Search results for: data infrastructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26547

Search results for: data infrastructure

25647 Digital Media Use and Access among Rural Youth in South Africa: The Prospects for Female Empowerment

Authors: Fulufhelo Oscar Makananise

Abstract:

Digital technologies have played a significant role in bridging the information gap between the haves and the have nots in society. In developing countries such as South Africa, historically marginalised groups such as women in rural communities have an opportunity to use digital technologies to network among themselves as well as interact with their government, thereby enhancing prospects for poverty eradication, political participation, community development and democracy. However, the extent to which these goals can be achieved in a developing context through harnessing digital technologies is not quite clear, particularly given the fact that access to these technologies is not evenly distributed and the fact that women’s access to digital technologies is hampered by factors that go beyond the question of infrastructure. Informed by the technological dependency theory, this paper is about how female youth in rural South Africa are deploying digital media tools for socio-economic empowerment. In particular, the study investigated the extent to which female youth in Limpopo province, South Africa access and use digital media platforms and gadgets and the extent to which those technologies are breaking down barriers that stand in the way of female youth empowerment. Data were gathered using a self-administered questionnaire disseminated to selected 100 female youth in Limpopo Province, South Africa. The data were analysed using SPSS version 9, and the results were analysed using descriptive statistics. The paper argues that wider and constant access to digital media by female youth in rural areas is indicative of the great potential for empowering female youth in rural areas through harnessing digital media. The study established that the majority of female youth had access to digital media technologies and used them to share valuable information among themselves. The study further established that female youth are active users of digital media in South Africa, which is the significant driver for socio-economic empowerment.

Keywords: digital technologies, empowerment, female youth, South Africa, survey, technological dependency

Procedia PDF Downloads 137
25646 Mapping and Mitigation Strategy for Flash Flood Hazards: A Case Study of Bishoftu City

Authors: Berhanu Keno Terfa

Abstract:

Flash floods are among the most dangerous natural disasters that pose a significant threat to human existence. They occur frequently and can cause extensive damage to homes, infrastructure, and ecosystems while also claiming lives. Although flash floods can happen anywhere in the world, their impact is particularly severe in developing countries due to limited financial resources, inadequate drainage systems, substandard housing options, lack of early warning systems, and insufficient preparedness. To address these challenges, a comprehensive study has been undertaken to analyze and map flood inundation using Geographic Information System (GIS) techniques by considering various factors that contribute to flash flood resilience and developing effective mitigation strategies. Key factors considered in the analysis include slope, drainage density, elevation, Curve Number, rainfall patterns, land-use/cover classes, and soil data. These variables were computed using ArcGIS software platforms, and data from the Sentinel-2 satellite image (with a 10-meter resolution) were utilized for land-use/cover classification. Additionally, slope, elevation, and drainage density data were generated from the 12.5-meter resolution of the ALOS Palsar DEM, while other relevant data were obtained from the Ethiopian Meteorological Institute. By integrating and regularizing the collected data through GIS and employing the analytic hierarchy process (AHP) technique, the study successfully delineated flash flood hazard zones (FFHs) and generated a suitable land map for urban agriculture. The FFH model identified four levels of risk in Bishoftu City: very high (2106.4 ha), high (10464.4 ha), moderate (1444.44 ha), and low (0.52 ha), accounting for 15.02%, 74.7%, 10.1%, and 0.004% of the total area, respectively. The results underscore the vulnerability of many residential areas in Bishoftu City, particularly the central areas that have been previously developed. Accurate spatial representation of flood-prone areas and potential agricultural zones is crucial for designing effective flood mitigation and agricultural production plans. The findings of this study emphasize the importance of flood risk mapping in raising public awareness, demonstrating vulnerability, strengthening financial resilience, protecting the environment, and informing policy decisions. Given the susceptibility of Bishoftu City to flash floods, it is recommended that the municipality prioritize urban agriculture adaptation, proper settlement planning, and drainage network design.

Keywords: remote sensing, flush flood hazards, Bishoftu, GIS.

Procedia PDF Downloads 42
25645 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors

Authors: Yaxin Bi

Abstract:

Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.

Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors

Procedia PDF Downloads 38
25644 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: blast phenomenon, experimental methods, material models, numerical methods

Procedia PDF Downloads 158
25643 Factors Influencing Respectful Perinatal Care Among Healthcare Professionals In Low-and Middle-resource Countries: A Systematic Review

Authors: Petronella Lunda, Catharina Susanna Minnie, Welma Lubbe

Abstract:

Background This review aimed to provide healthcare professionals with a scientific summary of the best available research evidence on factors influencing respectful perinatal care. The review question was ‘What were the perceptions of midwives and doctors on factors that influence respectful perinatal care?’ Methods A detailed search was done on electronic databases: EBSCOhost: Medline, OAlster, Scopus, SciELO, Science Direct, PubMed, Psych INFO, and SocINDEX. The databases were searched for available literature using a predetermined search strategy. Reference lists of included studies were analysed to identify studies missing from databases. The phenomenon of interest was factors influencing maternity care practices according to midwives and doctors. Pre-determined inclusion and exclusion criteria were used during the selection of potential studies. In total, 13 studies were included in the data analysis and synthesis. Three themes were identified and a total of nine sub-themes. Results Studies conducted in various settings were included in the study. Multiple factors influencing respectful perinatal care were identified. During data synthesis, three themes emerged: healthcare institution, healthcare professionals, and women-related factors. Alongside the themes were sub-themes human resources, medical supplies, norms and practices, physical infrastructure, healthcare professional competencies and attributes, women’s knowledge, and preferences. The three factors influence the provision of respectful perinatal care; addressing them might improve the provision of the care. Conclusion Addressing factors that influence respectful perinatal care is vital towards the prevention of compromised patient care during the perinatal period as these factors have the potential to accelerate or hinder provision of respectful care.

Keywords: doctors, maternity care, midwives, obstetrician, perceptions, perinatal care, respectful care

Procedia PDF Downloads 32
25642 Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia

Authors: Naif Albelwi, Alan Kwan, Yacine Rezgui

Abstract:

Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources.

Keywords: energy and water consumption, sustainability, urban development, urban metabolism

Procedia PDF Downloads 275
25641 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste

Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha

Abstract:

Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.

Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil

Procedia PDF Downloads 139
25640 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 485
25639 Public Debt and Fiscal Stability in Nigeria

Authors: Abdulkarim Yusuf

Abstract:

Motivation: The Nigerian economy has seen significant macroeconomic instability, fuelled mostly by an overreliance on fluctuating oil revenues. The rising disparity between tax receipts and government spending in Nigeria necessitates government borrowing to fund the anticipated pace of economic growth. Rising public debt and fiscal sustainability are limiting the government's ability to invest in key infrastructure that promotes private investment and growth in Nigeria. Objective: This paper fills an empirical research vacuum by examining the impact of public debt on fiscal sustainability in Nigeria, given the significance of fiscal stability in decreasing poverty and the constraints that an unsustainable debt burden imposes on it. Data and method: Annual time series data covering the period 1980 to 2022 exposed to conventional and structural breaks stationarity tests and the Autoregressive Distributed Lag estimation approach were adopted for this study. Results: The results reveal that domestic debt stock, debt service payment, foreign reserve stock, exchange rate, and private investment all had a major adverse effect on fiscal stability in the long and short run, corroborating the debt overhang and crowding-out hypothesis. External debt stock, prime lending rate, and degree of trade openness, which boosted fiscal stability in the long run, had a major detrimental effect on fiscal stability in the short run, whereas foreign direct investment inflows had an important beneficial impact on fiscal stability in both the long and short run. Implications: The results indicate that fiscal measures that inspire domestic resource mobilization, sustainable debt management techniques, and dependence on external debt to boost deficit financing will improve fiscal stability and drive growth.

Keywords: ARDL co-integration, debt overhang, debt servicing, fiscal stability, public debt

Procedia PDF Downloads 63
25638 Determinants of Food Insecurity Among Smallholder Farming Households in Southwest Area of Nigeria

Authors: Adesomoju O. A., E. A. Onemolease, G. O. Igene

Abstract:

The study analyzed the determinants of food insecurity among smallholder farming households in the Southwestern part of Nigeria with Ondo and Osun States in focus. Multi-stage sampling procedures were employed to gather data from 389 farming households (194 from Ondo State and 195 from Osun State) spread across 4 agricultural zones, 8 local governments, and 24 communities. The data was analyzed using descriptive statistics, Ordinal regression, and Friedman test. Results revealed the average age of the respondents was 47 years with majority being male 63.75% and married 82.26% and having an household size of 6. Most household heads were educated (94.09%), engaged in farming for about 19 years, and do not belong to cooperatives (73.26%). Respondents derived income from both farming and non-farm activities with the average farm income being N216,066.8/annum and non-farm income being about N360,000/annum. Multiple technologies were adopted by respondents such as application of herbicides (77.63%), pesticides (73.26%) and fertilizers (66.58%). Using the FANTA Cornel model, food insecurity was prevalent in the study area with the majority (61.44%) of the households being severely food insecure, and 35.73% being moderately food insecure. In comparison, 1.80% and 1.03% were food-secured and mildly food insecure. The most significant constraints to food security among the farming households were the inability to access credit (mean rank = 8.78), poor storage infrastructure (8.57), inadequate capital (8.56), and high cost of farm chemicals (8.35). Significant factors related to food insecurity among the farming households were age (b = -0.059), education (b = -0.376), family size (b = 0.197), adoption of technology (b = -0.198), farm income (b = -0.335), association membership (b = -0.999), engagement in non-farm activities (b = -1.538), and access to credit (b = -0.853). Linking farmers' groups to credit institutions and input suppliers was proposed.

Keywords: food insecurity, FANTA Cornel, Ondo, Osun, Nigeria, Southwest, Livelihood

Procedia PDF Downloads 34
25637 Towards a Successful Implementation of ICT in Education : Analyzing Teacher Practices and Perceptions

Authors: Azzeddine Atibi, Lamalif latifa, Khadija El Kababi, Salim Ahmed, Mohamed Radid

Abstract:

This study analyzes the integration of Information and Communication Technologies (ICT) in modern education, where these tools have become essential. Due to the rapid emergence of new technologies and their increasing adoption in education, it is important to understand how teachers use and perceive these tools. The study pursues three objectives : examining current teacher practices regarding ICT, evaluating their impact on student skills and engagement, and making recommendations for better integration of ICT in education. The study's methodology is based on a quantitative approach, using a questionnaire administered to a sample of 104 teachers. This questionnaire, rigorously validated to ensure its reliability, gathers representative data on perceptions and challenges related to the use of ICT. The results show widespread adoption of ICT by teachers, with the majority reporting an improvement in student skills due to these technologies. However, opinions diverge on their impact on student engagement : some teachers note an increase in engagement, while others remain skeptical. Persistent challenges include insufficient technological infrastructure and the need for ongoing training. The recommendations highlight the importance of improving infrastructures and supporting the professional development of teachers to optimize the integration of ICT.

Keywords: ICT, education, teaching practices, teacher perceptions, continuing education

Procedia PDF Downloads 40
25636 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 101
25635 E-Learning Approach for Improving Classroom Teaching to Enhance Students' Learning in Secondary Schools in Nigeria

Authors: Chika Ethel Esege

Abstract:

Electronic learning is learning facilitated by technology which has basically altered approaches globally, including the field of education. This trend is compelling educators to focus on approaches that improve classroom practices in order to enhance students’ learning and participation in a global digital society. However, e-learning is not fully utilized across subject disciplines particularly in the field of humanities, in the context of Nigerian secondary education. This study focused on the use of e-learning to enhance the development of digital skills, particularly, collaboration and communication in secondary school students in Nigeria. The study adopted an ‘action research’ involving 210 students and 7 teachers, who utilised the e-learning platform designed by the researcher for the survey. Mixed methods- qualitative and quantitative- were used for data collection including questionnaire, observation, interview, and analysis of statutory documents. The data were presented using frequency counts for questionnaire responses and figures of screenshots for learning tasks. The VOD Burner software was also used to analyse interviews and video recordings. The study showed that the students acquired collaboration and communication skills through e-learning intervention lesson, and demonstrated satisfaction with this approach. However, the study further revealed that the traditional teaching approach could not provide digital education or develop the digital skills of the students. Based on these findings, recommendations were made that the Nigerian Government should incorporate digital content across subject disciplines into secondary school education curricular and provide adequate infrastructure in order to enable educators to adopt relevant approaches necessary for the enhancement of students’ learning especially in a technologically evolving and advancing world.

Keywords: developing collaboration and communication skills, electronic learning, improving classroom teaching, secondary schools in Nigeria

Procedia PDF Downloads 138
25634 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 191
25633 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 290
25632 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 468
25631 Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation

Authors: Ankur Mundhra, Shubhadeep Chakraborty, Y. R. Singh, Vishal Das

Abstract:

Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s).

Keywords: clipping, compression, resolution, seismic scaling

Procedia PDF Downloads 475
25630 A Comprehensive Review of Electronic Health Records Implementation in Healthcare

Authors: Lateefat Amao, Misagh Faezipour

Abstract:

Implementing electronic health records (EHR) in healthcare is a pivotal transition aimed at digitizing and optimizing patient health information management. The expectations associated with this transition are high, even towards other health information systems (HIS) and health technology. This multifaceted process involves careful planning and execution to improve the quality and efficiency of patient care, especially as healthcare technology is a sensitive niche. Key considerations include a thorough needs assessment, judicious vendor selection, robust infrastructure development, and training and adaptation of healthcare professionals. Comprehensive training programs, data migration from legacy systems and models, interoperability, as well as security and regulatory compliance are imperative for healthcare staff to navigate EHR systems adeptly. The purpose of this work is to offer a comprehensive review of the literature on EHR implementation. It explores the impact of this health technology on health practices, highlights challenges and barriers to its successful utility, and offers practical strategies that can impact its success in healthcare. This paper provides a thorough review of studies on the adoption of EHRs, emphasizing the wide range of experiences and results connected to EHR use in the medical field, especially across different types of healthcare organizations.

Keywords: healthcare, electronic health records, EHR implementation, patient care, interoperability

Procedia PDF Downloads 85
25629 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 97
25628 Association of Social Data as a Tool to Support Government Decision Making

Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias

Abstract:

Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.

Keywords: social data, government decision making, association of social data, data mining

Procedia PDF Downloads 374
25627 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 25
25626 Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks

Authors: Ugur Fidan, Naim Karasekreter

Abstract:

Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people.

Keywords: wireless sensor networks (WSN), monitoring, chlorine, water tank, security

Procedia PDF Downloads 164
25625 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 84
25624 Progress and Challenges of Smart Cities in India: An Exploratory Study

Authors: Sushil K. Sharma, Jeff Zhang, Saeed Tabar

Abstract:

Worldwide, several governments are utilizing the Internet of Things (IoT) and other information and communication technologies (ICTs) to create smart city infrastructures to improve both the quality of government services and citizen welfare. Over 700 cities from around the world have already started implementing their smart city projects. Smart City utilizes the network of connected things, or the Internet of Things (IoT), that interconnects devices and various components across city infrastructure, making them work together seamlessly to enhance the quality, performance, and interactivity of urban services, optimize resources, and reduce costs. Without developing smart cities, the accelerating growth of cities, and their disproportionate consumption of physical and social resources are unsustainable. In 2016, the Indian Government released a list of 100 cities with the intention of kick-starting the process of developing them into 'smart cities’ as part of the Smart Cities Mission. This study reports the progress and challenges of Smart City projects in India. The data were collected through the city/state government websites, media reports, and focus group discussions/interviews. The preliminary results indicate that smart city projects are not only behind in their implementation and scope but also lacks the sincerity for its implementation.

Keywords: smart city, smart government, Internet of Things, digital government

Procedia PDF Downloads 189
25623 Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics

Authors: Sathish Kumar Jayaraj

Abstract:

The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem.

Keywords: traffic flow factor (TFF), urban traffic dynamics, fluid dynamics principles, vehicle shearing resistance (VSR), traffic congestion management, sustainable urban mobility

Procedia PDF Downloads 67
25622 Innovations for Freight Transport Systems

Authors: M. Lu

Abstract:

The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.

Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)

Procedia PDF Downloads 321
25621 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 300
25620 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.

Keywords: IoT, fog, cloud, data analysis, data privacy

Procedia PDF Downloads 105
25619 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 418
25618 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol

Authors: Inkyu Kim, SangMan Moon

Abstract:

This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.

Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application

Procedia PDF Downloads 398