized Technologies
Abstract:
Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing
Procedia PDF Downloads 368962 Emotion Expression of the Leader and Collective Efficacy: Pride and Guilt
Authors: Hsiu-Tsu Cho
Abstract:
Collective efficacy refers to a group’s sense of its capacity to complete a task successfully or to reach objectives. Little effort has been expended on investigating the relationship between the emotion expression of a leader and collective efficacy. In this study, we examined the impact of the different emotions and emotion expression of a group leader on collective efficacy and explored whether the emotion–expressive effects differed under conditions of negative and positive emotions. A total of 240 undergraduate and graduate students recruited using Facebook and posters at a university participated in this research. The participants were separated randomly into 80 groups of four persons consisting of three participants and a confederate. They were randomly assigned to one of five conditions in a 2 (pride vs. guilt) × 2 (emotion expression of group leader vs. no emotion expression of group leader) factorial design and a control condition. Each four-person group was instructed to get the reward in a group competition of solving the five-disk Tower of Hanoi puzzle and making decisions on an investment case. We surveyed the participants by employing the emotional measure revised from previous researchers and collective efficacy questionnaire on a 5-point scale. To induce an emotion of pride (or guilt), the experimenter announced whether the group performance was good enough to have a chance of getting the reward (ranking the top or bottom 20% among all groups) after group task. The leader (confederate) could either express or not express a feeling of pride (or guilt) following the instruction according to the assigned condition. To check manipulation of emotion, we added a control condition under which the experimenter revealed no results regarding group performance in maintaining a neutral emotion. One-way ANOVAs and post hoc pairwise comparisons among the three emotion conditions (pride, guilt, and control condition) involved assigning pride and guilt scores (pride: F(1,75) = 32.41, p < .001; guilt: F(1,75) = 6.75, p < .05). The results indicated that manipulations of emotion were successful. A two-way between-measures ANOVA was conducted to examine the predictions of the main effects of emotion types and emotion expression as well as the interaction effect of these two variables on collective efficacy. The experimental findings suggest that pride did not affect collective efficacy (F(1,60) = 1.90, ns.) more than guilt did and that the group leader did not motivate collective efficacy regardless of whether he or she expressed emotion (F(1,60) = .89, ns.). However, the interaction effect of emotion types and emotion expression was statistically significant (F(1,60) = 4.27, p < .05, ω2 = .066); the effects accounted for 6.6% of the variance. Additional results revealed that, under the pride condition, the leader enhanced group efficacy when expressing emotion, whereas, under the guilt condition, an expression of emotion could reduce collective efficacy. Overall, these findings challenge the assumption that the effect of expression emotion are the same on all emotions and suggest that a leader should be cautious when expressing negative emotions toward a group to avoid reducing group effectiveness.Keywords: collective efficacy, group leader, emotion expression, pride, guilty
Procedia PDF Downloads 331961 Human Insecurity and Migration in the Horn of Africa: Causes and Decision Processes
Authors: Belachew Gebrewold
Abstract:
The Horn of Africa is marred by complex and systematic internal and external political, economic and social-cultural causes of conflict that result in internal displacement and migration. This paper engages with them and shows how such a study can help us to understand migration, both in this region and more generally. The conflict has occurred within states, between states, among proxies, between armies. Human insecurities as a result of the state collapse of Somalia, the rise of Islamic fundamentalism in the whole region, recurrent drought affecting the livelihoods of subsistence farmers as well as nomads, exposure to hunger, environmental degradation, youth unemployment, rapid growth of slums around big cities, and political repression (especially in Eritrea) have been driving various segments of the regional population into regional and international migration. Eritrea has been going through a brutal dictatorship which pushes many Eritreans to flee their country and be exposed to human trafficking, torture, detention, and agony on their way to Europe mainly through Egypt, Libya and Israel. Similarly, Somalia has been devastated since 1991 by unending civil war, state collapse, and radical Islamists. There are some important aspects to highlight in the conflict-migration nexus in the Horn of Africa: first, the main push factor for the Somalis and Eritreans to leave their countries and risk their lives is the physical insecurity they have been facing in their countries. Secondly, as a result of the conflict the economic infrastructure is massively destroyed. Investment is rare; job opportunities are out of sight. Thirdly, in such a grim situation the politically and economically induced decision to migrate is a household decision, not only an individual decision. Based on this third point this research study took place in the Horn of Africa between 2014 and 2016 during different occasions. The main objective of the research was to understanding how the increasing migration is affecting the socio-economic and socio-political environment, and conversely how the socio-economic and socio-political environments are increasing migration decisions; and whether and how these decisions are individual or family decisions. The main finding is the higher the human insecurity, the higher the family decision; the lower the human insecurity, the higher the individual decision. These findings apply not only to the Eritrean, Somali migrants but also to Ethiopian migrants. But the general impacts of migration on sending countries’ human security is quite mixed and complex.Keywords: Eritrea, Ethiopia, Horn of Africa, insecurity, migration, Somalia
Procedia PDF Downloads 279960 CO2 Capture in Porous Silica Assisted by Lithium
Authors: Lucero Gonzalez, Salvador Alfaro
Abstract:
Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis
Procedia PDF Downloads 269959 Compact, Lightweight, Low Cost, Rectangular Core Power Transformers
Authors: Abidin Tortum, Kubra Kocabey
Abstract:
One of the sectors where the competition is experienced at the highest level in the world is the transformer sector, and sales can be made with a limited profit margin. For this reason, manufacturers must develop cost-cutting designs to achieve higher profits. The use of rectangular cores and coils in transformer design is one of the methods that can be used to reduce costs. According to the best knowledge we have obtained, we think that we are the first company producing rectangular core power transformers in our country. BETA, to reduce the cost of this project, more compact products to reveal, as we know it to increase the alleviate and competitiveness of the product, will perform cored coil design and production rectangle for the first-time power transformers in Turkey. The transformer to be designed shall be 16 MVA, 33/11 kV voltage level. With the rectangular design of the transformer core and windings, no-load losses can be reduced. Also, the least costly transformer type is rectangular. However, short-circuit forces on rectangular windings do not affect every point of the windings in the same way. Whereas more force is applied inwards to the mid-points of the low-voltage winding, the opposite occurs in the high-voltage winding. Therefore, the windings tend to deteriorate in the event of a short circuit. While trying to reach the project objectives, the difficulties in the design should be overcome. Rectangular core transformers to be produced in our country offer a more compact structure than conventional transformers. In other words, both height and width were smaller. Thus, the reducer takes up less space in the center. Because the transformer boiler is smaller, less oil is used, and its weight is lower. Biotemp natural ester fluid is used in rectangular transformer and the cooling performance of this oil is analyzed. The cost was also reduced with the reduction of dimensions. The decrease in the amount of oil used has also increased the environmental friendliness of the developed product. Transportation costs have been reduced by reducing the total weight. The amount of carbon emissions generated during the transportation process is reduced. Since the low-voltage winding is wound with a foil winding technique, a more resistant structure is obtained against short circuit forces. No-load losses were lower due to the use of a rectangular core. The project was handled in three phases. In the first stage, preliminary research and designs were carried out. In the second stage, the prototype manufacturing of the transformer whose designs have been completed has been started. The prototype developed in the last stage has been subjected to routine, type and special tests.Keywords: rectangular core, power transformer, transformer, productivity
Procedia PDF Downloads 122958 Modelling of Groundwater Resources for Al-Najaf City, Iraq
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW
Procedia PDF Downloads 214957 The Importance of Entrepreneurship for National Economy: Evaluation of Developed and Least Developed Countries
Authors: Adnan Celik
Abstract:
Entrepreneurs are people who attempt to do a business and do not hesitate to do so. They are involved in the production of economic goods and services through factors of production. They also find the financial resources necessary for production and the markets where the production will be evaluated. After all, they create economic values. The main function of the entrepreneur in contemporary societies is to realize innovations. From this point, the power of the modern entrepreneur is based on her/his capacity to innovate and transform his innovations into tangible commercial products. In this context, the concept of an entrepreneur is used to mean the person or persons who constantly innovate. Successful entrepreneurs take on the role of the locomotive in the development of their countries. They support economic development with their activities. In addition to production and marketing activities, it also has important contributions to employment. Along with the development of the country, they also try to make the income distribution more balanced. Especially developed country entrepreneurs intensely perform the following functions; “to produce new goods and services or to increase the quality and quality of known goods and services; ability to develop and apply new production methods; establishing new organizations in the industry; reach new markets; to find new sources from which raw materials and similar materials can be obtained”. Entrepreneurs who fully implement business functions are easier to achieve economic efficiency. Thus, they provide great advantages to the business and the national economy. Successful entrepreneurs are people who make money by creating economic values. These revenues are; on the one hand, it is distributed to individuals in the business as wages, premiums, or dividends; It is also used in the growth of companies. Thus, employees, managers, entrepreneurs and the whole country can benefit greatly. In the least developed countries, the guiding effect of traditional value patterns on individuals' attitudes and behaviors varies depending on the socio-economic characteristics of individuals. It is normal for an entrepreneur with a low level of education, who was brought up in a traditional structure, to behave in accordance with traditional value patterns. In fact, this is the primary problem of all countries in the development effort. The solution to this problem will be possible by giving the necessary importance to the social dimension as well as the technical dimension of development. This study mainly focuses on the importance of entrepreneurship for the national economy. This issue has been handled separately in terms of developed and least developed countries. As a result of the study, entrepreneurship suggestions were made, especially to least developed countries, with the goal of national economy and development.Keywords: entrepreneur, entrepreneurship, national economy, entrepreneurship in developed and least developed countries
Procedia PDF Downloads 139956 Wind Turbine Scaling for the Investigation of Vortex Shedding and Wake Interactions
Authors: Sarah Fitzpatrick, Hossein Zare-Behtash, Konstantinos Kontis
Abstract:
Traditionally, the focus of horizontal axis wind turbine (HAWT) blade aerodynamic optimisation studies has been the outer working region of the blade. However, recent works seek to better understand, and thus improve upon, the performance of the inboard blade region to enhance power production, maximise load reduction and better control the wake behaviour. This paper presents the design considerations and characterisation of a wind turbine wind tunnel model devised to further the understanding and fundamental definition of horizontal axis wind turbine root vortex shedding and interactions. Additionally, the application of passive and active flow control mechanisms – vortex generators and plasma actuators – to allow for the manipulation and mitigation of unsteady aerodynamic behaviour at the blade inboard section is investigated. A static, modular blade wind turbine model has been developed for use in the University of Glasgow’s de Havilland closed return, low-speed wind tunnel. The model components - which comprise of a half span blade, hub, nacelle and tower - are scaled using the equivalent full span radius, R, for appropriate Mach and Strouhal numbers, and to achieve a Reynolds number in the range of 1.7x105 to 5.1x105 for operational speeds up to 55m/s. The half blade is constructed to be modular and fully dielectric, allowing for the integration of flow control mechanisms with a focus on plasma actuators. Investigations of root vortex shedding and the subsequent wake characteristics using qualitative – smoke visualisation, tufts and china clay flow – and quantitative methods – including particle image velocimetry (PIV), hot wire anemometry (HWA), and laser Doppler anemometry (LDA) – were conducted over a range of blade pitch angles 0 to 15 degrees, and Reynolds numbers. This allowed for the identification of shed vortical structures from the maximum chord position, the transitional region where the blade aerofoil blends into a cylindrical joint, and the blade nacelle connection. Analysis of the trailing vorticity interactions between the wake core and freestream shows the vortex meander and diffusion is notably affected by the Reynold’s number. It is hypothesized that the shed vorticity from the blade root region directly influences and exacerbates the nacelle wake expansion in the downstream direction. As the design of inboard blade region form is, by necessity, driven by function rather than aerodynamic optimisation, a study is undertaken for the application of flow control mechanisms to manipulate the observed vortex phenomenon. The designed model allows for the effective investigation of shed vorticity and wake interactions with a focus on the accurate geometry of a root region which is representative of small to medium power commercial HAWTs. The studies undertaken allow for an enhanced understanding of the interplay of shed vortices and their subsequent effect in the near and far wake. This highlights areas of interest within the inboard blade area for the potential use of passive and active flow control devices which contrive to produce a more desirable wake quality in this region.Keywords: vortex shedding, wake interactions, wind tunnel model, wind turbine
Procedia PDF Downloads 235955 A Multi-Scale Study of Potential-Dependent Ammonia Synthesis on IrO₂ (110): DFT, 3D-RISM, and Microkinetic Modeling
Authors: Shih-Huang Pan, Tsuyoshi Miyazaki, Minoru Otani, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Ammonia (NH₃) is crucial in renewable energy and agriculture, yet its traditional production via the Haber-Bosch process faces challenges due to the inherent inertness of nitrogen (N₂) and the need for high temperatures and pressures. The electrocatalytic nitrogen reduction (ENRR) presents a more sustainable option, functioning at ambient conditions. However, its advancement is limited by selectivity and efficiency challenges due to the competing hydrogen evolution reaction (HER). The critical roles of protonation of N-species and HER highlight the necessity of selecting optimal catalysts and solvents to enhance ENRR performance. Notably, transition metal oxides, with their adjustable electronic states and excellent chemical and thermal stability, have shown promising ENRR characteristics. In this study, we use density functional theory (DFT) methods to investigate the ENRR mechanisms on IrO₂ (110), a material known for its tunable electronic properties and exceptional chemical and thermal stability. Employing the constant electrode potential (CEP) model, where the electrode - electrolyte interface is treated as a polarizable continuum with implicit solvation, and adjusting electron counts to equalize work functions in the grand canonical ensemble, we further incorporate the advanced 3D Reference Interaction Site Model (3D-RISM) to accurately determine the ENRR limiting potential across various solvents and pH conditions. Our findings reveal that the limiting potential for ENRR on IrO₂ (110) is significantly more favorable than for HER, highlighting the efficiency of the IrO₂ catalyst for converting N₂ to NH₃. This is supported by the optimal *NH₃ desorption energy on IrO₂, which enhances the overall reaction efficiency. Microkinetic simulations further predict a promising NH₃ production rate, even at the solution's boiling point¸ reinforcing the catalytic viability of IrO₂ (110). This comprehensive approach provides an atomic-level understanding of the electrode-electrolyte interface in ENRR, demonstrating the practical application of IrO₂ in electrochemical catalysis. The findings provide a foundation for developing more efficient and selective catalytic strategies, potentially revolutionizing industrial NH₃ production.Keywords: density functional theory, electrocatalyst, nitrogen reduction reaction, electrochemistry
Procedia PDF Downloads 24954 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube
Authors: Nirjhar Dhang, S. Vinay Kumar
Abstract:
Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.Keywords: concrete, image processing, plane strain, interfacial transition zone
Procedia PDF Downloads 241953 Improving the Technology of Assembly by Use of Computer Calculations
Authors: Mariya V. Yanyukina, Michael A. Bolotov
Abstract:
Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.Keywords: accuracy, assembly, interacting dimension chains, turbine
Procedia PDF Downloads 373952 Hansen Solubility Parameter from Surface Measurements
Authors: Neveen AlQasas, Daniel Johnson
Abstract:
Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied filmsKeywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements
Procedia PDF Downloads 94951 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle
Authors: Yury S. Shpanskiy, Boris V. Kuteev
Abstract:
Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle
Procedia PDF Downloads 147950 Start-Up: The Perception of Brazilian Entrepreneurs about the Start-Up Brasil Program
Authors: Fernando Nobre Cavalcante
Abstract:
In Brazil, and more recently in the city of Fortaleza, there is a new form of entrepreneurship that is focused on the information and communication technology service sector and that draws the attention of young people, investors, governments, authors and media companies: it is known as the start-up movement. Today, it is considered to be a driving force behind the creative economy. Rooted on progressive discourse, the words enterprise and innovation seduce new economic agents motivated by success stories from Silicon Valley in America along with increasing commercial activity for digital goods and services. This article assesses, from a sociological point of view, the new productive wave problematized by the light of Manuel Castells’ informational capitalism. Considering the skeptical as well as the optimistic opinions about the impact of this new entrepreneurial rearrangement, the following question is asked: How Brazilian entrepreneurs evaluate public policy incentives for startups Brazilian Federal Government? The raised hypotheses are based on employability factors as well as cultural, economical, and political matters related to innovation and technology. This study has produced a nationwide quantitative assessment with a special focus on the reality of these Ceará firms; as well as comparative qualitative interviews on Brazilian experiences lived by identified agents. This article outlines the public incentive policy of the federal government, the Start-up Brasil Program, from the perspective of these companies and provides details as to the discipline methods of the new enterprising way born in the United States. The startups are very young companies that are headed towards the economic sustainment of the productive sector services. These companies are dropping the seeds that will produce the re-enchantment of young people and bring them back to participation in political debate; they provide relief and reheats the job market; and they produce a democratization of the entrepreneurial ‘Do-It-Yourself’ culture. They capitalize the pivot of the wall street wolves and of agents being charged for new masks. There are developmental logic’s prophylaxis in the face of dreadful innovation stagnation. The lack of continuity in Brazilian governmental politics and cultural nuances related to entrepreneurship are barring the desired regional success of this ecosystem.Keywords: creative economy, entrepreneurship, informationalism, innovation, startups, start-up brasil program
Procedia PDF Downloads 369949 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection
Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément
Abstract:
The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars
Procedia PDF Downloads 118948 Applying the Quad Model to Estimate the Implicit Self-Esteem of Patients with Depressive Disorders: Comparing the Psychometric Properties with the Implicit Association Test Effect
Authors: Yi-Tung Lin
Abstract:
Researchers commonly assess implicit self-esteem with the Implicit Association Test (IAT). The IAT’s measure, often referred to as the IAT effect, indicates the strengths of automatic preferences for the self relative to others, which is often considered an index of implicit self-esteem. However, based on the Dual-process theory, the IAT does not rely entirely on the automatic process; it is also influenced by a controlled process. The present study, therefore, analyzed the IAT data with the Quad model, separating four processes on the IAT performance: the likelihood that automatic association is activated by the stimulus in the trial (AC); that a correct response is discriminated in the trial (D); that the automatic bias is overcome in favor of a deliberate response (OB); and that when the association is not activated, and the individual fails to discriminate a correct answer, there is a guessing or response bias drives the response (G). The AC and G processes are automatic, while the D and OB processes are controlled. The AC parameter is considered as the strength of the association activated by the stimulus, which reflects what implicit measures of social cognition aim to assess. The stronger the automatic association between self and positive valence, the more likely it will be activated by a relevant stimulus. Therefore, the AC parameter was used as the index of implicit self-esteem in the present study. Meanwhile, the relationship between implicit self-esteem and depression is not fully investigated. In the cognitive theory of depression, it is assumed that the negative self-schema is crucial in depression. Based on this point of view, implicit self-esteem would be negatively associated with depression. However, the results among empirical studies are inconsistent. The aims of the present study were to examine the psychometric properties of the AC (i.e., test-retest reliability and its correlations with explicit self-esteem and depression) and compare it with that of the IAT effect. The present study had 105 patients with depressive disorders completing the Rosenberg Self-Esteem Scale, Beck Depression Inventory-II and the IAT on the pretest. After at least 3 weeks, the participants completed the second IAT. The data were analyzed by the latent-trait multinomial processing tree model (latent-trait MPT) with the TreeBUGS package in R. The result showed that the latent-trait MPT had a satisfactory model fit. The effect size of test-retest reliability of the AC and the IAT effect were medium (r = .43, p < .0001) and small (r = .29, p < .01) respectively. Only the AC showed a significant correlation with explicit self-esteem (r = .19, p < .05). Neither of the two indexes was correlated with depression. Collectively, the AC parameter was a satisfactory index of implicit self-esteem compared with the IAT effect. Also, the present study supported the results that implicit self-esteem was not correlated with depression.Keywords: cognitive modeling, implicit association test, implicit self-esteem, quad model
Procedia PDF Downloads 128947 Delving into the Concept of Social Capital in the Smart City Research
Authors: Atefe Malekkhani, Lee Beattie, Mohsen Mohammadzadeh
Abstract:
Unprecedented growth of megacities and urban areas all around the world have resulted in numerous risks, concerns, and problems across various aspects of urban life, including environmental, social, and economic domains like climate change, spatial and social inequalities. In this situation, ever-increasing progress of technology has created a hope for urban authorities that the negative effects of various socio-economic and environmental crises can potentially be mitigated with the use of information and communication technologies. The concept of 'smart city' represents an emerging solution to urban challenges arising from increased urbanization using ICTs. However, smart cities are often perceived primarily as technological initiatives and are implemented without considering the social and cultural contexts of cities and the needs of their residents. The implementation of smart city projects and initiatives has the potential to (un)intentionally exacerbate pre-existing social, spatial, and cultural segregation. Investigating the impact of smart city on social capital of people who are users of smart city systems and with governance as policymakers is worth exploring. The importance of inhabitants to the existence and development of smart cities cannot be overlooked. This concept has gained different perspectives in the smart city studies. Reviewing the literature about social capital and smart city show that social capital play three different roles in smart city development. Some research indicates that social capital is a component of a smart city and has embedded in its dimensions, definitions, or strategies, while other ones see it as a social outcome of smart city development and point out that the move to smart cities improves social capital; however, in most cases, it remains an unproven hypothesis. Other studies show that social capital can enhance the functions of smart cities, and the consideration of social capital in planning smart cities should be promoted. Despite the existing theoretical and practical knowledge, there is a significant research gap reviewing the knowledge domain of smart city studies through the lens of social capital. To shed light on this issue, this study aims to explore the domain of existing research in the field of smart city through the lens of social capital. This research will use the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) method to review relevant literature, focusing on the key concepts of 'Smart City' and 'Social Capital'. The studies will be selected Web of Science Core Collection, using a selection process that involves identifying literature sources, screening and filtering studies based on titles, abstracts, and full-text reading.Keywords: smart city, urban digitalisation, ICT, social capital
Procedia PDF Downloads 15946 Evaluation of Vitamin D Levels in Obese and Morbid Obese Children
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity may lead to growing serious health problems throughout the world. Vitamin D appears to play a role in cardiovascular and metabolic health. Vitamin D deficiency may add to derangements in human metabolic systems, particularly those of children. Childhood obesity is associated with an increased risk of chronic and sophisticated diseases. The aim of this study is to investigate associations as well as possible differences related to parameters affected by obesity and their relations with vitamin D status in obese (OB) and morbid obese (MO) children. This study included a total of 78 children. Of them, 41 and 37 were OB and MO, respectively. WHO BMI-for age percentiles were used for the classification of obesity. The values above 99 percentile were defined as MO. Those between 95 and 99 percentiles were included into OB group. Anthropometric measurements were recorded. Basal metabolic rates (BMRs) were measured. Vitamin D status is determined by the measurement of 25-hydroxy cholecalciferol [25- hydroxyvitamin D3, 25(OH)D] using high-performance liquid chromatography. Vitamin D status was evaluated as deficient, insufficient and sufficient. Values < 20.0 ng/ml, values between 20-30 ng/ml and values > 30.0 ng/ml were defined as vitamin D deficient, insufficient and sufficient, respectively. Optimal 25(OH)D level was defined as ≥ 30 ng/ml. SPSSx statistical package program was used for the evaluation of the data. The statistical significance degree was accepted as p < 0.05. Mean ages did not differ between the groups. Significantly increased body mass index (BMI), waist circumference (C) and neck C as well as significantly decreased fasting blood glucose (FBG) and vitamin D values were observed in MO group (p < 0.05). In OB group, 37.5% of the children were vitamin D deficient, and in MO group the corresponding value was 53.6%. No difference between the groups in terms of lipid profile, systolic blood pressure (SBP), diastolic blood pressure (DBP) and insulin values was noted. There was a severe statistical significance between FBG values of the groups (p < 0.001). Important correlations between BMI, waist C, hip C, neck C and both SBP as well as DBP were found in OB group. In MO group, correlations only with SBP were obtained. In a similar manner, in OB group, correlations were detected between SBP-BMR and DBP-BMR. However, in MO children, BMR correlated only with SBP. The associations of vitamin D with anthropometric indices as well as some lipid parameters were defined. In OB group BMI, waist C, hip C and triglycerides (TRG) were negatively correlated with vitamin D concentrations whereas none of them were detected in MO group. Vitamin D deficiency may contribute to the complications associated with childhood obesity. Loss of correlations between obesity indices-DBP, vitamin D-TRG, as well as relatively lower FBG values, observed in MO group point out that the emergence of MetS components starts during obesity state just before the transition to morbid obesity. Aside from its deficiency state, associations of vitamin D with anthropometric measurements, blood pressures and TRG should also be evaluated before the development of morbid obesity.Keywords: children, morbid obesity, obesity, vitamin D
Procedia PDF Downloads 141945 The Effects of Culture and Language on Social Impression Formation from Voice Pleasantness: A Study with French and Iranian People
Authors: L. Bruckert, A. Mansourzadeh
Abstract:
The voice has a major influence on interpersonal communication in everyday life via the perception of pleasantness. The evolutionary perspective postulates that the mechanisms underlying the pleasantness judgments are universal adaptations that have evolved in the service of choosing a mate (through the process of sexual selection). From this point of view, the favorite voices would be those with more marked sexually dimorphic characteristics; for example, in men with lower voice pitch, pitch is the main criterion. On the other hand, one can postulate that the mechanisms involved are gradually established since childhood through exposure to the environment, and thus the prosodic elements could take precedence in everyday life communication as it conveys information about the speaker's attitude (willingness to communicate, interest toward the interlocutors). Our study focuses on voice pleasantness and its relationship with social impression formation, exploring both the spectral aspects (pitch, timbre) and the prosodic ones. In our study, we recorded the voices through two vocal corpus (five vowels and a reading text) of 25 French males speaking French and 25 Iranian males speaking Farsi. French listeners (40 male/40 female) listened to the French voices and made a judgment either on the voice's pleasantness or on the speaker (judgment about his intelligence, honesty, sociability). The regression analyses from our acoustic measures showed that the prosodic elements (for example, the intonation and the speech rate) are the most important criteria concerning pleasantness, whatever the corpus or the listener's gender. Moreover, the correlation analyses showed that the speakers with the voices judged as the most pleasant are considered the most intelligent, sociable, and honest. The voices in Farsi have been judged by 80 other French listeners (40 male/40 female), and we found the same effect of intonation concerning the judgment of pleasantness with the corpus «vowel» whereas with the corpus «text» the pitch is more important than the prosody. It may suggest that voice perception contains some elements invariant across culture/language, whereas others are influenced by the cultural/linguistic background of the listener. Shortly in the future, Iranian people will be asked to listen either to the French voices for half of them or to the Farsi voices for the other half and produce the same judgments as the French listeners. This experimental design could potentially make it possible to distinguish what is linked to culture and what is linked to language in the case of differences in voice perception.Keywords: cross-cultural psychology, impression formation, pleasantness, voice perception
Procedia PDF Downloads 70944 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe
Authors: Elsadig Naseraddeen Ahmed Mohamed
Abstract:
In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon
Procedia PDF Downloads 177