Search results for: students with learning disabilities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10807

Search results for: students with learning disabilities

1297 Perception of Risks of the Telecommunication Towers in Malaysia: A Qualitative Inquiry

Authors: Y. Kamarulzaman, A. Madun, F. D. Yusop, N. Abdullah, N. K. Hoong

Abstract:

In 2011, the Malaysian Government has initiated a nationwide project called 1BestariNet which will adopt the using of technology in teaching and learning, resulting in the construction of telecommunication towers inside the public schools’ premise. Using qualitative approach, this study investigated public perception of risks associated with the project, particularly the telecommunication towers. Data collection involved observation and in-depth interviews with 22 individuals consist of a segment of public that was anxious about the risks of radio frequency electromagnetic field (RFEMF) which include two employees of telecommunication companies (telcos) and five employees of Government agencies. Observation of the location of the towers at 10 public schools, a public forum, and media reports provide valuable information in our analysis. The study finds that the main concern is related to the health risks. This study also shows that it is not easy for the Government to manage public perception mainly because it involves public trust. We find that risk perception is related with public trust, as well as the perceived benefits and level of knowledge. Efficient communication and continuous engagement with the local communities help to build and maintain public trust, reduce public fear and anxiety, hence mitigating the risk perception among the public.

Keywords: risk perception, risk communication, trust, telecommunication tower, radio frequency electromagnetic field (RFEMF)

Procedia PDF Downloads 325
1296 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 131
1295 The Influence of Gossip on the Absorption Probabilities in Moran Process

Authors: Jurica Hižak

Abstract:

Getting to know the agents, i.e., identifying the free riders in a population, can be considered one of the main challenges in establishing cooperation. An ordinary memory-one agent such as Tit-for-tat may learn “who is who” in the population through direct interactions. Past experiences serve them as a landmark to know with whom to cooperate and against whom to retaliate in the next encounter. However, this kind of learning is risky and expensive. A cheaper and less painful way to detect free riders may be achieved by gossiping. For this reason, as part of this research, a special type of Tit-for-tat agent was designed – a “Gossip-Tit-for-tat” agent that can share data with other agents of its kind. The performances of both strategies, ordinary Tit-for-tat and Gossip-Tit-for-tat, against Always-defect have been compared in the finite-game framework of the Iterated Prisoner’s Dilemma via the Moran process. Agents were able to move in a random-walk fashion, and they were programmed to play Prisoner’s Dilemma each time they met. Moreover, at each step, one randomly selected individual was eliminated, and one individual was reproduced in accordance with the Moran process of selection. In this way, the size of the population always remained the same. Agents were selected for reproduction via the roulette wheel rule, i.e., proportionally to the relative fitness of the strategy. The absorption probability was calculated after the population had been absorbed completely by cooperators, which means that all the states have been occupied and all of the transition probabilities have been determined. It was shown that gossip increases absorption probabilities and therefore enhances the evolution of cooperation in the population.

Keywords: cooperation, gossip, indirect reciprocity, Moran process, prisoner’s dilemma, tit-for-tat

Procedia PDF Downloads 100
1294 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 77
1293 Short Answer Grading Using Multi-Context Features

Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan

Abstract:

Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.

Keywords: artificial intelligence, intelligent systems, natural language processing, text mining

Procedia PDF Downloads 136
1292 Cognitive Stereotype Behaviors and Their Imprinting on the Individuals with Autism

Authors: Li-Ju Chen, Hsiang-Lin Chan, Hsin-Yi Kathy Cheng, Hui-Ju Chen

Abstract:

Stereotype behavior is one of the maladaptive syndromes of the individuals with autism. Most of the previous researches focused on the stereotype behavior with stimulating type, while less on the stereotype behavior about cognition (This research names it cognitive stereotype behavior; CSB). This research explored CSB and the rationality to explain CSB with imprinting phenomenon. After excluding the samples without CSB described, the data that came from 271 individuals with autism were recruited and analyzed with quantitative and qualitative analyses. This research discovers that : (1) Most of the individuals with autism originally came out CSB at 3 years old and more than a half of them appeared before 4 years old; The average age which firstly came out CSB was 6.10 years old, the average time insisting or ossifying CSB was 31.71 minutes each time and the average longest time which they last was 358.35 minutes (5.97 hours). (2) CSB demonstrates various aspects, this research classified them into 4 fields with 26 categories. They were categorized into sudden CSB or habitual CSB by imprinting performance. (3) Most of the autism commented that their CSBs were not necessary but they could not control them well. One-third of them appeared CSB suddenly and the first occurrence accompanied a strong emotional or behavioral response. (4) Whether respondent is the person with autism himself/herself or not was the critical element: on the awareness of the severity degree, disturbance degree, and the emotional /behavioral intensity at the first-time CSB happened. This study concludes imprinting could reasonably explain the phenomenon CSB forms. There are implications leading the individuals with autism and their family to develop coping strategies to promote individuals with autism having a better learning accomplishment and life quality in their future.

Keywords: autism, cognitive stereotype behavior, constructivism, imprinting, stereotype

Procedia PDF Downloads 134
1291 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 157
1290 Transitioning Teacher Identity during COVID-19: An Australian Early Childhood Education Perspective

Authors: J. Jebunnesa, Y. Budd, T. Mason

Abstract:

COVID-19 changed the pedagogical expectations of early childhood education as many teachers across Australia had to quickly adapt to new teaching practices such as remote teaching. An important factor in the successful implementation of any new teaching and learning approach is teacher preparation, however, due to the pandemic, the transformation to remote teaching was immediate. A timely question to be asked is how early childhood teachers managed the transition from face-to-face teaching to remote teaching and what was learned through this time. This study explores the experiences of early childhood educators in Australia during COVID-19 lockdowns. Data were collected from an online survey conducted through the official Facebook forum of “Early Childhood Education and Care Australia,” and a constructivist grounded theory methodology was used to analyse the data. Initial research results suggest changing expectations of teachers’ roles and responsibilities during the lockdown, with a significant category related to transitioning teacher identities emerging. The concept of transitioning represents the shift from the role of early childhood educator to educational innovator, essential worker, social worker, and health officer. The findings illustrate the complexity of early childhood educators’ roles during the pandemic.

Keywords: changing role of teachers, constructivist grounded theory, lessons learned, teaching during COVID-19

Procedia PDF Downloads 101
1289 Our Shared Humanity: Bridging the Great Divide of Different Religions

Authors: Aida Raissi, Holly Wong, Elma Raissi

Abstract:

Background: Connection is a primal need established during infancy and reiterated in many forms of social interaction. When we make connections with others we experience growth, continuity, and gain an understanding of the other’s sense of the world. Feeling socially connected to another individual or community has been shown to increase self-esteem, happiness, and meaning. However, feeling connected to another individual or a specific community may also decrease the motivation to seek connection with more distant individuals or communities. Furthermore, we allow ourselves to interact with those in other communities as apart from us, and in some cases, to dehumanize their existence. Objective: The aim of this project is to bridge the gap between different communities, specifically religious communities and foster feelings of connection as one with all members through the medium of art, specifically photography. Method: Members of all major faiths including Agnosticism, Atheism, Buddhism, Catholicism, Christianity, Ismaili, Jewish, Ja’far Shia, Sunni will be interviewed. Participants will be asked to partake in a brief interview of two parts: A. Answering two questions: 1. What are you most looking forward to in the future, and why? 2. What does religion mean to you? B. Having their picture taken. Our questions aim to elicit individual stories that together, show that we have more in common, than differences, despite our faiths. With the completion of the interviews, the responses will be compiled together and major themes will be identified. Impact: The resulting stories and corresponding individual pictures provide an excellent opportunity to encourage and inspire people to get to know those of other beliefs and values, participate in each other’s communities and develop a sense of oneness within our shared humanity. Knowledge translation: The personal stories, and the common themes they illustrate, will be shared with various audiences, including the general public, academia and targeted groups such as students. This will be done through displaying the photographs and responses at art galleries, conferences, in print and online.

Keywords: social justice, religion, connection, understanding, community

Procedia PDF Downloads 403
1288 ABET Accreditation Process for Engineering and Technology Programs: Detailed Process Flow from Criteria 1 to Criteria 8

Authors: Amit Kumar, Rajdeep Chakrabarty, Ganesh Gupta

Abstract:

This paper illustrates the detailed accreditation process of Accreditation Board of Engineering and Technology (ABET) for accrediting engineering and Technology programs. ABET is a non-governmental agency that accredits engineering and technology, applied and natural sciences, and computing sciences programs. ABET was founded on 10th May 1932 and was founded by Institute of Electrical and Electronics Engineering. International industries accept ABET accredited institutes having the highest standards in their academic programs. In this accreditation, there are eight criteria in general; criterion 1 describes the student outcome evaluations, criteria 2 measures the program's educational objectives, criteria 3 is the student outcome calculated from the marks obtained by students, criteria 4 establishes continuous improvement, criteria 5 focus on curriculum of the institute, criteria 6 is about faculties of this institute, criteria 7 measures the facilities provided by the institute and finally, criteria 8 focus on institutional support towards staff of the institute. In this paper, we focused on the calculative part of each criterion with equations and suitable examples, the files and documentation required for each criterion, and the total workflow of the process. The references and the values used to illustrate the calculations are all taken from the samples provided at ABET's official website. In the final section, we also discuss the criterion-wise score weightage followed by evaluation with timeframe and deadlines.

Keywords: Engineering Accreditation Committee, Computing Accreditation Committee, performance indicator, Program Educational Objective, ABET Criterion 1 to 7, IEEE, National Board of Accreditation, MOOCS, Board of Studies, stakeholders, course objective, program outcome, articulation, attainment, CO-PO mapping, CO-PO-SO mapping, PDCA cycle, degree certificates, course files, course catalogue

Procedia PDF Downloads 62
1287 Factor Structure of the Korean Version of Multidimensional Experiential Avoidance Questionnaire (MEAQ)

Authors: Juyeon Lee, Sungeun You

Abstract:

Experiential avoidance is one’s tendency to avoid painful internal experience, unwanted adverse thoughts, emotions, and physical sensations. The Multidimensional Experiential Avoidance Questionnaire (MEAQ) is a measure of experiential avoidance, and the original scale consisted of 62 items with six subfactors including behavioral avoidance, distress aversion, procrastination, distraction/suppression, repression/denial, and distress endurance. The purpose of this study was to examine the factor structure of the MEAQ in a Korean sample. Three hundred community adults and university students aged 18 to 35 participated in an online survey assessing experiential avoidance (MEAQ and Acceptance and Action Questionnaire-II; AAQ-II), depression (Patient Health Questionnaire-9; PHQ-9), anxiety (Generalized Anxiety Disoder-7; GAD-7), negative affect (Positive and Negative Affect Scale; PANAS), neuroticism (Big Five Inventory; BFI), and quality of life (Satisfaction with Life Scale; SWLS). Factor analysis with principal axis with direct oblimin rotation was conducted to examine subfactors of the MEAQ. Results indicated that the six-factor structure of the original scale was adequate. Eight items out of 62 items were removed due to insufficient factor loading. These items included 3 items of behavior avoidance (e.g., “When I am hurting, I would do anything to feel better”), 2 items of repression/denial (e.g., “I work hard to keep out upsetting feelings”), and 3 items of distress aversion (e.g., “I prefer to stick to what I am comfortable with, rather than try new activities”). The MEAQ was positively associated with the AAQ-II (r = .47, p < .001), PHQ-9 (r = .37, p < .001), GAD-7 (r = .34, p < .001), PANAS (r = .35, p < .001), and neuroticism (r = .24, p < .001), and negatively correlated with the SWLS (r = -.38, p < .001). Internal consistency was good for the MEAQ total (Cronbach’s α = .90) as well as all six subfactors (Cronbach’s α = .83 to .87). The findings of the study support the multidimensional feature of experiential avoidance and validity of the MEAQ in a sample of Korean adults.

Keywords: avoidance, experiential avoidance, factor structure, MEAQ

Procedia PDF Downloads 368
1286 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization

Authors: Zhiyan Meng, Dan Liu, Jintao Meng

Abstract:

Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.

Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model

Procedia PDF Downloads 37
1285 Significance of Personnel Recruitment in Implementation of Computer Aided Design Curriculum of Architecture Schools

Authors: Kelechi E. Ezeji

Abstract:

The inclusion of relevant content in curricula of architecture schools is vital for attainment of Computer Aided Design (CAD) proficiency by graduates. Implementing this content involves, among other variables, the presence of competent tutors. Consequently, this study sought to investigate the importance of personnel recruitment for inclusion of content vital to the implementation of CAD in the curriculum for architecture education. This was with a view to developing a framework for appropriate implementation of CAD curriculum. It was focused on departments of architecture in universities in south-east Nigeria which have been accredited by National Universities Commission. Survey research design was employed. Data were obtained from sources within the study area using questionnaires, personal interviews, physical observation/enumeration and examination of institutional documents. A multi-stage stratified random sampling method was adopted. The first stage of stratification involved random sampling by balloting of the departments. The second stage involved obtaining respondents’ population from the number of staff and students of sample population. Chi Square analysis tool for nominal variables and Pearson’s product moment correlation test for interval variables were used for data analysis. With ρ < 0.5, the study found significant correlation between the number of CAD literate academic staff and use of CAD in design studio/assignments; that increase in the overall number of teaching staff significantly affected total CAD credit units in the curriculum of the department. The implications of these findings were that for successful implementation leading to attainment of CAD proficiency to occur, CAD-literacy should be a factor in the recruitment of staff and a policy of in-house training should be pursued.

Keywords: computer-aided design, education, personnel recruitment, curriculum

Procedia PDF Downloads 214
1284 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model

Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh

Abstract:

Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.

Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding

Procedia PDF Downloads 21
1283 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 521
1282 Analyzing the Efficiency of Initiatives Taken against Disinformation during Election Campaigns: Case Study of Young Voters

Authors: Fatima-Zohra Ghedir

Abstract:

Social media platforms have been actively working on solutions and combined their efforts with media, policy makers, educators and researchers to protect citizens and prevent interferences in information, political discourses and elections. Facebook, for instance, deleted fake accounts, implemented fake accounts and fake content detection algorithms, partnered with news agencies to manually fact check content and changed its newsfeeds display. Twitter and Instagram regularly communicate on their efforts and notify their users of improvements and safety guidelines. More funds have been allocated to media literacy programs to empower citizens in prevision of the coming elections. This paper investigates the efficiency of these initiatives and analyzes the metrics to measure their success or failure. The objective is also to determine the segments of population more prone to fall in disinformation traps during the elections despite the measures taken over the last four years. This study will also examine the groups who were positively impacted by these measures. This paper relies on both desk and field methodologies. For this study, a survey was administered to French students aged between 17 and 29 years old. Semi-guided interviews were conducted on a similar audience. The analysis of the survey and of the interviews show that respondents were exposed to the initiatives described above and are aware of the existence of disinformation issues. However, they do not understand what disinformation really entails or means. For instance, for most of them, disinformation is synonymous of the opposite point of view without taking into account the truthfulness of the content. Besides, they still consume and believe the information shared by their friends and family, with little questioning about the ways their closed ones get informed.

Keywords: democratic elections, disinformation, foreign interference, social media, success metrics

Procedia PDF Downloads 115
1281 The Role of Psychosis Proneness in the Association of Metacognition with Psychological Distress in Non-Clinical Population

Authors: Usha Barahmand, Ruhollah Heydari Sheikh Ahmad

Abstract:

Distress refers to an unpleasant metal state or emotional suffering marked by negative affect such as depression (e.g., lost interest; sadness; hopelessness), anxiety (e.g., restlessness; feeling tense). These negative affect have been mostly suggested to be concomitant of metal disorders such as positive psychosis symptoms and also of proneness to psychotic features in non-clinical population. Psychotic features proneness including hallucination, delusion and schizotypal traits, have been found to be associated with metacognitive beliefs. Metacognition has been conceptualized as ‘thinking about thoughts, monitoring and controlling of cognitive processes’. The aim of the current study was to investigate the role of psychosis proneness in the association of metacognitions and distress. We predicted psychosis proneness would mediate the association of metacognitive beliefs and the distress. A sample of 420 university students was randomly recruited to endorse questionnaires of the study that consisted of DASS-21questionnaire for assessing levels of distress, Cartwright–Hatton & Wells, Meta-cognitions Questionnaire (MCQ-30) for assessing metacognitive beliefs, Launay-Slade Hallucination Scale-revised (LSHS-R), Peters et al. Delusions Inventory, Schizotypal Personality Questionnaire-Brief. Conducting a bootstrapping approach in order to investigate our hypothesis, the result showed that there was no a direct association between metacognitive dimensions and psychological distress and psychosis proneness significantly mediated the association. Finding suggested that individuals with dysfunctional metacognitive beliefs experience high levels of distress if they are prone to psychosis symptoms. In other words, psychosis proneness is a path through which individuals with dysfunctional metacognitions experience high levels of psychological distress.

Keywords: metacognition, non-clinical population, psychological distress, psychosis proneness

Procedia PDF Downloads 342
1280 Sociological Approach to the Influence of Gender Stereotypes in Sport Education

Authors: Sara Rozenwajn Acheroy

Abstract:

This study aims to analyze gender stereotypes’ influence of physical education’s teachers in secondary education and coaches in sports clubs of five sports: swimming, beach-volley, tennis, gymnastics and football. Because sport is a major socializing agent of high symbolic, ideological and economical relevance with an impact in the social values and the construct of identity, in addition, to be an international and global phenomenon, States tend to institutionalize it through education, federations, and clubs, as well as build sports facilities. Research in the field is now needed more than ever, given that sport is still considered as a masculine practice, and that such perspective is spread at school since the age of six in physical education lessons. For all those reasons, and more, it is necessary to study which stereotypes are transmitted in its everyday practice and how it affects young people’s self-perception on their physical and body capacities. This study’s objectives are centered on 4 points: 1) stereotypes and self-perception of students and young people, 2) teachers and coaches’ stereotypes and influence, 3) social status of parents (indicative) and 4) environmental analysis of schools and sport clubs. To that end, triangular methodology has been favored. Quantitative and qualitative data, through semi-structured interviews with coaches and teachers; group interviews with young people; 450 surveys in high schools from Madrid, Barcelona and Canary Islands; and participant observation in clubs. Remarks made at this stage of the study are diverse and not conclusive. For example, physical education teachers have more gender stereotypes than coaches in sport clubs, matching with our hypothesis so far. It also seems that young people at the age of 16-17 still do not have internalized gender stereotypes as deep as their teachers. This among other observations of the current fieldwork will be exposed, hoping to give a better understanding of the need for gender policies and educational programs with gender perspective in all sectors that includes sport’s activities.

Keywords: gender, sport, sexism, gender stereotypes, sport education

Procedia PDF Downloads 229
1279 Social Aspect of Energy Transition in Frankfurt

Authors: Aly Ahmed, Aber Kay Obwona, Mokrzecka Martyna, Piotrowska Małgorzata, Richardson Stephen

Abstract:

Frankfurt am Main, the fifth largest city in Germany, ranked at 15th place by the Global Financial Centers Index in 2014, and a finalist of European Green Capital, 214 is a crucial player in German Environmental Policy. Since 2012 the city Authorities have been working on implementing the plan, which assumed to reduce the energy consumption by 50%, and fully switch to renewable energy by the year 2050. To achieve this goal, the Municipality of Frankfurt has begun preparing the Master plan, which will be introduced to public by the end of 2015. A significant question when facing the starting of Master Plan public’s introduction was deciding which method should be used to increase the public engagement. In order to answer this question, the city and region authorities in the cooperation with Frankfurt’s Universities and Climate KIC, organized a two-week PhD scientific workshops, in which participated more than 30 students from numerous countries. The paper presented the outcome of the research and solution proposal of the winning team. Transitions theory tells, that to address challenges as complex as Climate Change and the Energiewende, using of new technologies and system to the public is not sufficient. Transition –by definition is a process, and in such a large scale (city and region transition) can be fulfilled only, when operates within a broad socio – technical system. Authors believe that only by close cooperation with city dwellers, as well as different stakeholders, the Transition in Frankfurt can be successful. The vital part is the strategy which will ensure the engagement, sense of ownership and broad support within Frankfurt society. Author proposal based therefore, on fostering the citizens engagement through a comprehensive, innovative communication strategy.

Keywords: city development, communication strategies, social transition, sustainability

Procedia PDF Downloads 308
1278 The Associations of Pes Planus Plantaris (Flat Foot) to the Postural Stability of Basketball Student-Athletes Through the Ground Reaction Force Vector (vGRF)

Authors: Def Primal, Sasanty Kusumaningtyas, Ermita I. Ibrahim

Abstract:

Purpose: The main objective of this study is to determine the pes planus plantaris (flat foot) condition can contribute to the disturbance of postural stability in basketball athletes in static and dynamic activities. Methods: This cross-sectional quantitative analytical retrospective study on 47 subjects of basketball student-athletes identified the foot arch index by extensive footprint area and AMTI (Advanced Mechanical Technology Inc.) Force flat-form (force plate) determined their postural stability. Subjects were conducted in three activities (static, dynamic vertical jump, and dynamic loading response) for ground reaction force (GRF) resultant vectors towards the vertical plane of body mass (W). Results Analytical results obtained that 80.9% of subjects had pes planus plantaris. It shows no significant differences in pes planus plantaris incidence in both sexes subject (p>0.005); however, there are differences in athlete’s exercise period aspect. Athlete students who have practiced strictly for more than four years’ experience over 50% of pes planus plantaris; furthermore, a long period of exercise was believed to stimulate pes planus. The average value of GRF vectors of pes planus plantaris subjects on three different basketball movements shows a significant correlation to postural stability. Conclusions Pes planus plantaris affected almost basketball athletes regarding the length and intensity of exercise performed. The condition significantly contributes to postural stability disturbance on a static condition, dynamic vertical jump, and dynamic vertical jump loading response.

Keywords: pes planus plantaris, flatfoot, ground reaction force, static and dynamic stability

Procedia PDF Downloads 148
1277 The Relevance of Psychology in South Africa: A Content Analysis of Psychology Masters Theses from 1998 to 2017

Authors: Elron Fouten

Abstract:

Recently, debates surrounding the social relevance of psychology in South Africa have focussed on how the growing neoliberal rationality within academia has again resulted in the discipline catering to the needs of powerful social groupings to protect its own economic interests, rather than producing socially relevant knowledge. Consequently, this study aimed to conduct a content analysis of the recent research output of psychology masters students, to establish whether it has produced research that addresses local and national psychosocial issues and as such deemed socially relevant knowledge. The study sampled clinical, counselling, and research psychology masters theses from 16 South African universities submitted between 1998 and 2017. Overall, 2001 theses were sampled, which were analysed using qualitative content analysis predominantly based on the descriptive categories identified in similar studies using published journal articles. Results indicated that empirical qualitative theses, using systems-oriented theory and post-modern frameworks were most prevalent. Further, traditional topics within psychology had relatively more weighting compared to more social topics. Although a significant number of theses recruited participants from working-class or poor backgrounds, there was an overreliance on participants from urban areas located in some of the country’s wealthiest provinces. Despite a strong adult-centric focus, trends regarding participants’ race and gender roughly resembled current population demographics. Overall, the results indicate that psychology in South Africa, at least at university-level, is to some extent trying to engage with national psychosocial concerns. However, there are still several key areas which need to be addressed to ensure the continued social relevance of the discipline.

Keywords: adult-centric, content analysis, relevance, psychosocial

Procedia PDF Downloads 146
1276 A New Development Pathway And Innovative Solutions Through Food Security System

Authors: Osatuyi Kehinde Micheal

Abstract:

There is much research that has contributed to an improved understanding of the future of food security, especially during the COVID-19 pandemic. A pathway was developed by using a local community kitchen in Muizenberg in western cape province, cape town, south Africa, a case study to map out the future of food security in times of crisis. This kitchen aims to provide nutritious, affordable, plant-based meals to our community. It is also a place of diverse learning, sharing, empowering the volunteers, and growth to support the local economy and future resilience by sustaining our community kitchen for the community. This document contains an overview of the story of the community kitchen on how we create self-sustainability as a new pathway development to sustain the community and reduce Zero hunger in the regional food system. This paper describes the key elements of how we respond to covid-19 pandemic by sharing food parcels and creating 13 soup kitchens across the community to tackle the immediate response to covid-19 pandemic and agricultural systems by growing home food gardening in different homes, also having a consciousness Dry goods store to reduce Zero waste and a local currency as an innovation to reduce food crisis. Insights gained from our article and outreach and their value in how we create adaptation, transformation, and sustainability as a new development pathway to solve any future problem crisis in the food security system in our society.

Keywords: sustainability, food security, community development, adapatation, transformation

Procedia PDF Downloads 81
1275 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande

Abstract:

Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices

Procedia PDF Downloads 324
1274 The Challenges to Information Communication Technology Integration in Mathematics Teaching and Learning

Authors: George Onomah

Abstract:

Background: The integration of information communication technology (ICT) in Mathematics education faces notable challenges, which this study aimed to dissect and understand. Objectives: The primary goal was to assess the internal and external factors affecting the adoption of ICT by in-service Mathematics teachers. Internal factors examined included teachers' pedagogical beliefs, prior teaching experience, attitudes towards computers, and proficiency with technology. External factors included the availability of technological resources, the level of ICT training received, the sufficiency of allocated time for technology use, and the institutional culture within educational environments. Methods: A descriptive survey design was employed to methodically investigate these factors. Data collection was carried out using a five-point Likert scale questionnaire, administered to a carefully selected sample of 100 in-service Mathematics teachers through a combination of purposive and convenience sampling techniques. Findings: Results from multiple regression analysis revealed a significant underutilization of ICT in Mathematics teaching, highlighting a pronounced deficiency in current classroom practices. Recommendations: The findings suggest an urgent need for educational department heads to implement regular and comprehensive ICT training programs aimed at enhancing teachers' technological capabilities and promoting the integration of ICT in Mathematics teaching methodologies.

Keywords: ICT, Mathematics, integration, barriers

Procedia PDF Downloads 46
1273 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 165
1272 Teacher Professional Development: Preparing African Secondary School Teachers towards Enhancing Peaceful Coexistence in Multi-Ethnic Classroom Communities

Authors: Badamasi Tarda Ayuba

Abstract:

African countries contend with many developmental challenges particularly that of overcoming ethnic and religious conflicts. There is the recent wave of terrorism which is also ascribed to religious intolerance. It is a reality that most sub-Saharan African countries/communities consist of several distinct ethnic groups. In a typical classroom, within both rural and urban contexts, children from diverse ethnic and socio-cultural backgrounds converge to learn and grow together. This implies that education has the potentials for fostering inter-communal understanding such that young people could learn, grow together and assume leadership positions to work in pursuit of common goals of nation building. However, given the spate of inter communal clashes erupting too frequently in many parts of the continent and the dangerous trend of ethnicization of serious national affairs, it is doubtful if these objectives are being realized through education. Thus, this paper argued that the current developments indicate failure of the education system in the realization of the countries’ educational goals of creating united, peaceful and indivisible nations, thus far. Further, the failure occurred and would continue to persist unless teachers are purposefully prepared in terms of professional competencies and attitudes to entrench in their students the culture of peaceful coexistence through the various professional roles they play within the schools and communities. Therefore, the paper examined the changing context and challenging roles expected of sub-Saharan African teachers in engendering peaceful coexistence and the need to purposefully develop their capacity and mindset for the new roles. The paper then recommended programs to expose and re-educate teachers towards such roles.

Keywords: sub-Saharan Africa, teacher, professional development, peaceful coexistence, multi-ethnicity, communities

Procedia PDF Downloads 420
1271 Toward Green Infrastructure Development: Dispute Prevention Mechanisms along the Belt and Road and Beyond

Authors: Shahla Ali

Abstract:

In the context of promoting green infrastructure development, new opportunities are emerging to re-examine sustainable development practices. This paper presents an initial exploration of the development of community-investor dispute prevention and facilitation mechanisms in the context of the Belt and Road Initiative (BRI) spanning Asia, Africa, and Europe. Given the widescale impact of China’s multi-jurisdictional development initiative, learning how to coordinate with local communities is vital to realizing inclusive and sustainable growth. In the 20 years since the development of the first multilateral community-investor dispute resolution mechanism developed by the International Finance Centre/World Bank, much has been learned about public facilitation, community engagement, and dispute prevention during the early stages of major infrastructure development programs. This paper will explore initial findings as they relate to initiatives underway along the BRI within the Asian Infrastructure Investment Bank and the Asian Development Bank. Given the borderless nature of sustainability concerns, insights from diverse regions are critical to deepening insights into best practices. Drawing on a case-based methodology, this paper will explore the achievements, challenges, and lessons learned in community-investor dispute prevention and resolution for major infrastructure projects in the greater China region.

Keywords: law and development, dispute prevention, sustainable development, mitigation

Procedia PDF Downloads 111
1270 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 64
1269 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 112
1268 Twitter Sentiment Analysis during the Lockdown on New-Zealand

Authors: Smah Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia PDF Downloads 197