Search results for: hierarchical text classification models
9167 Effect of Self-Questioning Strategy on the Improvement of Reading Comprehension of ESL Learners
Authors: Muhammad Hamza
Abstract:
This research is based on the effect of self-questioning strategy on reading comprehension of second language learners at medium level. This research is conducted to find out the effects of self-questioning strategy and how self-questioning strategy helps English learners to improve their reading comprehension. In this research study the researcher has analyzed that how much self-questioning is effective in the field of learning second language and how much it helps second language learners to improve their reading comprehension. For this purpose, the researcher has studied different reading strategies, analyzed, collected data from certificate level class at NUML, Peshawar campus and then found out the effects of self-questioning strategy on reading comprehension of ESL learners. The researcher has randomly selected the participants from certificate class. The data was analyzed through pre-test and post-test and then in the final stage the results of both tests were compared. After the pre-test and post-test, the result of both pre-test and post-test indicated that if the learners start to use self-questioning strategy before reading a text, while reading a text and after reading a particular text there’ll be improvement in comprehension level of ESL learners. The present research has addressed the benefits of self-questioning strategy by taking two tests (pre and post-test).After the result of post-test it is revealed that the use of the self-questioning strategy has a significant effect on the readers’ comprehension thus, they can improve their reading comprehension by using self-questioning strategy.Keywords: strategy, self-questioning, comprehension, intermediate level ESL learner
Procedia PDF Downloads 669166 Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region.Keywords: surface water, water quality index (WQI), Mann Kendall (MK) test, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 259165 Psychoanalytical Foreshadowing: The Application of a Literary Device in Quranic Narratology
Authors: Fateme Montazeri
Abstract:
Literary approaches towards the text of the Quran predate the modern period. Suyuti (d.1505)’s encyclopedia of Quranic sciences, Al-Itqan, provides a notable example. In the modern era, the study of the Quranic rhetorics received particular attention in the second half of the twentieth century by Egyptian scholars. Amin Al-Khouli (d. 1966), who might be considered the first to argue for the necessity of applying a literary-rhetorical lens toward the tafseer, Islamic exegesis, and his students championed the literary analysis as the most effective approach to the comprehension of the holy text. Western scholars continued the literary criticism of the Islamic scripture by applying to the Quran similar methodologies used in biblical studies. In the history of the literary examination of the Quran, the scope of the critical methods applied to the Quranic text has been limited. For, the rhetorical approaches to the Quran, in the premodern as well as the modern period, concerned almost exclusively with the lexical layer of the text, leaving the narratological dimensions insufficiently examined. Recent contributions, by Leyla Ozgur Alhassen, for instance, attempt to fill this lacunae. This paper aims at advancing the studies of the Quranic narratives by investigating the application of a literary device whose role in the Quranic stories remains unstudied, that is, “foreshadowing.” This paper shall focus on Chapter 12, “Surah al-Yusuf,” as its case study. Chapter 12, the single chapter that includes the story of Joseph in one piece, contains several instances in which the events of the story are foreshadowed. As shall be discussed, foreshadowing occurs either through a monolog or dialogue whereby one or more of the characters allude to the future happenings or through the manner in which the setting is described. Through a close reading of the text, it will be demonstrated that the usage of the rhetorical tool of foreshadowing meets a dual purpose: on the one hand, foreshadowing prepares the reader/audience for the upcoming events in the plot, and on the other hand, it highlights the psychological dimensions of the characters, their thoughts, intentions, and disposition. In analyzing the story, this study shall draw on psychoanalytical criticism to explore the layers of meanings embedded in the Quranic narrative that are unfolded through foreshadowing.Keywords: foreshadowing, quranic narrative, literary criticism, surah yusuf
Procedia PDF Downloads 1539164 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 619163 Using India’s Traditional Knowledge Digital Library on Traditional Tibetan Medicine
Authors: Chimey Lhamo, Ngawang Tsering
Abstract:
Traditional Tibetan medicine, known as Sowa Rigpa (Science of healing), originated more than 2500 years ago with an insightful background, and it has been growing significant attention in many Asian countries like China, India, Bhutan, and Nepal. Particularly, the Indian government has targeted Traditional Tibetan medicine as its major Indian medical system, including Ayurveda. Although Traditional Tibetan medicine has been growing interest and has a long history, it is not easily recognized worldwide because it exists only in the Tibetan language and it is neither accessible nor understood by patent examiners at the international patent office, data about Traditional Tibetan medicine is not yet broadly exist in the Internet. There has also been the exploitation of traditional Tibetan medicine increasing. The Traditional Knowledge Digital Library is a database aiming to prevent the patenting and misappropriation of India’s traditional medicine knowledge by using India’s Traditional knowledge Digital Library on Sowa Rigpa in order to prevent its exploitation at international patent with the help of information technology tools and an innovative classification systems-traditional knowledge resource classification (TKRC). As of date, more than 3000 Sowa Rigpa formulations have been transcribed into a Traditional Knowledge Digital Library database. In this paper, we are presenting India's Traditional Knowledge Digital Library for Traditional Tibetan medicine, and this database system helps to preserve and prevent the exploitation of Sowa Rigpa. Gradually it will be approved and accepted globally.Keywords: traditional Tibetan medicine, India's traditional knowledge digital library, traditional knowledge resources classification, international patent classification
Procedia PDF Downloads 1289162 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 3439161 Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review
Authors: Ashwini V. Chavan, Sukhanand S. Bhosale
Abstract:
Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil
Procedia PDF Downloads 1239160 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1069159 University Students' Perspectives on a Mindfulness-Based App for Weight, Weight Related Behaviors, and Stress: A Qualitative Focus Group Study
Authors: Lynnette Lyzwinski, Liam Caffery, Matthew Bambling, Sisira Edirippulige
Abstract:
Introduction: A novel method of delivering mindfulness interventions for populations at risk of weight gain and stress-related eating, in particular, college students, is through mHealth. While there have been qualitative studies on mHealth for weight loss, there has not been a study on mHealth for weight loss using mindfulness that has explored student perspectives on a student centred mindfulness app and mindfulness-based text messages for eating and stress. Student perspective data will provide valuable information for creating a specific purpose weight management app and mindfulness-based text messages (for the Mindfulness App study). Methods: A qualitative focus group study was undertaken at St Lucia campus at the University of Queensland in March 2017. Students over the age of 18 were eligible to participate. Interviews were audiotaped and transcribed. One week following the focus group, students were sent sample mindfulness-based text messages based on their responses. Students provided written feedback via email. Data were analysed using N Vivo software. Results: The key themes in a future mindfulness-based app are a simple design interface, a focus on education/practical tips, and real-life practical exercises. Social media should be avoided. Key themes surrounding barriers include the perceived difficulty of mindfulness and a lack of proper guidance or knowledge. The mindfulness-based text messages were received positively. Key themes were creating messages with practical tips about how to be mindful and how to integrate mindful reflection of both one’s body and environment while on campus. Other themes including creating positive, inspirational messages. There was lack of agreement on the ideal timing for messages. Discussion: This is the first study that explored student perspectives on a mindfulness-app and mindfulness-based text messages for stress and weight management as a pre-trial study for the Mindfulness App trial for stress, lifestyle, and weight in students. It is important to consider maximizing the potential facilitators of use and minimize potential identified barriers when developing and designing a future mHealth mindfulness-based intervention tailored to the student consumer. Conclusion: Future mHealth studies may consider integrating mindfulness-based text messages in their interventions for weight and stress as this is a novel feature that appears to be acceptable for participants. The results of this focus group provide the basis to develop content for a specific purpose student app for weight management.Keywords: mindfulness, college students, mHealth, weight loss
Procedia PDF Downloads 1989158 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3119157 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris
Abstract:
Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging
Procedia PDF Downloads 3609156 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks
Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh
Abstract:
In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.Keywords: aggregation, estimation, queuing, wireless sensor network
Procedia PDF Downloads 1869155 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling
Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon
Abstract:
A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization
Procedia PDF Downloads 4569154 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models
Authors: Phanida Phukoetphim, Asaad Y. Shamseldin
Abstract:
In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics
Procedia PDF Downloads 3399153 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language
Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot
Abstract:
The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields
Procedia PDF Downloads 1039152 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm
Procedia PDF Downloads 4999151 Affirming Students’ Attention and Perceptions on Prezi Presentation via Eye Tracking System
Authors: Mona Masood, Norshazlina Shaik Othman
Abstract:
The purpose of this study was to investigate graduate students’ visual attention and perceptions of a Prezi presentation. Ten post-graduate master students were presented with a Prezi presentation at the Centre for Instructional Technology and Multimedia, Universiti Sains Malaysia (USM). The eye movement indicators such as dwell time, average fixation on the areas of interests, heat maps and focus maps were abstracted to indicate the students’ visual attention. Descriptive statistics was employed to analyze the students’ perception of the Prezi presentation in terms of text, slide design, images, layout and overall presentation. The result revealed that the students paid more attention to the text followed by the images and sub heading presented through the Prezi presentation.Keywords: eye tracking, Prezi, visual attention, visual perception
Procedia PDF Downloads 4419150 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation
Authors: Djallel Bouamama, Yasser R. Haddadi
Abstract:
Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.Keywords: brain tumor classification, image segmentation, CNN, U-NET
Procedia PDF Downloads 349149 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3039148 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1439147 Fuzzy Set Qualitative Comparative Analysis in Business Models' Study
Authors: K. Debkowska
Abstract:
The aim of this article is presenting the possibilities of using Fuzzy Set Qualitative Comparative Analysis (fsQCA) in researches concerning business models of enterprises. FsQCA is a bridge between quantitative and qualitative researches. It's potential can be used in analysis and evaluation of business models. The article presents the results of a study conducted on the basis of enterprises belonging to different sectors: transport and logistics, industry, building construction, and trade. The enterprises have been researched taking into account the components of business models and the financial condition of companies. Business models are areas of complex and heterogeneous nature. The use of fsQCA has enabled to answer the following question: which components of a business model and in which configuration influence better financial condition of enterprises. The analysis has been performed separately for particular sectors. This enabled to compare the combinations of business models' components which actively influence the financial condition of enterprises in analyzed sectors. The following components of business models were analyzed for the purposes of the study: Key Partners, Key Activities, Key Resources, Value Proposition, Channels, Cost Structure, Revenue Streams, Customer Segment and Customer Relationships. These components of the study constituted the variables shaping the financial results of enterprises. The results of the study lead us to believe that fsQCA can help in analyzing and evaluating a business model, which is important in terms of making a business decision about the business model used or its change. In addition, results obtained by fsQCA can be applied by all stakeholders connected with the company.Keywords: business models, components of business models, data analysis, fsQCA
Procedia PDF Downloads 1719146 Improving Depression Symptoms and Antidepressant Medication Adherence Using Encrypted Short Message Service Text Message Reminders
Authors: Ogbonna Olelewe
Abstract:
This quality improvement project seeks to address the background and significance of promoting antidepressant (AD) medication adherence to reduce depression symptoms in patients diagnosed with major depression. This project aims to substantiate using daily encrypted short message service (SMS) text reminders to take prescribed antidepressant medications with the goal of increasing medication adherence to reduce depression scores in patients diagnosed with major depression, thereby preventing relapses and increasing remission rates. Depression symptoms were measured using the Patient Health Questionnaire-9 (PHQ-9) scale. The PHQ-9 provides a total score of depression symptoms from mild to severe, ranging from 0 to 27. A -pretest/post-test design was used, with a convenience sample size of 35 adult patients aged 18 years old to 45 years old, diagnosed with MDD, and prescribed at least one antidepressant for one year or more. Pre- and post-test PHQ-9 scores were conducted to compare depression scores before and after the four-week intervention period. The results indicated improved post-intervention PHQ-9 scores, improved AD medication adherence, and a significant reduction in depression symptoms.Keywords: major depressive disorder, antidepressants, short message services, text reminders, Medication adherence/non-adherence, Patient Health Questionnaire 9
Procedia PDF Downloads 1529145 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier
Procedia PDF Downloads 4669144 The Hierarchical Model of Fitness Services Quality Perception in Serbia
Authors: Mirjana Ilic, Dragan Zivotic, Aleksandra Perovic, Predrag Gavrilovic
Abstract:
The service quality perception depends on many factors, such as the area in which the services are provided, socioeconomic status, educational status, experience, age and gender of consumers, as well as many others. For this reason, it is not possible to apply instrument for establishing the service quality perception that is developed in other areas and in other populations. The aim of the research was to form an instrument for assessing the quality perception in the field of fitness in Serbia. After analyzing the available literature and conducting a pilot research, there were 15 isolated areas in which it was possible to observe the service quality perception. The areas included: material and technical basis, secondary facilities, coaches, programs, reliability, credibility, security, rapid response, compassion, communication, prices, satisfaction, loyalty, quality outcomes and motives. These areas were covered by a questionnaire consisted of 100 items where the number of items varied from area to area from 3 up to 11. The questionnaire was administered to 350 subjects of both genders (174 men and 176 women) aged from 18 to 68 years, being beneficiaries of fitness services for at least 1 year. In each of the areas was conducted a factor analysis in its exploratory form by principal components method. The number of significant factors has been determined in accordance with the Kaiser Guttman criterion. The initial factor solutions were simplified using the Varimax rotation. Analyses per areas have produced from 1 to 4 factors. Afterward, the factor analysis of factor scores on the first principal component of each of the respondents in each of the analyzed area was performed, and the factor structure was obtained with four latent dimensions interpreted as offer, the relationship with the coaches, the experience of quality and the initial impression. This factor structure was analysed by hierarchical analysis of Oblique factors, which in the second order space produced single factor interpreted as a general factor of the service quality perception. The resulting questionnaire represents an instrument which can serve managers in the field of fitness to optimize the centers development, raising the quality of services in line with consumers needs and expectations.Keywords: fitness, hierarchical model, quality perception, factor analysis
Procedia PDF Downloads 3119143 Formal Models of Sanitary Inspections Teams Activities
Authors: Tadeusz Nowicki, Radosław Pytlak, Robert Waszkowski, Jerzy Bertrandt, Anna Kłos
Abstract:
This paper presents methods for formal modeling of activities in the area of sanitary inspectors outbreak of food-borne diseases. The models allow you to measure the characteristics of the activities of sanitary inspection and as a result allow improving the performance of sanitary services and thus food security.Keywords: food-borne disease, epidemic, sanitary inspection, mathematical models
Procedia PDF Downloads 3029142 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.Keywords: overview of porosity classification, reservoir characterization, microporosity, carbonate reservoir
Procedia PDF Downloads 1549141 Translation Choices of Logical Meaning from Chinese into English: A Systemic Functional Linguistics Perspective
Authors: Xueying Li
Abstract:
Different from English, it is common to observe Chinese clauses logically related in an implicit way without any conjunctions. This typological difference has posed a great challenge for Chinese-English translators, as 1) translators may interpret logical meaning in different ways when there are no conjunctions in Chinese Source Text (ST); 2) translators may have questions whether to make Chinese implicit logical meaning explicit or to remain implicit in Target Text (TT), and whether other dimensions of logical meaning (e.g., type of logical meaning) should be shifted or not. Against this background, this study examines a comprehensive arrange of Chinese-English translation choices of logical meaning to deal with this challenge in a systematic way. It compiles several ST-TT passages from a set of translation textbooks in a corpus, namely Ying Yu Bi Yi Shi Wu (Er Ji)) [Translation Practice between Chinese and English: Intermediate Level] and its supportive training book, analyzes how logical meaning in ST are translated in TT in texts across different text types with Systemic Functional Linguistics (SFL) as the theoretical framework, and finally draws a system network of translation choices of logical meaning from Chinese into English. Since translators may probably think about semantic meaning rather than lexico-grammatical resources in translation, this study goes away from traditional lexico-grammatical choices, but rather describing translation choices from the semantic level. The findings in this study can provide some help and support for translation practitioners so that they can understand that besides explicitation, there are a variety of possible linguistic choices available for making informed decisions when translating Chinese logical meaning into English.Keywords: Chinese-English translation, logical meaning, systemic functional linguistics, translation choices
Procedia PDF Downloads 1809140 Evaluation of Parameters of Subject Models and Their Mutual Effects
Authors: A. G. Kovalenko, Y. N. Amirgaliyev, A. U. Kalizhanova, L. S. Balgabayeva, A. H. Kozbakova, Z. S. Aitkulov
Abstract:
It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.Keywords: dispersed systems, models, hydraulic network, algorithms
Procedia PDF Downloads 2849139 Filling the Gaps with Representation: Netflix’s Anne with an E as a Way to Reveal What the Text Hid
Authors: Arkadiusz Adam Gardaś
Abstract:
In his theory of gaps, Wolfgang Iser states that literary texts often lack direct messages. Instead of using straightforward descriptions, authors leave the gaps or blanks, i.e., the spaces within the text that come into existence only when readers fill them with their understanding and experiences. This paper’s aim is to present Iser’s literary theory in an intersectional way by comparing it to the idea of intersemiotic translation. To be more precise, the author uses the example of Netflix’s adaption of Lucy Maud Montgomery’s Anne of Green Gables as a form of rendering a book into a film in such a way that certain textual gaps are filled with film images. Intersemiotic translation is a rendition in which signs of one kind of media are translated into the signs of the other media. Film adaptions are the most common, but not the only, type of intersemiotic translation. In this case, the role of the translator is taken by a screenwriter. A screenwriter’s role can reach beyond the direct meaning presented by the author, and instead, it can delve into the source material (here – a novel) in a deeper way. When it happens, a screenwriter is able to spot the gaps in the text and fill them with images that can later be presented to the viewers. Anne with an E, the Netflix adaption of Montgomery’s novel, may be used as a highly meaningful example of such a rendition. It is due to the fact that the 2017 series was broadcasted more than a hundred years after the first edition of the novel was published. This means that what the author might not have been able to show in her text can now be presented in a more open way. The screenwriter decided to use this opportunity to represent certain groups in the film, i.e., racial and sexual minorities, and women. Nonetheless, the series does not alter the novel; in fact, it adds to it by filling the blanks with more direct images. In the paper, fragments of the first season of Anne with an E are analysed in comparison to its source, the novel by Montgomery. The main purpose of that is to show how intersemiotic translation connected with the Iser’s literary theory can enrich the understanding of works of art, culture, media, and literature.Keywords: intersemiotic translation, film, literary gaps, representation
Procedia PDF Downloads 3169138 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 407