Search results for: mesh network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5183

Search results for: mesh network

4283 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 195
4282 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network

Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup

Abstract:

This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.

Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis

Procedia PDF Downloads 116
4281 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 138
4280 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 133
4279 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 154
4278 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System

Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah

Abstract:

Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.

Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm

Procedia PDF Downloads 504
4277 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 263
4276 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 23
4275 Flow Conservation Framework for Monitoring Software Defined Networks

Authors: Jesús Antonio Puente Fernández, Luis Javier Garcia Villalba

Abstract:

New trends on streaming videos such as series or films require a high demand of network resources. This fact results in a huge problem within traditional IP networks due to the rigidity of its architecture. In this way, Software Defined Networks (SDN) is a new concept of network architecture that intends to be more flexible and it simplifies the management in networks with respect to the existing ones. These aspects are possible due to the separation of control plane (controller) and data plane (switches). Taking the advantage of this separated control, it is easy to deploy a monitoring tool independent of device vendors since the existing ones are dependent on the installation of specialized and expensive hardware. In this paper, we propose a framework that optimizes the traffic monitoring in SDN networks that decreases the number of monitoring queries to improve the network traffic and also reduces the overload. The performed experiments (with and without the optimization) using a video streaming delivery between two hosts demonstrate the feasibility of our monitoring proposal.

Keywords: optimization, monitoring, software defined networking, statistics, query

Procedia PDF Downloads 333
4274 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques

Authors: Elizabeth Malebogo Mosepele

Abstract:

Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.

Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation

Procedia PDF Downloads 433
4273 Characteristics of Sorghum (Sorghum bicolor L. Moench) Flour on the Soaking Time of Peeled Grains and Particle Size Treatment

Authors: Sri Satya Antarlina, Elok Zubaidah, Teti Istiana, Harijono

Abstract:

Sorghum bicolor (Sorghum bicolor L. Moench) has the potential as a flour for gluten-free food products. Sorghum flour production needs grain soaking treatment. Soaking can reduce the tannin content which is an anti-nutrient, so it can increase the protein digestibility. Fine particle size decreases the yield of flour, so it is necessary to study various particle sizes to increase the yield. This study aims to determine the characteristics of sorghum flour in the treatment of soaking peeled grain and particle size. The material of white sorghum varieties KD-4 from farmers in East Java, Indonesia. Factorial randomized factorial design (two factors), repeated three times, factor I were the time of grain soaking (five levels) that were 0, 12, 24, 36, and 48 hours, factor II was the size of the starch particles sifted with a fineness level of 40, 60, 80, and 100 mesh. The method of making sorghum flour is grain peeling, soaking peeled grain, drying using the oven at 60ᵒC, milling, and sieving. Physico-chemical analysis of sorghum flour. The results show that there is an interaction between soaking time of grain with the size of sorghum flour particles. Interaction in yield of flour, L* color (brightness level), whiteness index, paste properties, amylose content, protein content, bulk density, and protein digestibility. The method of making sorghum flour through the soaking of peeled grain and the difference in particle size has an important role in producing the physicochemical properties of the specific flour. Based on the characteristics of sorghum flour produced, it is determined the method of making sorghum flour through sorghum grain soaking for 24 hours, the particle size of flour 80 mesh. The sorghum flour with characteristic were 24.88% yield of flour, 88.60 color L* (brightness level), 69.95 whiteness index, 3615 Cp viscosity, 584.10 g/l of bulk density, 24.27% db protein digestibility, 90.02% db starch content, 23.4% db amylose content, 67.45% db amylopectin content, 0.22% db crude fiber content, 0.037% db tannin content, 5.30% db protein content, ash content 0.18% db, carbohydrate content 92.88 % db, and 1.94% db fat content. The sorghum flour is recommended for cookies products.

Keywords: characteristic, sorghum (Sorghum bicolor L. Moench) flour, grain soaking, particle size, physicochemical properties

Procedia PDF Downloads 163
4272 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 506
4271 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network

Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan

Abstract:

We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.

Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation

Procedia PDF Downloads 170
4270 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images

Authors: Khitem Amiri, Mohamed Farah

Abstract:

Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.

Keywords: hyperspectral images, deep belief network, radiometric indices, image classification

Procedia PDF Downloads 280
4269 Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD

Authors: Mohammadreza DaqiqShirazi, Rouhollah Torabi, Alireza Riasi, Ahmad Nourbakhsh

Abstract:

In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed.

Keywords: numerical study, centrifugal pumps, disk friction loss, sidewall gap

Procedia PDF Downloads 533
4268 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 209
4267 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Check, diabetes, neural network, pattern recognition

Procedia PDF Downloads 147
4266 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee

Abstract:

Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 314
4265 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 140
4264 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 205
4263 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: social networks, community detection, modularity optimization, geographically dispersed communities

Procedia PDF Downloads 236
4262 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203
4261 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks

Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi

Abstract:

The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.

Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’

Procedia PDF Downloads 372
4260 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network

Authors: Harshit Mittal, Neeraj Garg

Abstract:

Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.

Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network

Procedia PDF Downloads 66
4259 On Privacy-Preserving Search in the Encrypted Domain

Authors: Chun-Shien Lu

Abstract:

Privacy-preserving query has recently received considerable attention in the signal processing and multimedia community. It is also a critical step in wireless sensor network for retrieval of sensitive data. The purposes of privacy-preserving query in both the areas of signal processing and sensor network are the same, but the similarity and difference of the adopted technologies are not fully explored. In this paper, we first review the recently developed methods of privacy-preserving query, and then describe in a comprehensive manner what we can learn from the mutual of both areas.

Keywords: encryption, privacy-preserving, search, security

Procedia PDF Downloads 257
4258 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks

Authors: Chompunut Jantarasorn, Chutima Prommak

Abstract:

This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.

Keywords: wireless performance analysis, coexistence analysis, IEEE 802.11g, IEEE 802.15.4

Procedia PDF Downloads 553
4257 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
4256 Calculate Product Carbon Footprint through the Internet of Things from Network Science

Authors: Jing Zhang

Abstract:

To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.

Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment

Procedia PDF Downloads 116
4255 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion

Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam

Abstract:

Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.

Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites

Procedia PDF Downloads 321
4254 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 360