Search results for: entity recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1952

Search results for: entity recognition

1022 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 636
1021 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network

Procedia PDF Downloads 102
1020 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 528
1019 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: few-shot learning, triplet network, adaptive margin, deep learning

Procedia PDF Downloads 167
1018 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 141
1017 Diaper Dermatitis and Pancytopenia as the Primary Manifestation in an Infant with Vitamin B12 Deficiency

Authors: Ekaterina Sánchez Romero, Emily Gabriela Aguirre Herrera, Sandra Luz Espinoza Esquerra, Jorge García Campos

Abstract:

Female, 7 months old, daughter of a mother with anemia during pregnancy, with no history of atopy in the family, since birth she presents with recurrent dermatological and gastrointestinal infections, chronically treated for recurrent diaper dermatitis. At 6 months of age, she begins with generalized pallor, hyperpigmentation in hands and feet, smooth tongue, psychomotor retardation with lack of head support, sedation, and hypoactivity. She was referred to our hospital for a fever of 38°C, severe diaper rash, and pancytopenia with HB 9.3, platelets 38000, neutrophils 0.39 MCV: 86.80 high for her age. The approach was initiated to rule out myeloproliferative syndrome, with negative immunohistochemical results of bone marrow aspirate; during her stay, she presented neurological regression, lack of sucking, and focal seizures. CT scan showed cortical atrophy. The patient was diagnosed with primary immunodeficiency due to history; gamma globulin was administered without improvement with normal results of immunoglobulins and metabolic screening. When dermatological and neurological diagnoses were ruled out as the primary cause, a nutritional factor was evaluated, and a therapeutic trial was started with the administration of vitamin B12 and zinc, presenting clinical neurological improvement and resolution of pancytopenia in 2 months. It was decided to continue outpatient management. Discussion: We present a patient with neurological, dermatological involvement, and pancytopenia, so the most common differential diagnoses in this population were ruled out. Vitamin B12 deficiency is an uncommon entity. Due to maternal and clinical history, a therapeutic trial was started resulting in an improvement. Conclusion: VitaminB12 deficiency should be considered one of the differential diagnoses in the approach to pancytopenia with megaloblastic anemia associated with dermatologic and neurologic manifestations. Early treatment can reduce irreversible damage in these patients.

Keywords: vitamin B12 deficiency, pediatrics, pancytopenia, diaper dermatitis

Procedia PDF Downloads 94
1016 Multimodal Characterization of Emotion within Multimedia Space

Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal

Abstract:

Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.

Keywords: affective computing, deep learning, emotion recognition, multimodal

Procedia PDF Downloads 154
1015 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication

Authors: Rui Mao, Heming Ji, Xiaoyu Wang

Abstract:

Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.

Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM

Procedia PDF Downloads 153
1014 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 396
1013 Comparison of the H-Index of Researchers of Google Scholar and Scopus

Authors: Adian Fatchur Rochim, Abdul Muis, Riri Fitri Sari

Abstract:

H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference’s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers’ data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper’s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus.

Keywords: Google Scholar, H-index, Scopus, performance indicator

Procedia PDF Downloads 272
1012 An Alternative Institutional Design for Efficient Management of Nepalese Irrigation Systems

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Institutional design is important if water resources are to be managed efficiently. In Nepal, the supply of water in both farmer- and agency-managed irrigation systems is inefficient because of the weak institutional frameworks. This type of inefficiency is linked with collective problems such as non-excludability of irrigation water, inadequate recognition of property rights and externalities. Irrigation scheme surveys from Nepal as well as existing literature revealed that the Nepalese irrigation sector is facing many issues such as low cost recovery, inadequate maintenance of the schemes and inefficient allocation and utilization of irrigation water. The institutional practices currently in place also fail to create/force any incentives for farmers to use water efficiently and to pay for its use. This, thus, compels the need of refined institutional framework that can address the collective problems and improve irrigation efficiency.

Keywords: agency-managed, cost recovery, farmer-managed, institutional design

Procedia PDF Downloads 424
1011 A General Framework for Measuring the Internal Fraud Risk of an Enterprise Resource Planning System

Authors: Imran Dayan, Ashiqul Khan

Abstract:

Internal corporate fraud, which is fraud carried out by internal stakeholders of a company, affects the well-being of the organisation just like its external counterpart. Even if such an act is carried out for the short-term benefit of a corporation, the act is ultimately harmful to the entity in the long run. Internal fraud is often carried out by relying upon aberrations from usual business processes. Business processes are the lifeblood of a company in modern managerial context. Such processes are developed and fine-tuned over time as a corporation grows through its life stages. Modern corporations have embraced technological innovations into their business processes, and Enterprise Resource Planning (ERP) systems being at the heart of such business processes is a testimony to that. Since ERP systems record a huge amount of data in their event logs, the logs are a treasure trove for anyone trying to detect any sort of fraudulent activities hidden within the day-to-day business operations and processes. This research utilises the ERP systems in place within corporations to assess the likelihood of prospective internal fraud through developing a framework for measuring the risks of fraud through Process Mining techniques and hence finds risky designs and loose ends within these business processes. This framework helps not only in identifying existing cases of fraud in the records of the event log, but also signals the overall riskiness of certain business processes, and hence draws attention for carrying out a redesign of such processes to reduce the chance of future internal fraud while improving internal control within the organisation. The research adds value by applying the concepts of Process Mining into the analysis of data from modern day applications of business process records, which is the ERP event logs, and develops a framework that should be useful to internal stakeholders for strengthening internal control as well as provide external auditors with a tool of use in case of suspicion. The research proves its usefulness through a few case studies conducted with respect to big corporations with complex business processes and an ERP in place.

Keywords: enterprise resource planning, fraud risk framework, internal corporate fraud, process mining

Procedia PDF Downloads 331
1010 The Role of Middle Managers SBU's in Context of Change: Sense-Making Approach

Authors: Hala Alioua, Alberic Tellier

Abstract:

This paper is designed to spotlight the research on corporate strategic planning, by emphasizing the role of middle manager of SBU’s and related issues such as the context of vision change. Previous research on strategic vision has been focused principally at the SME, with relatively limited consideration given to the role of middle managers SBU’s in the context of change. This project of research has been done by using a single case study. We formulated through our immersion for 2.5 years on the ground and by a qualitative method and abduction approach. This entity that we analyze is a subsidiary of multinational companies headquartered in Germany, specialized in manufacturing automotive equipment. The "Delta Company" is a French manufacturing plant that has undergone numerous changes over the past three years. The two major strategic changes that have a significant impact on the Delta plant are the strengths of its core business through « lead plant strategy» in 2011 and the implementation of a new strategic vision in 2014. These consecutive changes impact the purpose of the mission of the middle managers. The plant managers ask the following questions: How the middle managers make sense of the corporate strategic planning imposed by the parent company? How they appropriate the new vision and decline it into actions on the ground? We chose the individual interview technique through open-ended questions as the source of data collection. We first of all carried out an exploratory approach by interviewing 8 members of the Management committee’s decision and 19 heads of services. The first findings and results show that exist a divergence of opinion and interpretations of the corporate strategic planning among organization members and there are difficulties to make sense and interpretations of the signals of the environment. The lead plant strategy enables new projects which insure the workload of Delta Company. Nevertheless, it creates a tension and stress among the middle managers because its provoke lack of resources to the detriment of their main jobs as manufacturer plant. The middle managers does not have a clear vision and they are wondering if the new strategic vision means more autonomy and less support from the group.

Keywords: change, middle managers, vision, sensemaking

Procedia PDF Downloads 401
1009 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion

Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe

Abstract:

Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.

Keywords: SIFT feature, MLBP, PCA, face sketch

Procedia PDF Downloads 335
1008 The Late School of Alexandria and Its Influence on Islamic Philosophy

Authors: Hussein El-Zohary

Abstract:

This research aims at studying the late Alexandrian school of philosophy in the 6th century AD, the adaptation of its methodologies by the Islamic world, and its impact on Muslim philosophical thought. The Alexandrian school has been underestimated by many scholars who regard its production at the end of the classical age as mere interpretations of previous writings and delimit its achievement to the preservation of ancient philosophical heritage. The research reviews the leading figures of the Alexandrian school and its production of philosophical commentaries studying ancient Greek philosophy in its entirety. It also traces the transmission of its heritage to the Islamic world through direct translations into Syriac first and then into Arabic. The research highlights the impact of the Alexandrian commentaries on Muslim recognition of Plato and Aristotle as well as its philosophical teaching methodology starting with the study of Aristotle’s Categories as introductory to understand Plato’s philosophy.

Keywords: Alexandrian school of philosophy, categories, commentaries, Syriac

Procedia PDF Downloads 144
1007 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System

Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia

Abstract:

The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.

Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition

Procedia PDF Downloads 488
1006 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)

Authors: Zeki Oralhan, Mahmut Tokmakçı

Abstract:

SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.

Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP

Procedia PDF Downloads 265
1005 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 472
1004 Trigonelline: A Promising Compound for The Treatment of Alzheimer's Disease

Authors: Mai M. Farid, Ximeng Yang, Tomoharu Kuboyama, Chihiro Tohda

Abstract:

Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD.

Keywords: alzheimer’s disease, cortical neurons, LC-MS/MS analysis, trigonelline

Procedia PDF Downloads 145
1003 Public Policy and Morality Principles as Grounds for Refusal of Trademarks: A Comparative Study of Islamic Shari’a and Common Law

Authors: Nawaf Alyaseen

Abstract:

This paper provides a comparative analysis of the Islamic and Western public policy and morality principles governing trademarks. The aim of this paper is to explore public policy and morality principles that affect trademark registration and protection under Shari'a by using Kuwaiti law as a case study. The findings provide a better understanding of trademark recognition from the perspective of Shari'a and the requirements demanded by Islamic Shari'a, especially of those who deal with strict Shari'a jurisdiction countries. In addition, this understanding is required for corporations or legislators that wish to take into consideration Muslim consumers. The conclusion suggests that trademarks in Western and Islamic systems are controlled by a number of public policy and morality rules that have a direct effect on the registration and protection of trademarks. Regardless of the fact that there are many commonalities between the two systems, there are still fundamental differences.

Keywords: trademark, public policy and morality, Islamic sharia, western legal systems

Procedia PDF Downloads 76
1002 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, LIU Xuebin, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Lao Xuerui

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature have led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using Yolov5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network, machine vision

Procedia PDF Downloads 96
1001 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments

Authors: Shaikh Farhad Hossain, Liakot Ali

Abstract:

Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.

Keywords: ADL, SVM, TRIL , MEMS

Procedia PDF Downloads 393
1000 A Research and Application of Feature Selection Based on IWO and Tabu Search

Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu

Abstract:

Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.

Keywords: intrusion detection, feature selection, iwo, tabu search

Procedia PDF Downloads 528
999 Country Experience on Regulation of Traditional Medicine in Eritrea

Authors: Liya Abraham

Abstract:

Eritrea is located along the Red Sea, north of the Horn of Africa, between Djibouti and Sudan and has a population of about 3.2 million as of 2010. It has six administrative regions; Anseba, Debub, Debubawi K’eyih Bahri, Gash-Barka, Ma'akel, and Semenawi K’eyih Bahri. Eritrea has got its independence in 1991 after 30 years war of liberation. The country is blessed with various medicinal flora and fauna, and marine and terrestrial biodiversity. Traditional Medicine (TM) has been an integral part of the Eritrean culture for centuries. So far, more than 19 TM modalities have been recognized, and are broadly categorized as; herbal, procedure-based and spiritual. Despite the availability of modern medicine to the majority of the population, TM is still widely practiced. The rationale behind widespread use is accessibility, affordability and cultural acceptability. Hence, TM is of great contribution to the Eritrean health care system. As a matter of fact, harnessing the potential contribution of effective and safe TM in order to attain Universal Health Coverage (UHC) has been emphasized in the WHO TM strategy 2014-2023. The Eritrean TM, however, was operating without regulation and reliable scientific justification behind its safety and efficacy. Thus, the Ministry of Health (MoH), in recognition of the role of TM in primary healthcare and safeguard public health, established a regulatory body for TM so-called as Traditional Medicine Unit (TMU) in 2012. The mission of the unit is to ensure rational TM use through an integrated health service delivery system and contribute to the country’s economic and social development. The unit has established its national TM policy in 2017. The activities of the unit are guided by the National TM Advisory Committee (TMAC), responsible for the provision of technical assistance and advisory role. Moreover, the Legal Framework and Code of Ethics and Practice which provide a legal basis for the regulation of TM have also been drafted. In recognition of the importance of TM research and development, the unit launched a nationwide TM survey in 2017 and had surveyed two zones (Gash-Barka and Debub). The findings of the survey were subjected to a research dissemination workshop and publication in international journals. Furthermore, TM-related adverse events reporting tool (Green Form) aiming to guide regulatory interventions and researches have been established by the unit, and ever since reports are flowing. The unit has also been offering training to THPs, pharmacy students and health care professionals regarding TM and its regulatory activities. In addition, as part of the establishment of the national medicinal plants' database and herbal monograph, more than 329 and 30 medicinal plants, have been compiled respectively. In conclusion, TM is still widely accepted and practiced in Eritrea. The TMU ever since its establishment is endeavoring to ensure the safety and efficacy of the TM, and its integration in the mainstream health service delivery system.

Keywords: efficacy, regulation, safety, traditional medicine, traditional medicine unit, universal health coverage

Procedia PDF Downloads 185
998 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 121
997 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 196
996 Comparative Methods for Speech Enhancement and the Effects on Text-Independent Speaker Identification Performance

Authors: R. Ajgou, S. Sbaa, S. Ghendir, A. Chemsa, A. Taleb-Ahmed

Abstract:

The speech enhancement algorithm is to improve speech quality. In this paper, we review some speech enhancement methods and we evaluated their performance based on Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862). All method was evaluated in presence of different kind of noise using TIMIT database and NOIZEUS noisy speech corpus.. The noise was taken from the AURORA database and includes suburban train noise, babble, car, exhibition hall, restaurant, street, airport and train station noise. Simulation results showed improved performance of speech enhancement for Tracking of non-stationary noise approach in comparison with various methods in terms of PESQ measure. Moreover, we have evaluated the effects of the speech enhancement technique on Speaker Identification system based on autoregressive (AR) model and Mel-frequency Cepstral coefficients (MFCC).

Keywords: speech enhancement, pesq, speaker recognition, MFCC

Procedia PDF Downloads 422
995 A Gendered Perspective on the Influences of Transport Infrastructure on User Access

Authors: Ajeni Ari

Abstract:

In addressing gender and transport, considerations of mobility disparities amongst users are important. Public transport (PT) policy and design do not efficiently account for the varied mobility practices between men and women, with literature only recently showing a movement towards gender inclusion in transport. Arrantly, transport policy and designs remain gender-blind to the variation of mobility needs. The global movement towards sustainability highlights the need for expeditious strategies that could mitigate biases within the existing system. At the forefront of such plan of action may, in part, be mandated inclusive infrastructural designs that stimulate user engagement with the transport system. Fundamentally access requires a means or an opportunity to entity, which for PT is an establishment of its physical environment and/or infrastructural design. Its practicality may be utilised with knowledge of shortcomings in tangible or intangible aspects of the service offerings allowing access to opportunities. To inform on existing biases in PT planning and design, this study analyses qualitative data to examine the opinions and lived experiences among transport user in Ireland. Findings show that infrastructural design plays a significant role in users’ engagement with the service. Paramount to accessibility are service provisions that cater to both user interactions and those of their dependents. Apprehension to use the service is more so evident with women in comparison to men, particularly while carrying out household duties and caring responsibilities at peak times or dark hours. Furthermore, limitations are apparent with infrastructural service offerings that do not accommodate the physical (dis)ability of users, especially universal design. There are intersecting factors that impinge on accessibility, e.g., safety and security, yet essentially, infrastructural design is an important influencing parameter to user perceptual conditioning. Additionally, data discloses the need for user intricacies to be factored in transport planning geared towards gender inclusivity, including mobility practices, travel purpose, transit time or location, and system integration.

Keywords: public transport, accessibility, women, transport infrastructure

Procedia PDF Downloads 77
994 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs

Authors: Josef Slapal

Abstract:

Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.

Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency

Procedia PDF Downloads 377
993 Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics

Authors: Surendra Mund

Abstract:

At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions.

Keywords: Central System Force, Disturbance Force, Flow Generated Forces, Generalized Nuclear Force, Generalized Weak Interactions, Generalized EM-Like Interactions, Imbalance Force, Spin Generated Forces, Transformation Generated Force, Unified Force, Universal Mechanics, Uniform And Non-Uniform Variational Interactions, Variational Interactions

Procedia PDF Downloads 50