Search results for: resilience optimization model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19701

Search results for: resilience optimization model

18801 Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental

Authors: Friday Godwin Okibe, Elaoyi David Paul, Oladayo Thomas Ojekunle

Abstract:

In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time.

Keywords: nitrogen and phosphorous co-doped Zno, p-nitrophenol, photocatalytic degradation, optimization, factorial design of experimental

Procedia PDF Downloads 527
18800 Success Factors and Challenges of Startup Businesses in a Crisis Context

Authors: Joanna Konstantinou

Abstract:

The study is about the challenges faced by entrepreneurs in a crisis context and in turbulent economies. The scope is to determine which factors, if any, are related to the success of a new business venture, such as innovation, access to funding and capital, enhanced digital skills, employment relations and organizational culture as well as a company’s strategic orientation towards international markets. The crisis context has been recorded to have affected the number of SMEs in the Greek economy, the number of people employed as well as the volume of the output produced. Although not all SMEs have been equally impacted by the crisis, which has been identified to affect certain sectors more than others, and although research is not exhaustive in that end, employment relations and patterns, firm’s age, and innovation practices in relation to employees’ learning curve seem to have a positive correlation with the successful survival and resilience of the firm. The aim is to identify important factors that can contribute positively to the success of a startup business, and that will allow businesses to acquire resilience and survive economic adversities, and it will focus on businesses of the Greek economy, the country with the longer lasting economic crisis and the findings will be lessons to learn for other economies.

Keywords: entrepreneurship, innovation, crisis, challenges

Procedia PDF Downloads 237
18799 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid

Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan

Abstract:

In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.

Keywords: acid treatment, chemical extraction, sludge, waste management

Procedia PDF Downloads 198
18798 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 166
18797 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 378
18796 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis

Authors: Iannick Gagnon, Alain April

Abstract:

The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.

Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis

Procedia PDF Downloads 154
18795 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 520
18794 Logistics Hub Location and Scheduling Model for Urban Last-Mile Deliveries

Authors: Anastasios Charisis, Evangelos Kaisar, Steven Spana, Lili Du

Abstract:

Logistics play a vital role in the prosperity of today’s cities, but current urban logistics practices are proving problematic, causing negative effects such as traffic congestion and environmental impacts. This paper proposes an alternative urban logistics system, leasing hubs inside cities for designated time intervals, and using handcarts for last-mile deliveries. A mathematical model for selecting the locations of hubs and allocating customers, while also scheduling the optimal times during the day for leasing hubs is developed. The proposed model is compared to current delivery methods requiring door-to-door truck deliveries. It is shown that truck traveled distances decrease by more than 60%. In addition, analysis shows that in certain conditions the approach can be economically competitive and successfully applied to address real problems.

Keywords: hub location, last-mile, logistics, optimization

Procedia PDF Downloads 196
18793 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 494
18792 Optimal Allocation of Distributed Generation Sources for Loss Reduction and Voltage Profile Improvement by Using Particle Swarm Optimization

Authors: Muhammad Zaheer Babar, Amer Kashif, Muhammad Rizwan Javed

Abstract:

Nowadays distributed generation integration is best way to overcome the increasing load demand. Optimal allocation of distributed generation plays a vital role in reducing system losses and improves voltage profile. In this paper, a Meta heuristic technique is proposed for allocation of DG in order to reduce power losses and improve voltage profile. The proposed technique is based on Multi Objective Particle Swarm optimization. Fewer control parameters are needed in this algorithm. Modification is made in search space of PSO. The effectiveness of proposed technique is tested on IEEE 33 bus test system. Single DG as well as multiple DG scenario is adopted for proposed method. Proposed method is more effective as compared to other Meta heuristic techniques and gives better results regarding system losses and voltage profile.

Keywords: Distributed generation (DG), Multi Objective Particle Swarm Optimization (MOPSO), particle swarm optimization (PSO), IEEE standard Test System

Procedia PDF Downloads 455
18791 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation

Procedia PDF Downloads 263
18790 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 128
18789 A New Conjugate Gradient Method with Guaranteed Descent

Authors: B. Sellami, M. Belloufi

Abstract:

Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.

Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence

Procedia PDF Downloads 454
18788 Optimization of Urea Water Solution Injector for NH3 Uniformity Improvement in Urea-SCR System

Authors: Kyoungwoo Park, Gil Dong Kim, Seong Joon Moon, Ho Kil Lee

Abstract:

The Urea-SCR is one of the most efficient technologies to reduce NOx emissions in diesel engines. In the present work, the computational prediction of internal flow and spray characteristics in the Urea-SCR system was carried out by using 3D-CFD simulation to evaluate NH3 uniformity index (NH3 UI) and its activation time according to the official New European Driving Cycle (NEDC). The number of nozzle and its diameter, two types of injection directions, and penetration length were chosen as the design variables. The optimal solutions were obtained by coupling the CFD analysis with Taguchi method. The L16 orthogonal array and small-the-better characteristics of the Taguchi method were used, and the optimal values were confirmed to be valid with 95% confidence and 5% significance level through analysis of variance (ANOVA). The results show that the optimal solutions for the NH3 UI and activation time (NH3 UI 0.22) are obtained by 0.41 and 0,125 second, respectively, and their values are improved by 85.0% and 10.7%, respectively, compared with those of the base model.

Keywords: computational fluid dynamics, NH3 uniformity index, optimization, Taguchi method, Urea-SCR system, UWS injector

Procedia PDF Downloads 268
18787 Identification and Control the Yaw Motion Dynamics of Open Frame Underwater Vehicle

Authors: Mirza Mohibulla Baig, Imil Hamda Imran, Tri Bagus Susilo, Sami El Ferik

Abstract:

The paper deals with system identification and control a nonlinear model of semi-autonomous underwater vehicle (UUV). The input-output data is first generated using the experimental values of the model parameters and then this data is used to compute the estimated parameter values. In this study, we use the semi-autonomous UUV LAURS model, which is developed by the Sensors and Actuators Laboratory in University of Sao Paolo. We applied three methods to identify the parameters: integral method, which is a classical least square method, recursive least square, and weighted recursive least square. In this paper, we also apply three different inputs (step input, sine wave input and random input) to each identification method. After the identification stage, we investigate the control performance of yaw motion of nonlinear semi-autonomous Unmanned Underwater Vehicle (UUV) using feedback linearization-based controller. In addition, we compare the performance of the control with an integral and a non-integral part along with state feedback. Finally, disturbance rejection and resilience of the controller is tested. The results demonstrate the ability of the system to recover from such fault.

Keywords: system identification, underwater vehicle, integral method, recursive least square, weighted recursive least square, feedback linearization, integral error

Procedia PDF Downloads 536
18786 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression

Authors: Jamilatuzzahro, Rezzy Eko Caraka

Abstract:

The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.

Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government

Procedia PDF Downloads 246
18785 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.

Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization

Procedia PDF Downloads 190
18784 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 120
18783 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries

Procedia PDF Downloads 620
18782 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: MMR, TWR, OC, DOE, ANOVA, minitab

Procedia PDF Downloads 327
18781 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization

Procedia PDF Downloads 440
18780 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 304
18779 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method

Authors: Omer Oral, Y. Emre Yilmaz

Abstract:

Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.

Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization

Procedia PDF Downloads 139
18778 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor

Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang

Abstract:

This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.

Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design

Procedia PDF Downloads 417
18777 Growth of Algal Biomass in Laboratory and in Pilot-Scale Algal Photobioreactors in the Temperate Climate of Southern Ireland

Authors: Linda A. O’Higgins, Astrid Wingler, Jorge Oliveira

Abstract:

The growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1 L) and compared to batch growth in sunlit modules (5–25 L) of the commercial Phytobag photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of a 10m2 pilot-scale photobioreactor, Phytobag (10,000 L). The analysis confirmed light limitation in all three photobioreactors. An additional limitation of biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.

Keywords: microalgae, batch cultivation, Chlorella vulgaris, Mathematical model, photobioreactor, scale-up

Procedia PDF Downloads 116
18776 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem

Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto

Abstract:

We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.

Keywords: robust optimization, inventory control, supply chain managment, second-order programming

Procedia PDF Downloads 410
18775 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 401
18774 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small & Medium-Sized Enterprises

Authors: Antonis Skouloudis, Konstantinos Evangelinos, Walter Leal-Filho, Panagiotis Vouros, Ioannis Nikolaou

Abstract:

Organizational resilience capacity to extreme weather events (EWEs) has sparked a growth in scholarly attention over the past decade as an essential aspect in business continuity management, with supporting evidence for this claim to suggest that it retains a key role in successful responses to adverse situations, crises and shocks. Small and medium-sized enterprises (SMEs) are more vulnerable to face floods compared to their larger counterparts, so they are disproportionately affected by such extreme weather events. The limited resources at their disposal, the lack of time and skills all conduce to inadequate preparedness to challenges posed by floods. SMEs tend to plan in the short-term, reacting to circumstances as they arise and focussing on their very survival. Likewise, they share less formalised structures and codified policies while they are most usually owner-managed, resulting in a command-and-control management culture. Such characteristics result in them having limited opportunities to recover from flooding and quickly turnaround their operation from a loss making to a profit making one. Scholars frame the capacity of business entities to be resilient upon an EWE disturbance (such as flash floods) as the rate of recovery and restoration of organizational performance to pre-disturbance conditions, the amount of disturbance (i.e. threshold level) a business can absorb before losing structural and/or functional components that will alter or cease operation, as well as the extent to which the organization maintains its function (i.e. impact resistance) before performance levels are driven to zero. Nevertheless, while it seems to be accepted as an essential trait of firms effectively transcending uncertain conditions, research deconstructing the enabling conditions and/or inhibitory factors of SMEs resilience capacity to natural hazards is still sparse, fragmentary and mostly fuelled by anecdotal evidence or normative assumptions. Focusing on the individual level of analysis, i.e. the individual enterprise and its endeavours to succeed, the emergent picture from this relatively new research strand delineates the specification of variables, conceptual relationships or dynamic boundaries of resilience capacity components in an attempt to provide prescriptions for policy-making as well as business management. This study will present the development of a flood resilience capacity index (FRCI) and its application to Greek SMEs. The proposed composite indicator pertains to cognitive, behavioral/managerial and contextual factors that influence an enterprise’s ability to shape effective responses to meet flood challenges. Through the proposed indicator-based approach, an analytical framework is set forth that will help standardize such assessments with the overarching aim of reducing the vulnerability of SMEs to flooding. This will be achieved by identifying major internal and external attributes explaining resilience capacity which is particularly important given the limited resources these enterprises have and that they tend to be primary sources of vulnerabilities in supply chain networks, generating Single Points of Failure (SPOF).

Keywords: Floods, Small & Medium-Sized enterprises, organizational resilience capacity, index development

Procedia PDF Downloads 192
18773 Optimization of Tangential Flow Filtration Process for Purifying DNA Vaccine

Authors: Piyakajornkul T., Noppiboon S., Hochareon L., Kitsubun P.

Abstract:

Nowadays, DNA vaccines become an interesting subject in the third vaccine generation. The platform of DNA vaccines production has been developed and its downstream process becomes challenging due to the quality of the products in terms of purity and percentage of supercoiled DNA. To overcome these challenges, tangential flow filtration (TFF), which is involved in the purification process, could be used since it provides effective separation of impurity prior to performing further purification steps. However, operating conditions of TFF is varied based on several factors such as sizes of target particle and impurities, a concentration of solution as well as a concentration polarization on the membrane surface. In this study, pVAX1/lacZ was used as a model of TFF optimization in order to prevent a concentration polarization that can lead to the membrane fouling and also minimize a diafiltration volume while maintaining the maximum permeate flux resulting in proper operating times and buffer volume. By using trans membrane pressure (TMP) excursion method, feed flow rates and TMP were varied. The results showed a correlation of permeate flux with TMP where the maximum volume concentration factor reached 2.5 times of the initial volume when feed flow rate and TMP were 7 liters/m²/min and 1 bar, respectively. It was optimal operating conditions before TFF system undergone pressure independent regime. In addition, the diafiltration volume was 14 times of the concentrated volume prior to performing a further anion chromatography process.

Keywords: concentration polarization, DNA vaccines, optimization, permeate flux, pressure dependent, tangential flow filtration (TFF), trans membrane pressure (TMP)

Procedia PDF Downloads 159
18772 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

Authors: Mustafa Tufekci, Caner Guven

Abstract:

In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved.

Keywords: finite element analysis, sliding door mechanism, element type, structural analysis

Procedia PDF Downloads 329