Search results for: decision view
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6755

Search results for: decision view

5855 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 355
5854 Unconscious Bias in Judicial Decisions: Legal Genealogy and Disgust in Cases of Private, Adult, Consensual Sexual Acts Leading to Injury

Authors: Susanna Menis

Abstract:

‘Unconscious’ bias is widespread, affecting society on all levels of decision-making and beyond. Placed in the law context, this study will explore the direct effect of the psycho-social and cultural evolution of unconscious bias on how a judicial decision was made. The aim of this study is to contribute to socio-legal scholarship by examining the formation of unconscious bias and its influence on the creation of legal rules that judges believe reflect social solidarity and protect against violence. The study seeks to understand how concepts like criminalization and unlawfulness are constructed by the common law. The study methodology follows two theoretical approaches: historical genealogy and emotions as sociocultural phenomena. Both methods have the ‘tracing back’ of the original formation of a social way of seeing and doing things in common. The significance of this study lies in the importance of reflecting on the ways unconscious bias may be formed; placing judges’ decisions under this spotlight forces us to challenge the status quo, interrogate justice, and seek refinement of the law.

Keywords: legal geneology, emotions, disgust, criminal law

Procedia PDF Downloads 59
5853 Accounting Management Information System for Convenient Shop in Bangkok Thailand

Authors: Anocha Rojanapanich

Abstract:

The purpose of this research is to develop and design an accounting management information system for convenient shop in Bangkok Thailand. The study applied the System Development Life Cycle (SDLC) for development which began with study and analysis of current data, including the existing system. Then, the system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Product diversity, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management and importance of cost information for decision making also as well as.

Keywords: accounting management information system, convenient shop, cost information for decision making system, development life cycle

Procedia PDF Downloads 418
5852 Regulating Issues concerning Data Protection in Cloud Computing: Developing a Saudi Approach

Authors: Jumana Majdi Qutub

Abstract:

Rationale: Cloud computing has rapidly developed the past few years. Because of the importance of providing protection for personal data used in cloud computing, the role of data protection in promoting trust and confidence in users’ data has become an important policy priority. This research examines key regulatory challenges rose by the growing use and importance of cloud computing with focusing on protection of individuals personal data. Methodology: Describing and analyzing governance challenges facing policymakers and industry in Saudi Arabia, with an account of anticipated governance responses. The aim of the research is to describe and define the regulatory challenges on cloud computing for policy making in Saudi Arabia and comparing it with potential complied issues rose in respect of transported data to EU member state. In addition, it discusses information privacy issues. Finally, the research proposes policy recommendation that would resolve concerns surrounds the privacy and effectiveness of clouds computing frameworks for data protection. Results: There are still no clear regulation in Saudi Arabia specialized in legalizing cloud computing and specialty regulations in transferring data internationally and locally. Decision makers need to review the applicable law in Saudi Arabia that protect information in cloud computing. This should be from an international and a local view in order to identify all requirements surrounding this area. It is important to educate cloud computing users about their information value and rights before putting it in the cloud to avoid further legal complications, such as making an educational program to prevent giving personal information to a bank employee. Therefore, with many kinds of cloud computing services, it is important to have it covered by the law in all aspects.

Keywords: cloud computing, cyber crime, data protection, privacy

Procedia PDF Downloads 256
5851 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.

Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify

Procedia PDF Downloads 385
5850 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 106
5849 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 116
5848 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms

Authors: Sanjiti Sharma, Carol Seger

Abstract:

Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.

Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias

Procedia PDF Downloads 25
5847 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 116
5846 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano

Abstract:

Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.

Keywords: machine learning, recommender system, software platform, support vector machine

Procedia PDF Downloads 133
5845 Social Media, Networks and Related Technology: Business and Governance Perspectives

Authors: M. A. T. AlSudairi, T. G. K. Vasista

Abstract:

The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.

Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks

Procedia PDF Downloads 450
5844 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity

Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz

Abstract:

The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.

Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance

Procedia PDF Downloads 108
5843 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)

Authors: Fatih Iscan, Ceren Yagci

Abstract:

Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice.

Keywords: GIS, landfill, solid waste, spatial analysis

Procedia PDF Downloads 358
5842 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix

Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung

Abstract:

The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.

Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation

Procedia PDF Downloads 473
5841 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market

Authors: Chih-Hsiang Chang, Fang-Jyun Su

Abstract:

This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.

Keywords: stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship

Procedia PDF Downloads 273
5840 An Optimization Model for Waste Management in Demolition Works

Authors: Eva Queheille, Franck Taillandier, Nadia Saiyouri

Abstract:

Waste management has become a major issue in demolition works, because of its environmental impact (energy consumption, resource consumption, pollution…). However, improving waste management requires to take also into account the overall demolition process and to consider demolition main objectives (e.g. cost, delay). Establishing a strategy with these conflicting objectives (economic and environment) remains complex. In order to provide a decision-support for demolition companies, a multi-objective optimization model was developed. In this model, a demolition strategy is computed from a set of 80 decision variables (worker team composition, machines, treatment for each type of waste, choice of treatment platform…), which impacts the demolition objectives. The model has experimented on a real-case study (demolition of several buildings in France). To process the optimization, different optimization algorithms (NSGA2, MOPSO, DBEA…) were tested. Results allow the engineer in charge of this case, to build a sustainable demolition strategy without affecting cost or delay.

Keywords: deconstruction, life cycle assessment, multi-objective optimization, waste management

Procedia PDF Downloads 151
5839 Multi-Criteria Decision Support System for Modeling of Civic Facilities Using GIS Applications: A Case Study of F-11, Islamabad

Authors: Asma Shaheen Hashmi, Omer Riaz, Khalid Mahmood, Fahad Ullah, Tanveer Ahmad

Abstract:

The urban landscapes are being change with the population growth and advancements in new technologies. The urban sprawl pattern and utilizes are related to the local socioeconomic and physical condition. Urban policy decisions are executed mostly through spatial planning. A decision support system (DSS) is very powerful tool which provides flexible knowledge base method for urban planning. An application was developed using geographical information system (GIS) for urban planning. A scenario based DSS was developed to integrate the hierarchical muti-criteria data of different aspects of urban landscape. These were physical environment, the dumping site, spatial distribution of road network, gas and water supply lines, and urban watershed management, selection criteria for new residential, recreational, commercial and industrial sites. The model provided a framework to incorporate the sustainable future development. The data can be entered dynamically by planners according to the appropriate criteria for the management of urban landscapes.

Keywords: urban, GIS, spatial, criteria

Procedia PDF Downloads 634
5838 Decentralized Forest Policy for Natural Sal (Shorea robusta) Forests Management in the Terai Region of Nepal

Authors: Medani Prasad Rijal

Abstract:

The study outlines the impacts of decentralized forest policy on natural Sal (shorea robusta) forests in the Terai region of Nepal. The government has implemented community forestry program to manage the forest resources and improve the livelihood of local people collectively. The forest management authorities such as conserve, manage, develop and use of forest resources were shifted to the local communities, however, the ownership right of the forestland retained by the government. Local communities took the decision on harvesting, distribution, and sell of forest products by fixing the prices independently. The local communities were putting the low value of forest products and distributed among the user households on the name of collective decision. The decision of low valuation is devaluating the worth of forest products. Therefore, the study hypothesized that decision-making capacities are equally prominent next to the decentralized policy and program formulation. To accomplish the study, individual to group level discussions and questionnaire survey methods were applied with executive committee members and user households. The study revealed that the local intuition called Community Forest User Group (CFUG) committee normally took the decisions on consensus basis. Considering to the access and affording capacity of user households having poor economic backgrounds, low pricing mechanism of forest products has been practiced, even though the Sal timber is far expensive in the local market. The local communities thought that low pricing mechanism is accessible to all user households from poor to better off households. However, the analysis of forest products distribution opposed the assumption as most of the Sal timber, which is the most valuable forest product of community forest only purchased by the limited households of better economic conditions. Since the Terai region is heterogeneous by socio-economic conditions, better off households always have higher affording capacity and possibility of taking higher timber benefits because of low price mechanism. On the other hand, the minimum price rate of forest products has poor contribution in community fund collection. Consequently, it has poor support to carry out poverty alleviation activities to poor people. The local communities have been fixed Sal timber price rate around three times cheaper than normal market price, which is a strong evidence of forest product devaluation itself. Finally, the study concluded that the capacity building of local executives as the decision-makers of natural Sal forests is equally indispensable next to the policy and program formulation for effective decentralized forest management. Unilateral decentralized forest policy may devaluate the forest products rather than devolve of power to the local communities and empower to them.

Keywords: community forestry program, decentralized forest policy, Nepal, Sal forests, Terai

Procedia PDF Downloads 332
5837 Comparative Study to Evaluate the Efficacy of Control Criterion in Determining Consolidation Scope in the Public Sector

Authors: Batool Zarei

Abstract:

This study aims to answer this question whether control criterion with two elements of power and benefit which is introduced as 'control criterion of consolidation scope' in national and international standards of accounting in public sector (and also private sector) is efficient enough or not. The methodology of this study is comparative and the results of this research are significantly generalizable, due to the given importance to the sample of countries which were studied. Findings of this study states that in spite of pervasive use of control criterion (including 2 elements of power and benefit), criteria for determining the existence of control in public sector accounting standards, are not efficient enough to determine the consolidation scope of whole of government financial statements in a way that meet decision making and accountability needs of managers, policy makers and supervisors; specially parliament. Therefore, the researcher believes that for determining consolidation scope in public sector, in addition to economic view, it is better to pay attention to budgetary, legal and statistical concepts and also to practical and financial risk and define indicators for proving the existence of control (power and benefit) which include accountability relationships (budgetary relation, legal form and nature of activity). these findings also reveals the necessity of passing a comprehensive public financial management (PFM) legislation in order to redefine the characteristics of public sector entities and whole of government financial statements scope and review Statistics organizations and central banks duties for preparing government financial statistics and national accounts in order to achieve sustainable development and resilient economy goals.

Keywords: control, consolidation scope, public sector accounting, government financial statistics, resilient economy

Procedia PDF Downloads 258
5836 Optimal Maintenance Policy for a Three-Unit System

Authors: A. Abbou, V. Makis, N. Salari

Abstract:

We study the condition-based maintenance (CBM) problem of a system subject to stochastic deterioration. The system is composed of three units (or modules): (i) Module 1 deterioration follows a Markov process with two operational states and one failure state. The operational states are partially observable through periodic condition monitoring. (ii) Module 2 deterioration follows a Gamma process with a known failure threshold. The deterioration level of this module is fully observable through periodic inspections. (iii) Only the operating age information is available of Module 3. The lifetime of this module has a general distribution. A CBM policy prescribes when to initiate a maintenance intervention and which modules to repair during intervention. Our objective is to determine the optimal CBM policy minimizing the long-run expected average cost of operating the system. This is achieved by formulating a Markov decision process (MDP) and developing the value iteration algorithm for solving the MDP. We provide numerical examples illustrating the cost-effectiveness of the optimal CBM policy through a comparison with heuristic policies commonly found in the literature.

Keywords: reliability, maintenance optimization, Markov decision process, heuristics

Procedia PDF Downloads 217
5835 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 300
5834 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE

Authors: Oualid Walid Ben Ali

Abstract:

Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.

Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE

Procedia PDF Downloads 490
5833 A Sustainable Design Model by Integrated Evaluation of Closed-loop Design and Supply Chain Using a Mathematical Model

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

The paper presented a sustainable design model for integrated evaluation of the design and supply chain of a product for the sustainable objectives. To design a product, there can be alternative ways to assign the detailed specifications to fulfill the same design objectives. In the design alternative cases, different material and manufacturing processes with various supply chain activities may be required for the production. Therefore, it is required to evaluate the different design cases based on the sustainable objectives. In this research, a closed-loop design model is developed by integrating the forward design model and reverse design model. From the supply chain point of view, the decisions in the forward design model are connected with the forward supply chain. The decisions in the reverse design model are connected with the reverse supply chain considering the sustainable objectives. The purpose of this research is to develop a mathematical model for analyzing the design cases by integrated evaluating the criteria in the closed-loop design and the closed-loop supply chain. The decision variables are built to represent the design cases of the forward design and reverse design. The cost parameters in a forward design include the costs of material and manufacturing processes. The cost parameters in a reverse design include the costs of recycling, disassembly, reusing, remanufacturing, and disposing. The mathematical model is formulated to minimize the total cost under the design constraints. In practical applications, the decisions of the mathematical model can be used for selecting a design case for the purpose of sustainable design of a product. An example product is demonstrated in the paper. The test result shows that the sustainable design model is useful for integrated evaluation of the design and the supply chain to achieve the sustainable objectives.

Keywords: closed-loop design, closed-loop supply chain, design evaluation, supply chain management, sustainable design model

Procedia PDF Downloads 423
5832 Practical Guidelines for Utilizing WipFrag Software to Assess Oversize Blast Material Using Both Orthomosaic and Digital Images

Authors: Blessing Olamide Taiwo, Andrew Palangio, Chirag Savaliya, Jenil Patel

Abstract:

Oversized material resulting from blasting presents a notable drawback in the transportation of run-off-mine material due to increased expenses associated with handling, decreased efficiency in loading, and greater wear on digging equipment. Its irregular size and weight demand additional resources and time for secondary breakage, impacting overall productivity and profitability. This paper addresses the limitations of interpreting image analysis software results and applying them to the assessment of blast-generated oversized materials. This comprehensive guide utilizes both ortho mosaic and digital photos to provide critical approaches for optimizing fragmentation analysis and improving decision-making in mining operations. It briefly covers post-blast assessment, blast block heat map interpretation, and material loading decision-making recommendations.

Keywords: blast result assessment, WipFrag, oversize identification, orthomosaic images, production optimization

Procedia PDF Downloads 37
5831 Water Quality Calculation and Management System

Authors: H. M. B. N Jayasinghe

Abstract:

The water is found almost everywhere on Earth. Water resources contain a lot of pollution. Some diseases can be spread through the water to the living beings. So to be clean water it should undergo a number of treatments necessary to make it drinkable. So it is must to have purification technology for the wastewater. So the waste water treatment plants act a major role in these issues. When considering the procedures taken after the water treatment process was always based on manual calculations and recordings. Water purification plants may interact with lots of manual processes. It means the process taking much time consuming. So the final evaluation and chemical, biological treatment process get delayed. So to prevent those types of drawbacks there are some computerized programmable calculation and analytical techniques going to be introduced to the laboratory staff. To solve this problem automated system will be a solution in which guarantees the rational selection. A decision support system is a way to model data and make quality decisions based upon it. It is widely used in the world for the various kind of process automation. Decision support systems that just collect data and organize it effectively are usually called passive models where they do not suggest a specific decision but only reveal information. This web base system is based on global positioning data adding facility with map location. Most worth feature is SMS and E-mail alert service to inform the appropriate person on a critical issue. The technological influence to the system is HTML, MySQL, PHP, and some other web developing technologies. Current issues in the computerized water chemistry analysis are not much deep in progress. For an example the swimming pool water quality calculator. The validity of the system has been verified by test running and comparison with an existing plant data. Automated system will make the life easier in productively and qualitatively.

Keywords: automated system, wastewater, purification technology, map location

Procedia PDF Downloads 245
5830 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 35
5829 Early Marriage and Women's Empowerment: The Case of Chil-bride in East Hararghe Zone of Oromia National Regional State, Ethiopia

Authors: Emad Mohammed Sani

Abstract:

Women encounter exclusion and discrimination in varying degrees, particularly those who marry as minors. The detrimental custom of getting married young is still prevalent worldwide and affects millions of people. It has been less common over time, although it is still widespread in underdeveloped nations. Oromia Regional State is the region in Ethiopia with the highest proportion of child brides. This study aimed at evaluating the effects of early marriage on its survivors’ life conditions – specifically, empowerment and household decision-making – in Eastern Hararghe Zone of Oromia Region. This study employed community-based cross-sectional study design. It adopted mixed method approach – survey, in-depth interview and focus group discussion (FGD) – to collect, analyses and interpret data on early marriage and its effects on household decision-making processes. Narratives and analytical descriptions were integrated to substantiate and/or explain observed quantitative results, or generate contextual themes. According to this study, married women who were married at or after the age of eighteen participated more in household decision-making than child brides. Child brides were more likely to be victims of violence and other types of spousal abuse in their marriages. These changes are mostly caused by an individual's age at first marriage. Delaying marriage had a large positive impact on women's empowerment at the household level, and age at first marriage had a considerable negative impact. In order to advance women's welfare and emancipation, we advise more research to concentrate on the relationship between the home and the social-structural forms that appear at the individual and communal levels.

Keywords: child-bride, early marriage, women, ethiopia

Procedia PDF Downloads 64
5828 The Sustainable Cultural Tourism of Nakhon Si Thammarat Province in Thailand

Authors: Narong Anurak

Abstract:

The objectives of the study were to determine the factors influencing tourists’ destination decision making for cultural tourism in the southern provinces, to examine the potential for developing cultural tourism and to guideline for marketing strategy for cultural tourism in Nakhon Si Thammarat. Both quantitative and qualitative data were applied in this study. The samples of 400 cases for quantitative analysis were tourists who were interested in cultural tourism in the southern provinces, and traveled to cultural sites in Nakhon Si Thammarat, Surat Thani, and Phuket, and 14 representatives from provincial tourism committee of Nakhon Si Thammarat. The study found that Thai and foreign tourists are influenced by different important marketing mix factors (7Ps) when making decisions for cultural tourism in southern provinces. The important factors for Thai respondents were physical evidence, price, people, and place at high importance level, whereas, product, process, and promotion were moderate importance level as well.

Keywords: marketing mix factors, Nakhon Si Thammarat province, sustainable cultural tourism, tourists decision making

Procedia PDF Downloads 273
5827 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes

Authors: Omolola A. Tajelawi, Hari L. Garbharran

Abstract:

Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.

Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses

Procedia PDF Downloads 335
5826 Biases in Macroprudential Supervision and Their Legal Implications

Authors: Anat Keller

Abstract:

Given that macro-prudential supervision is a relatively new policy area and its empirical and analytical research are still in their infancy, its theoretical foundations are also lagging behind. This paper contributes to the developing discussion on effective legal and institutional macroprudential supervision frameworks. In the first part of the paper, it is argued that effectiveness as a key benchmark poses some challenges in the context of macroprudential supervision such as the difficulty in proving causality between supervisory actions and the achievement of the supervisor’s mission. The paper suggests that effectiveness in the macroprudential context should, therefore, be assessed at the supervisory decision-making process (to be differentiated from the supervisory outcomes). The second part of the essay examines whether insights from behavioural economics can point to biases in the macroprudential decision-making process. These biases include, inter alia, preference bias, groupthink bias and inaction bias. It is argued that these biases are exacerbated in the multilateral setting of the macroprudential supervision framework in the EU. The paper then examines how legal and institutional frameworks should be designed to acknowledge and perhaps contain these identified biases. The paper suggests that the effectiveness of macroprudential policy will largely depend on the existence of clear and robust transparency and accountability arrangements. Accountability arrangements can be used as a vehicle for identifying and addressing potential biases in the macro-prudential framework, in particular, inaction bias. Inclusiveness of the public in the supervisory process in the form of transparency and awareness of the logic behind policy decisions may assist in minimising their potential unpopularity thus promoting their effectiveness. Furthermore, a governance structure which facilitates coordination of the macroprudential supervisor with other policymakers and incorporates outside perspectives and opinions could ‘break-down’ groupthink bias as well as inaction bias.

Keywords: behavioural economics and biases, effectiveness of macroprudential supervision, legal and institutional macroprudential frameworks, macroprudential decision-making process

Procedia PDF Downloads 280