Search results for: importance of SPC supplier selection criteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10157

Search results for: importance of SPC supplier selection criteria

9227 Achieving Social Sustainability through Architectural Designs for Physically Challenged People: Datascapes Technique

Authors: Fatemeh Zare, Kaveh Bazrafkan, Alireza Bolhari

Abstract:

Quality of life is one of the most recent issues in today's architectural world. It has numerous criteria and has diverse aspects in different nation's cultures. Social sustainability, on the other hand, is frequently a positive attitude which is manifested by integration of human beings and equity of access to fundamental amenities; for instance, transportation, hygienic systems, equal education facilities, etc. This paper demonstrates that achieving desired quality of life is through assurance of sustainable society. Choosing a sustainable approach in every day's life becomes a practical manner and solution for human life. By assuming that an architect is someone who designs people's life by his/her projects, scrutinizing the relationship between quality of life and architectural buildings would reveal hidden criteria through Datascapes technique. This would be enriched when considering this relationship with everyone's basic needs in the society. One the most impressive needs are the particular demands of physically challenged people which are directly examined and discussed.

Keywords: sustainable design, social sustainability, disabled people, datascapes technique

Procedia PDF Downloads 485
9226 A Strategic Partner Evaluation Model for the Project Based Enterprises

Authors: Woosik Jang, Seung H. Han

Abstract:

The optimal partner selection is one of the most important factors to pursue the project’s success. However, in practice, there is a gaps in perception of success depending on the role of the enterprises for the projects. This frequently makes a relations between the partner evaluation results and the project’s final performances, insufficiently. To meet this challenges, this study proposes a strategic partner evaluation model considering the perception gaps between enterprises. A total 3 times of survey was performed; factor selection, perception gap analysis, and case application. After then total 8 factors are extracted from independent sample t-test and Borich model to set-up the evaluation model. Finally, through the case applications, only 16 enterprises are re-evaluated to “Good” grade among the 22 “Good” grade from existing model. On the contrary, 12 enterprises are re-evaluated to “Good” grade among the 19 “Bad” grade from existing model. Consequently, the perception gaps based evaluation model is expected to improve the decision making quality and also enhance the probability of project’s success.

Keywords: partner evaluation model, project based enterprise, decision making, perception gap, project performance

Procedia PDF Downloads 159
9225 Use of Fuzzy Logic in the Corporate Reputation Assessment: Stock Market Investors’ Perspective

Authors: Tomasz L. Nawrocki, Danuta Szwajca

Abstract:

The growing importance of reputation in building enterprise value and achieving long-term competitive advantage creates the need for its measurement and evaluation for the management purposes (effective reputation and its risk management). The paper presents practical application of self-developed corporate reputation assessment model from the viewpoint of stock market investors. The model has a pioneer character and example analysis performed for selected industry is a form of specific test for this tool. In the proposed solution, three aspects - informational, financial and development, as well as social ones - were considered. It was also assumed that the individual sub-criteria will be based on public sources of information, and as the calculation apparatus, capable of obtaining synthetic final assessment, fuzzy logic will be used. The main reason for developing this model was to fulfill the gap in the scope of synthetic measure of corporate reputation that would provide higher degree of objectivity by relying on "hard" (not from surveys) and publicly available data. It should be also noted that results obtained on the basis of proposed corporate reputation assessment method give possibilities of various internal as well as inter-branch comparisons and analysis of corporate reputation impact.

Keywords: corporate reputation, fuzzy logic, fuzzy model, stock market investors

Procedia PDF Downloads 248
9224 Assessment of Green Finance, Financial Technology and Financial Inclusion on Green Energy Efficiency in Pakistan

Authors: Muhammad Irfan

Abstract:

The UN General Assembly has advocated improving energy efficiency by SDG criteria to promote global economic growth. Pakistan is confronted with financial obstacles when it comes to acquiring energy efficiency because of the COVID-19 pandemic, economic and political instability, budgetary strains, and poor financial circumstances. The study examines how cutting-edge financing approaches like FinTech, financial inclusion, and green financing affect Pakistan's energy consumption. It finds noteworthy outcomes. The study's results have demonstrated the important impact of these funding methods on energy conservation. The best and most helpful finance tool for energy efficiency is green financing; yet, because of differences in characteristics, workings, and financial institutions, FinTech, and financial inclusion play a smaller role in Pakistan. The researchers propose that to achieve energy efficiency, FinTech activities and funding criteria such as green bonds should be reviewed. It also advised authorities to create energy system-friendly regulations for green finance in Pakistan.

Keywords: green finance, FinTech, financial inclusion, energy efficiency, Pakistan

Procedia PDF Downloads 52
9223 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran

Authors: Azar Khodabakhshi, Elham Bolandnazar

Abstract:

Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.

Keywords: crop yield, energy, neuro-fuzzy method, strawberry

Procedia PDF Downloads 383
9222 Enhanced Cluster Based Connectivity Maintenance in Vehicular Ad Hoc Network

Authors: Manverpreet Kaur, Amarpreet Singh

Abstract:

The demand of Vehicular ad hoc networks is increasing day by day, due to offering the various applications and marvelous benefits to VANET users. Clustering in VANETs is most important to overcome the connectivity problems of VANETs. In this paper, we proposed a new clustering technique Enhanced cluster based connectivity maintenance in vehicular ad hoc network. Our objective is to form long living clusters. The proposed approach is grouping the vehicles, on the basis of the longest list of neighbors to form clusters. The cluster formation and cluster head selection process done by the RSU that may results it reduces the chances of overhead on to the network. The cluster head selection procedure is the vehicle which has closest speed to average speed will elect as a cluster Head by the RSU and if two vehicles have same speed which is closest to average speed then they will be calculate by one of the new parameter i.e. distance to their respective destination. The vehicle which has largest distance to their destination will be choosing as a cluster Head by the RSU. Our simulation outcomes show that our technique performs better than the existing technique.

Keywords: VANETs, clustering, connectivity, cluster head, intelligent transportation system (ITS)

Procedia PDF Downloads 248
9221 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery

Authors: Mohammadreza Mohebbi, Masoumeh Sanagou

Abstract:

The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.

Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics

Procedia PDF Downloads 298
9220 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization

Procedia PDF Downloads 331
9219 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 139
9218 Durability of Reinforced Concrete Structure on Very High Aggressive Environment: A Case Study

Authors: Karla Peitl Miller, Leomar Bravin Porto, Kaitto Correa Fraga, Nataniele Eler Mendes

Abstract:

This paper presents the evaluation and study of a real reinforced concrete structure of a fertilizer storage building, constructed on a Vale’s Port at Brazil, which has been recently under refurbishment. Data that will be shared and commented aim to show how wrong choices in project concepts allied to a very high aggressive environment lead to a fast track degradation, incurring on a hazardous condition associated with huge and expensive treatment for repair and guarantee of minimum performance conditions and service life. It will be also shown and discussed all the covered steps since pathological manifestations first signs were observed until the complete revitalization and reparation planning would be drawn. The conclusions of the work easily explicit the importance of professional technical qualification, the importance of minimum requirements for design and structural reforms, and mainly, the importance of good inspection and diagnostic engineering continuous work.

Keywords: durability, reinforced concrete repair, structural inspection, diagnostic engineering

Procedia PDF Downloads 139
9217 Explanatory Variables for Crash Injury Risk Analysis

Authors: Guilhermina Torrao

Abstract:

An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.

Keywords: crash, exploratory, injury, risk, variables, vehicle

Procedia PDF Downloads 137
9216 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 39
9215 Importance of Human Resources Training in an Information Age

Authors: A. Serap Fırat

Abstract:

The aim of this study is to display conceptually the relationship and interaction between matter of human resources training and the information age. Fast development from industrial community to an information community has occurred and organizations have been seeking ways to overcome this change. Human resources policy and human capital with enhanced competence will have direct impact on work performance; therefore, this paper deals with the increased importance of human resource management due to the fact that it nurtures human capital. Researching and scanning are used as a method in this study. Both local and foreign literature and expert views are employed -as much as one could be- in the making of the theoretical framework of this study.

Keywords: human resources, information age, education, organization, occupation

Procedia PDF Downloads 374
9214 A Game of Information in Defense/Attack Strategies: Case of Poisson Attacks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

In this paper, we briefly introduce the concept of Poisson attacks in the case of defense/attack strategies where attacks are assumed to be continuous. We suggest a game model in which the attacker will combine both criteria of a sufficient confidence level of a successful attack and a reasonably small size of the estimation error in order to launch an attack. Here, estimation error arises from assessing the system failure upon attack using aggregate data at the system level. The corresponding error is referred to as aggregation error. On the other hand, the defender will attempt to deter attack by making one or both criteria inapplicable. The defender will build his/her strategy by both strengthening the targeted system and increasing the size of error. We will formulate the defender problem based on appropriate optimization models. The attacker will opt for a Bayesian updating in assessing the impact on the improvement made by the defender. Then, the attacker will evaluate the feasibility of the attack before making the decision of whether or not to launch it. We will provide illustrations to better explain the process.

Keywords: attacker, defender, game theory, information

Procedia PDF Downloads 469
9213 Kant’s Conception of Human Dignity and the Importance of Singularity within Commonality

Authors: Francisco Lobo

Abstract:

Kant’s household theory of human dignity as a common feature of all rational beings is the starting point of any intellectual endeavor to unravel the implications of this normative notion. Yet, it is incomplete, as it neglects considering the importance of the singularity or uniqueness of the individual. In a first, deconstructive stage, this paper describes the Kantian account of human dignity as one among many conceptions of human dignity. It reads carefully into the original wording used by Kant in German and its English translations, as well as the works of modern commentators, to identify its shortcomings. In a second, constructive stage, it then draws on the theories of Aristotle, Alexis de Tocqueville, John Stuart Mill, and Hannah Arendt to try and enhance the Kantian conception, in the sense that these authors give major importance to the singularity of the individual. The Kantian theory can be perfected by including elements from the works of these authors, while at the same time being mindful of the dangers entailed in focusing too much on singularity. The conclusion of this paper is that the Kantian conception of human dignity can be enhanced if it acknowledges that not only morality has dignity, but also the irreplaceable human individual to the extent that she is a narrative, original creature with the potential to act morally.

Keywords: commonality, dignity, Kant, singularity

Procedia PDF Downloads 284
9212 Approach to Honey Volatiles' Profiling by Gas Chromatography and Mass Spectrometry

Authors: Igor Jerkovic

Abstract:

Biodiversity of flora provides many different nectar sources for the bees. Unifloral honeys possess distinctive flavours, mainly derived from their nectar sources (characteristic volatile organic components (VOCs)). Specific or nonspecific VOCs (chemical markers) could be used for unifloral honey characterisation as addition to the melissopalynologycal analysis. The main honey volatiles belong, in general, to three principal categories: terpenes, norisoprenoids, and benzene derivatives. Some of these substances have been described as characteristics of the floral source, and other compounds, like several alcohols, branched aldehydes, and furan derivatives, may be related to the microbial purity of honey processing and storage conditions. Selection of the extraction method for the honey volatiles profiling should consider that heating of the honey produce different artefacts and therefore conventional methods of VOCs isolation (such as hydrodistillation) cannot be applied for the honey. Two-way approach for the isolation of the honey VOCs was applied using headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The extracts were analysed by gas chromatography and mass spectrometry (GC-MS). HS-SPME (with the fibers of different polarity such as polydimethylsiloxane/ divinylbenzene (PDMS/DVB) or divinylbenzene/carboxene/ polydimethylsiloxane (DVB/CAR/PDMS)) enabled isolation of high volatile headspace VOCs of the honey samples. Among them, some characteristic or specific compounds can be found such as 3,4-dihydro-3-oxoedulan (in Centaurea cyanus L. honey) or 1H-indole, methyl anthranilate, and cis-jasmone (in Citrus unshiu Marc. honey). USE with different solvents (mainly dichloromethane or the mixture pentane : diethyl ether 1 : 2 v/v) enabled isolation of less volatile and semi-volatile VOCs of the honey samples. Characteristic compounds from C. unshiu honey extracts were caffeine, 1H-indole, 1,3-dihydro-2H-indol-2-one, methyl anthranilate, and phenylacetonitrile. Sometimes, the selection of solvent sequence was useful for more complete profiling such as sequence I: pentane → diethyl ether or sequence II: pentane → pentane/diethyl ether (1:2, v/v) → dichloromethane). The extracts with diethyl ether contained hydroquinone and 4-hydroxybenzoic acid as the major compounds, while (E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’-trimethylcyclo-hexyl)but-3-en-2-one predominated in dichloromethane extracts of Allium ursinum L. honey. With this two-way approach, it was possible to obtain a more detailed insight into the honey volatile and semi-volatile compounds and to minimize the risks of compound discrimination due to their partial extraction that is of significant importance for the complete honey profiling and identification of the chemical biomarkers that can complement the pollen analysis.

Keywords: honey chemical biomarkers, honey volatile compounds profiling, headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE)

Procedia PDF Downloads 203
9211 The System of Uniform Criteria for the Characterization and Evaluation of Elements of Economic Structure: The Territory, Infrastructure, Processes, Technological Chains, the End Products

Authors: Aleksandr A. Gajour, Vladimir G. Merzlikin, Vladimir I. Veselov

Abstract:

This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with the spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the polar regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under limited and unlimited amount of heat-energy resources are analyzed.

Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes

Procedia PDF Downloads 404
9210 Prey Selection of the Corallivorous Gastropod Drupella cornus in Jeddah Coast, Saudi Arabia

Authors: Gaafar Omer BaOmer, Abdulmohsin A. Al-Sofyani, Hassan A. Ramadan

Abstract:

Drupella is found on coral reefs throughout the tropical and subtropical shallow waters of the Indo-Pacific region. Drupella is muricid gastropod, obligate corallivorous and their population outbreak can cause significant coral mortality. Belt transect surveys were conducted at two sites (Bohairat and Baydah) in Jeddah coast, Saudi Arabia to assess prey preferences for D. cornus with respect to prey availability through resource selection ratios. Results revealed that there are different levels of prey preferences at the different age stages and at the different sites. Acropora species with a caespitose, corymbose and digitate growth forms were preferred prey for recruits and juveniles of Drupella cornus, whereas Acropora variolosa was avoided by D. cornus because of its arborescent colony growth form. Pocillopora, Stylophora, and Millipora were occupied by Drupella cornus less than expected, whereas massive corals genus Porites were avoided. High densities of D. cornus were observed on two fragments of Pocillopora damicornis which may because of the absence of coral guard crabs genus Trapezia. Mean densities of D. cornus per colony for each species showed significant differentiation between the two study sites. Low availability of Acropora colonies in Bayadah patch reef caused high mean density of D. cornus per colony to compare to that in Bohairat, whereas higher mean density of D. cornus per colony of Pocillopora in Bohairat than that in Bayadah may because of most of occupied Pocillopora colonies by D. cornus were physical broken by anchoring compare to those colonies in Bayadah. The results indicated that prey preferences seem to depend on both coral genus and colony shape, while mean densities of D. cornus depend on availability and status of coral colonies.

Keywords: prey availability, resource selection, Drupella cornus, Jeddah, Saudi Arabia

Procedia PDF Downloads 149
9209 A Vision Making Exercise for Twente Region; Development and Assesment

Authors: Gelareh Ghaderi

Abstract:

the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.

Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision

Procedia PDF Downloads 228
9208 Intermodal Strategies for Redistribution of Agrifood Products in the EU: The Case of Vegetable Supply Chain from Southeast of Spain

Authors: Juan C. Pérez-Mesa, Emilio Galdeano-Gómez, Jerónimo De Burgos-Jiménez, José F. Bienvenido-Bárcena, José F. Jiménez-Guerrero

Abstract:

Environmental cost and transport congestion on roads resulting from product distribution in Europe have to lead to the creation of various programs and studies seeking to reduce these negative impacts. In this regard, apart from other institutions, the European Commission (EC) has designed plans in recent years promoting a more sustainable transportation model in an attempt to ultimately shift traffic from the road to the sea by using intermodality to achieve a model rebalancing. This issue proves especially relevant in supply chains from peripheral areas of the continent, where the supply of certain agrifood products is high. In such cases, the most difficult challenge is managing perishable goods. This study focuses on new approaches that strengthen the modal shift, as well as the reduction of externalities. This problem is analyzed by attempting to promote intermodal system (truck and short sea shipping) for transport, taking as point of reference highly perishable products (vegetables) exported from southeast Spain, which is the leading supplier to Europe. Methodologically, this paper seeks to contribute to the literature by proposing a different and complementary approach to establish a comparison between intermodal and the “only road” alternative. For this purpose, the multicriteria decision is utilized in a p-median model (P-M) adapted to the transport of perishables and to a means of shipping selection problem, which must consider different variables: transit cost, including externalities, time, and frequency (including agile response time). This scheme avoids bias in decision-making processes. By observing the results, it can be seen that the influence of the externalities as drivers of the modal shift is reduced when transit time is introduced as a decision variable. These findings confirm that the general strategies, those of the EC, based on environmental benefits lose their capacity for implementation when they are applied to complex circumstances. In general, the different estimations reveal that, in the case of perishables, intermodality would be a secondary and viable option only for very specific destinations (for example, Hamburg and nearby locations, the area of influence of London, Paris, and the Netherlands). Based on this framework, the general outlook on this subject should be modified. Perhaps the government should promote specific business strategies based on new trends in the supply chain, not only on the reduction of externalities, and find new approaches that strengthen the modal shift. A possible option is to redefine ports, conceptualizing them as digitalized redistribution and coordination centers and not only as areas of cargo exchange.

Keywords: environmental externalities, intermodal transport, perishable food, transit time

Procedia PDF Downloads 98
9207 Implementing Simulation-Based Education as a Transformative Learning Strategy in Nursing and Midwifery Curricula in Resource-Constrained Countries: The Case of Malawi

Authors: Patrick Mapulanga, Chisomo Petros Ganya

Abstract:

Purpose: This study aimed to investigate the integration of Simulation-Based Education (SBE) into nursing and midwifery curricula in resource-constrained countries using Malawi as a case study. The purpose of this study is to assess the extent to which SBE is mentioned in curricula and explore the associated content, assessment criteria, and guidelines. Methodology: The research methodology involved a desk study of nursing and midwifery curricula in Malawi. A comprehensive review was conducted to identify references to SBE by examining documents such as official curriculum guides, syllabi, and educational policies. The focus is on understanding the prevalence of SBE without delving into the specific content or assessment details. Findings: The findings revealed that SBE is indeed mentioned in the nursing and midwifery curricula in Malawi; however, there is a notable absence of detailed content and assessment criteria. While acknowledgement of SBE is a positive step, the lack of specific guidelines poses a challenge to its effective implementation and assessment within the educational framework. Conclusion: The study concludes that although the recognition of SBE in Malawian nursing and midwifery curricula signifies a potential openness to innovative learning strategies, the absence of detailed content and assessment criteria raises concerns about the practical application of SBE. Addressing this gap is crucial for harnessing the full transformative potential of SBE in resource-constrained environments. Areas for Further Research: Future research endeavours should focus on a more in-depth exploration of the content and assessment criteria related to SBE in nursing and midwifery curricula. Investigating faculty perspectives and students’ experiences with SBE could provide valuable insights into the challenges and opportunities associated with its implementation. Study Limitations and Implications: The study's limitations include reliance on desk-based analysis, which limits the depth of understanding regarding SBE implementation. Despite this constraint, the implications of the findings underscore the need for curriculum developers, educators, and policymakers to collaboratively address the gaps in SBE integration and ensure a comprehensive and effective learning experience for nursing and midwifery students in resource-constrained countries.

Keywords: simulation based education, transformative learning, nursing and midwifery, curricula, Malawi

Procedia PDF Downloads 70
9206 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 169
9205 Designing a Model to Increase the Flow of Circular Economy Startups Using a Systemic and Multi-Generational Approach

Authors: Luís Marques, João Rocha, Andreia Fernandes, Maria Moura, Cláudia Caseiro, Filipa Figueiredo, João Nunes

Abstract:

The implementation of circularity strategies other than recycling, such as reducing the amount of raw material, as well as reusing or sharing existing products, remains marginal. The European Commission announced that the transition towards a more circular economy could lead to the net creation of about 700,000 jobs in Europe by 2030, through additional labour demand from recycling plants, repair services and other circular activities. Efforts to create new circular business models in accordance with completely circular processes, as opposed to linear ones, have increased considerably in recent years. In order to create a societal Circular Economy transition model, it is necessary to include innovative solutions, where startups play a key role. Early-stage startups based on new business models according to circular processes often face difficulties in creating enough impact. The StartUp Zero Program designs a model and approach to increase the flow of startups in the Circular Economy field, focusing on a systemic decision analysis and multi-generational approach, considering Multi-Criteria Decision Analysis to support a decision-making tool, which is also supported by the use of a combination of an Analytical Hierarchy Process and Multi-Attribute Value Theory methods. We define principles, criteria and indicators for evaluating startup prerogatives, quantifying the evaluation process in a unique result. Additionally, this entrepreneurship program spanning 16 months involved more than 2400 young people, from ages 14 to 23, in more than 200 interaction activities.

Keywords: circular economy, entrepreneurship, startups;, multi-criteria decision analysis

Procedia PDF Downloads 108
9204 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm

Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim

Abstract:

The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.

Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost

Procedia PDF Downloads 386
9203 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
9202 Importance of Standards in Engineering and Technology Education

Authors: Ahmed S. Khan, Amin Karim

Abstract:

During the past several decades, the economy of each nation has been significantly affected by globalization and technology. Government regulations and private sector standards affect a majority of world trade. Countries have been working together to establish international standards in almost every field. As a result, workers in all sectors need to have an understanding of standards. Engineering and technology students must not only possess an understanding of engineering standards and applicable government codes, but also learn to apply them in designing, developing, testing and servicing products, processes and systems. Accreditation Board for Engineering & Technology (ABET) criteria for engineering and technology education require students to learn and apply standards in their class projects. This paper is a follow-up of a 2006-2009 NSF initiative awarded to IEEE to help develop tutorials and case study modules for students and encourage standards education at college campuses. It presents the findings of a faculty/institution survey conducted through various U.S.-based listservs representing the major engineering and technology disciplines. The intent of the survey was to the gauge the status of use of standards and regulations in engineering and technology coursework and to identify benchmark practices. In light of survey findings, recommendations are made to standards development organizations, industry, and academia to help enhance the use of standards in engineering and technology curricula.

Keywords: standards, regulations, ABET, IEEE, engineering, technology curricula

Procedia PDF Downloads 289
9201 Investment Projects Selection Problem under Hesitant Fuzzy Environment

Authors: Irina Khutsishvili

Abstract:

In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations, since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Keywords: In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Procedia PDF Downloads 118
9200 Coal Preparation Plant:Technology Overview and New Adaptations

Authors: Amit Kumar Sinha

Abstract:

A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.

Keywords: intermediate circuit, overlapping process, reflux classifier

Procedia PDF Downloads 136
9199 Subcontractor Development Practices and Processes: A Conceptual Model for LEED Projects

Authors: Andrea N. Ofori-Boadu

Abstract:

The purpose is to develop a conceptual model of subcontractor development practices and processes that strengthen the integration of subcontractors into construction supply chain systems for improved subcontractor performance on Leadership in Energy and Environmental Design (LEED) certified building projects. The construction management of a LEED project has an important objective of meeting sustainability certification requirements. This is in addition to the typical project management objectives of cost, time, quality, and safety for traditional projects; and, therefore increases the complexity of LEED projects. Considering that construction management organizations rely heavily on subcontractors, poor performance on complex projects such as LEED projects has been largely attributed to the unsatisfactory preparation of subcontractors. Furthermore, the extensive use of unique and non-repetitive short term contracts limits the full integration of subcontractors into construction supply chains and hinders long-term cooperation and benefits that could enhance performance on construction projects. Improved subcontractor development practices are needed to better prepare and manage subcontractors, so that complex objectives can be met or exceeded. While supplier development and supply chain theories and practices for the manufacturing sector have been extensively investigated to address similar challenges, investigations in the construction sector are not that obvious. Consequently, the objective of this research is to investigate effective subcontractor development practices and processes to guide construction management organizations in their development of a strong network of high performing subcontractors. Drawing from foundational supply chain and supplier development theories in the manufacturing sector, a mixed interpretivist and empirical methodology is utilized to assess the body of knowledge within literature for conceptual model development. A self-reporting survey with five-point Likert scale items and open-ended questions is administered to 30 construction professionals to estimate their perceptions of the effectiveness of 37 practices, classified into five subcontractor development categories. Data analysis includes descriptive statistics, weighted means, and t-tests that guide the effectiveness ranking of practices and categories. The results inform the proposed three-phased LEED subcontractor development program model which focuses on preparation, development and implementation, and monitoring. Highly ranked LEED subcontractor pre-qualification, commitment, incentives, evaluation, and feedback practices are perceived as more effective, when compared to practices requiring more direct involvement and linkages between subcontractors and construction management organizations. This is attributed to unfamiliarity, conflicting interests, lack of trust, and resource sharing challenges. With strategic modifications, the recommended practices can be extended to other non-LEED complex projects. Additional research is needed to guide the development of subcontractor development programs that strengthen direct involvement between construction management organizations and their network of high performing subcontractors. Insights from this present research strengthen theoretical foundations to support future research towards more integrated construction supply chains. In the long-term, this would lead to increased performance, profits and client satisfaction.

Keywords: construction management, general contractor, supply chain, sustainable construction

Procedia PDF Downloads 111
9198 Comparing the Educational Effectiveness of eHealth to Deliver Health Knowledge between Higher Literacy Users and Lower Literacy Users

Authors: Yah-Ling Hung

Abstract:

eHealth is undoubtedly emerging as a promising vehicle to provide information for individual self-care management. However, the accessing ability, reading strategies and navigating behavior between higher literacy users and lower literacy users are significantly different. Yet, ways to tailor audiences’ health literacy and develop appropriate eHealth to feed their need become a big challenge. The purpose of this study is to compare the educational effectiveness of eHealth to deliver health knowledge between higher literacy users and lower literacy users, thus establishing useful design strategies of eHealth for users with different level of health literacy. The study was implemented in four stages, the first of which developed a website as the testing media to introduce health care knowledge relating to children’s allergy. Secondly, a reliability and validity test was conducted to make sure that all of the questions in the questionnaire were good indicators. Thirdly, a pre-post knowledge test was conducted with 66 participants, 33 users with higher literacy and 33 users with lower literacy respectively. Finally, a usability evaluation survey was undertaken to explore the criteria used by users with different levels of health literacy to evaluate eHealth. The results demonstrated that the eHealth Intervention in both groups had a positive outcome. There was no significant difference between the effectiveness of eHealth intervention between users with higher literacy and users with lower literacy. However, the average mean of lower literacy group was marginally higher than the average mean of higher literacy group. The findings also showed that the criteria used to evaluate eHealth could be analyzed in terms of the quality of information, appearance, appeal and interaction, but the users with lower literacy have different evaluation criteria from those with higher literacy. This is an interdisciplinary research which proposes the sequential key steps that incorporate the planning, developing and accessing issues that need to be considered when designing eHealth for patients with varying degrees of health literacy.

Keywords: eHealth, health intervention, health literacy, usability evaluation

Procedia PDF Downloads 142