Search results for: application based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36600

Search results for: application based learning

35700 Memorizing Music and Learning Strategies

Authors: Elisabeth Eder

Abstract:

Memorizing music plays an important role for instrumentalists and has been researched very little so far. Almost every musician is confronted with memorizing music in the course of their musical career. For numerous competitions, examinations (e.g., at universities, music schools), solo performances, and the like, memorization is a requirement. Learners are often required to learn a piece by heart but are rarely given guidance on how to proceed. This was also confirmed by Eder's preliminary study to examine the topicality and relevance of the topic, in which 111 instrumentalists took part. The preliminary study revealed a great desire for more knowledge or information about learning strategies as well as a greater sense of security when performing by heart on stage through the use of learning strategies by those musicians who use learning strategies. Eder’s research focuses on learning strategies for memorizing music. As part of a large-scale empirical study – an online questionnaire translated into 10 languages was used to conduct the study – 1091 musicians from 64 different countries described how they memorize. The participants in the study also evaluated their learning strategies and justified their choice in terms of their degree of effectiveness. Based on the study and pedagogical literature, 100 learning strategies were identified and categorized; the strategies were examined with regard to their effectiveness, and instrument-specific, age-specific, country-specific, gender-specific, and education-related differences and similarities concerning the choice of learning strategies were investigated. Her research also deals with forms and models of memory and how music-related information can be stored and retrieved and also forgotten again. A further part is devoted to the possibilities that teachers and learners have to support the process of memorization independently of learning strategies. The findings resulting from Elisabeth Eder's research should enable musicians and instrumental students to memorize faster and more confidently.

Keywords: memorizing music, learning strategies, empirical study, effectiveness of strategies

Procedia PDF Downloads 40
35699 Enhancing Reading in English through a Phonics-Based Approach and Interactive Whiteboards

Authors: Carmen Manuela Pereira Carneiro Lucas

Abstract:

Background: The milestones on first (L1) and second (L2) language acquisition have fascinated researchers and practitioners for decades. However, the findings from the available research do not always and instantly reflect on the classroom, specifically in Teaching English to Young Learners in Portuguese primary schools. Within this, it is worth highlighting, as per previous studies, the lack of uniformity in terms of syllabus design and implementation in the classroom. Moreover, more continuous professional development opportunities would be welcome. This paper is set out to gather the “best of both worlds”, with the aim of contributing to research-informed teaching, based in actual findings from the classroom, through and after the implementation of an action-research programme for nurturing the seeds in learning how to read in English. Therefore, the purpose of this study was to examine the effectiveness of read-aloud storybooks, associated with the use of interactive whiteboards, further anchored in a phonics-based approach to teach reading and writing to Young Learners of English. Methods: Participants were 80 (n=80) native Portuguese children, attending the second year of primary school, learning English as a Foreign Language (EFL) classes, aged 7 years old. Results and Conclusions: The findings suggest that through the use of storybooks, followed by watching the respective videos, together with follow-up phonics activities are effective strategies which Teachers of English to Young Learners can certainly use to “nurture the seeds” for English language learning.

Keywords: teaching English to young learners, phonics-based approach, content for language and integrated learning, English across the curriculum, interactive whiteboards, teacher training

Procedia PDF Downloads 20
35698 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 116
35697 Simulation-Based Learning in the Exercise Science Curriculum: Peer Role Play vs Professional Simulated Patient

Authors: Nathan Reeves

Abstract:

Aim: The aim of this study was to evaluate if there was an impact on student learning when peer role play was substituted for a professional actor in the role of simulated patient in a simulation-based scenario. Method: Third-year exercise science students enrolled in a field project course in 2015 (n=24), and 2016 (n=20) participated in a simulation-based case scenario designed to develop their client-centred exercise prescription skills. During the simulation, students were provided with feedback from the simulated patients. In 2015, three professional actors played the part of the simulated patient, and in 2016 one of the simulated patients was a student from another exercise science cohort (peer role play). The student learning experience, consistency in case fidelity and feedback provided by the simulated patients was evaluated using a 5-point Likert scale survey and collecting phenomenological data. Results: Improvements to student pre and post confidence remained constant between the 2015 and 2016 cohorts (1.04 and 0.85). The perceived usefulness and enjoyability also remained high across the two cohorts (4.96 and 4.71). The feedback provided by all three simulated patients in 2016 was seen to strongly support student learning experience (4.82), and was of a consistent level (4.47). Significance of the findings to allied health: Simulation-based education is rapidly expanding in the curricula across the allied health professions. The simulated patient methodology continues to receive support as a pedagogy to develop a range of clinical skills including communication, engagement and client-centeredness. Upskilling students to peer role play can be a reasonable alternative to engaging paid actors.

Keywords: exercise science, simulation-based learning, simulated patient, peer role play

Procedia PDF Downloads 291
35696 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level

Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham

Abstract:

Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.

Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes

Procedia PDF Downloads 227
35695 Impact of Knowledge Management on Learning Organizations

Authors: Gunmala Suri

Abstract:

The purpose of this study was to investigate the relationship between various dimensions of Knowledge Management and Learning Organizations. On the basis of the dimensions of Learning Organization, Hypothesis were formulated. Knowledge Management (KM) is taken as the independent variable and Learning Organization (LO) as a dependent variable. KM had 5 dimensions and LO had 7. For this study, a total of 92 participants took part and answered the questionnaire. The respondents were selected using Judgemental and Snowball sampling. The respondents were from SMEs in and around Chandigarh. SPSS was used to for the data analysis purposes. The results showed that the dimensions of KM had a positive influence on the dimensions of LO. The hypothesis were accepted.

Keywords: knowledge management leadership, knowledge management, learning organization, knowledge management culture

Procedia PDF Downloads 413
35694 A Study on Pre-Service English Teachers' Language Self Efficacy and Learning Goal Orientation

Authors: Erteki̇n Kotbaş

Abstract:

Teaching English as a Foreign Language (EFL) is on the front burner of many countries in the world, in particular for English language teaching departments that train EFL teachers. Under the head of motivational theories in foreign language education, there are numerous researches in literature. However; researches comprising English language self-efficacy and teachers’ learning goal orientation which has a positive impact on learning teachings skills are scarce. Examination of these English language self-efficacy beliefs and learning goal orientations of pre-service EFL teachers may broaden the horizons, considering the importance of self-efficacy and goal orientation on learning and teaching activities. At this juncture, present study aims to investigate the strong relationship between English language self efficacy and teachers’ learning goal orientation from Turkish context in addition to teacher students’ grade factor.

Keywords: English language, learning goal orientation, self efficacy, pre-service teachers

Procedia PDF Downloads 460
35693 The Use of Self-Determination Theory to Assess the Opportunities and Challenges for Blended E-Learning in Egypt: An Analysis of the Motivations of Logistics Lecturers

Authors: Aisha Tarek Noour, Nick Hubbard

Abstract:

Blended e-Learning (BL) is proving to be an effective pedagogical tool in many areas of business and management education, but there remains a number of barriers to overcome before its implementation. This paper seeks to analyse the views of lecturers towards BL according to Self-Determination Theory (SDT), and identifies the opportunities and challenges for using BL in Logistics Education in an Egyptian higher education establishment. SDT is approached from a different perspective and the relationship between intrinsic motivation (IM), extrinsic motivation (EM), and amotivation (AM) is analysed and related to the opportunities and challenges of the BL method. The case study methodology comprises of a series of interviews with lecturers employed at three Colleges of International Transport and Logistics (CITLs) at the Arab Academy for Science, Technology, Maritime and Transport (AAST&MT) in Egypt. A structured face-to-face interview was undertaken with 61 interviewees across all faculty positions: Deans, Associate Professors, Assistant Professor, Department Heads, Part-time instructors, Teaching Assistants, and Graduate Teaching Assistants. The findings were based on "content analysis" of the interview transcripts and use of the NVivo10 software program. The research contributes to the application of SDT within the field of BL through an analysis of the views of lecturers towards the opportunities and challenges that BL offers to logistics educators in Egypt.

Keywords: intrinsic motivation, extrinsic motivation, amotivation, autonomy, competence, relatedness, self-determination theory and blended e-learning

Procedia PDF Downloads 439
35692 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract:

This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance

Procedia PDF Downloads 172
35691 A Qualitative Study on Metacognitive Patterns among High and Low Performance Problem Based on Learning Groups

Authors: Zuhairah Abdul Hadi, Mohd Nazir bin Md. Zabit, Zuriadah Ismail

Abstract:

Metacognitive has been empirically evidenced to be one important element influencing learning outcomes. Expert learners engage in metacognition by monitoring and controlling their thinking, and listing, considering and selecting the best strategies to achieve desired goals. Studies also found that good critical thinkers engage in more metacognition and people tend to activate more metacognition when solving complex problems. This study extends past studies by performing a qualitative analysis to understand metacognitive patterns among two high and two low performing groups by carefully examining video and audio records taken during Problem-based learning activities. High performing groups are groups with majority members scored well in Watson Glaser II Critical Thinking Appraisal (WGCTA II) and academic achievement tests. Low performing groups are groups with majority members fail to perform in the two tests. Audio records are transcribed and analyzed using schemas adopted from past studies. Metacognitive statements are analyzed using three stages model and patterns of metacognitive are described by contexts, components, and levels for each high and low performing groups.

Keywords: academic achievement, critical thinking, metacognitive, problem-based learning

Procedia PDF Downloads 282
35690 Engaging Students with Special Education Needs through Technology-Enhanced Interactive Activities in Class

Authors: Pauli P.Y. Lai

Abstract:

Students with Special Education Needs (SEN) face many challenges in learning. Various challenges include difficulty in handwriting, slow understanding and assimilation, difficulty in paying attention during class, and lack of communication skills. To engage students with Special Education Needs in class with general students, Blackboard Collaborate is used as a teaching and learning tool to deliver a lecture with interactive activities. Blackboard Collaborate provides a good platform to create and enhance active, collaborative and interactive learning experience whereby the SEN students can easily interact with their general peers and the instructor by using the features of drawing on a virtual whiteboard, file sharing, classroom chatter, breakout room, hand-raising feature, polling, etc. By integrating a blended learning approach with Blackboard Collaborate, the students with Special Education Needs could engage in interactive activities with ease in class. Our research aims at exploring and discovering the use of Blackboard Collaborate for inclusive education based on a qualitative design with in-depth interviews. Being served in a general education environment, three university students with different kinds of learning disabilities have participated in our study. All participants agreed that functions provided by Blackboard Collaborate have enhanced their learning experiences and helped them learn better. Their academic performances also showed that SEN students could perform well with the help of technology. This research studies different aspects of using Blackboard Collaborate to create an inclusive learning environment for SEN students.

Keywords: blackboard collaborate, enhanced learning experience, inclusive education, special education needs

Procedia PDF Downloads 131
35689 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 138
35688 Evaluating and Supporting Student Engagement in Online Learning

Authors: Maria Hopkins

Abstract:

Research on student engagement is founded on a desire to improve the quality of online instruction in both course design and delivery. A high level of student engagement is associated with a wide range of educational practices including purposeful student-faculty contact, peer to peer contact, active and collaborative learning, and positive factors such as student satisfaction, persistence, achievement, and learning. By encouraging student engagement, institutions of higher education can have a positive impact on student success that leads to retention and degree completion. The current research presents the results of an online student engagement survey which support faculty teaching practices to maximize the learning experience for online students. The ‘Indicators of Engaged Learning Online’ provide a framework that measures level of student engagement. Social constructivism and collaborative learning form the theoretical basis of the framework. Social constructivist pedagogy acknowledges the social nature of knowledge and its creation in the minds of individual learners. Some important themes that flow from social constructivism involve the importance of collaboration among instructors and students, active learning vs passive consumption of information, a learning environment that is learner and learning centered, which promotes multiple perspectives, and the use of social tools in the online environment to construct knowledge. The results of the survey indicated themes that emphasized the importance of: Interaction among peers and faculty (collaboration); Timely feedback on assignment/assessments; Faculty participation and visibility; Relevance and real-world application (in terms of assignments, activities, and assessments); and Motivation/interest (the need for faculty to motivate students especially those that may not have an interest in the coursework per se). The qualitative aspect of this student engagement study revealed what instructors did well that made students feel engaged in the course, but also what instructors did not do well, which could inform recommendations to faculty when expectations for teaching a course are reviewed. Furthermore, this research provides evidence for the connection between higher student engagement and persistence and retention in online programs, which supports our rationale for encouraging student engagement, especially in the online environment because attrition rates are higher than in the face-to-face environment.

Keywords: instructional design, learning effectiveness, online learning, student engagement

Procedia PDF Downloads 289
35687 Improving Listening Comprehension for EFL Pre-Intermediate Students through a Blended Learning Strategy

Authors: Heba Mustafa Abdullah

Abstract:

The research aimed at examining the effect of using a suggested blended learning (BL) strategy on developing EFL pre- intermediate students. The study adopted the quasi-experimental design. The sample of the research consisted of a group of 26 EFL pre- intermediate students. Tools of the study included a listening comprehension checklist and a pre-post listening comprehension test. Results were discussed in relation to several factors that affected the language learning process. Finally, the research provided beneficial contributions in relation to manipulating BL strategy with respect to language learning process in general and oral language learning in particular.

Keywords: blended learning, english as a foreign language, listening comprehension, oral language instruction

Procedia PDF Downloads 559
35686 Identifying E-Learning Components at North-West University, Mafikeng Campus

Authors: Sylvia Tumelo Nthutang, Nehemiah Mavetera

Abstract:

Educational institutions are under pressure from their competitors. Regulators and community groups need educational institutions to adopt appropriate business and organizational practices. Globally, educational institutions are now using e-learning as the best teaching and learning approach. E-learning is becoming the center of attention to the learning institutions, educational systems and software inventors. North-West University (NWU) is currently using eFundi, a Learning Management System (LMS). LMS are all information systems and procedures that adds value to students learning and support the learning material in text or any multimedia files. With various e-learning tools, students would be able to access all the materials related to the course in electronic copies. The study was tasked with identifying the e-learning components at the NWU, Mafikeng campus. Quantitative research methodology was considered in data collection and descriptive statistics for data analysis. The Activity Theory (AT) was used as a theory to guide the study. AT outlines the limitations amongst e-learning at the macro-organizational level (plan, guiding principle, campus-wide solutions) and micro-organization (daily functioning practice, collaborative transformation, specific adaptation). On a technological environment, AT gives people an opportunity to change from concentrating on computers as an area of concern but also understand that technology is part of human activities. The findings have identified the university’s current IT tools and knowledge on e-learning elements. It was recommended that university should consider buying computer resources that consumes less power and practice e-learning effectively.

Keywords: e-learning, information and communication technology (ICT), teaching, virtual learning environment

Procedia PDF Downloads 276
35685 Lectures in Higher Education Using Teaching Strategies and Digital Tools to Overcome Challenges Faced in South Africa by Implementing Blended Learning

Authors: Thaiurie Govender, Shannon Verne

Abstract:

The Fourth Industrial Revolution has ushered in an era where technology significantly impacts various aspects of life, including higher education. Blended learning, which combines synchronous and asynchronous learning, has gained popularity as a pedagogical approach. However, its effective implementation is a challenge, particularly in the context of the COVID-19 pandemic and technological obstacles faced in South Africa. This study focused on lecturers' teaching and learning practices to implement blended learning, aiming to understand the teaching and learning strategies used with the integration of digital tools to facilitate the blended learning approach within a private higher educational institution in South Africa. Using heutagogy and constructivism theoretical frameworks, the study aimed to uncover insights into the lecturer’s teaching and learning practices to overcome challenges in designing and facilitating blended learning modules. Through a qualitative analysis, the themes of student engagement, teaching and learning strategies, digital tools, and feedback emerged, highlighting the complexities and opportunities in a blended learning classroom. The findings emphasize the importance of tailoring methods to students' needs and subject matter, aligning with constructivist principles. Recommendations include promoting professional development opportunities, addressing infrastructure issues, and fostering a supportive learning environment.

Keywords: blended learning, digital tools, higher education, teaching strategies

Procedia PDF Downloads 51
35684 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 164
35683 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students

Authors: Prasita Sooksamran, Wareerat Kaewurai

Abstract:

STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).

Keywords: instructional model, STEM education, scientific mind, problem solving

Procedia PDF Downloads 191
35682 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective

Authors: Smita Singh

Abstract:

Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.

Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms

Procedia PDF Downloads 28
35681 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 105
35680 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 102
35679 Experiential Learning in an Earthquake Engineering Course Using Online Tools and Shake Table Exercises

Authors: Andres Winston Oreta

Abstract:

Experiential Learning (ELE) is a strategy for enhancing the teaching and learning of courses especially in civil engineering. This paper presents the adaption of the ELE framework in the delivery of various course requirements in an earthquake engineering course. Examples of how ELE is integrated using online tools and hands-on laboratory technology to address the course learning outcomes on earthquake engineering are presented. Student feedback shows that ELE using online tools and technology strengthens students’ understanding and intuition of seismic design and earthquake engineering concepts.

Keywords: earthquake engineering, experiential learning, shake table, online, internet, civil engineering

Procedia PDF Downloads 19
35678 Designing Mobile Application to Motivate Young People to Visit Cultural Heritage Sites

Authors: Yuko Hiramatsu, Fumihiro Sato, Atsushi Ito, Hiroyuki Hatano, Mie Sato, Yu Watanabe, Akira Sasaki

Abstract:

This paper presents a mobile phone application developed for sightseeing in Nikko, one of the cultural world heritages in Japan, using the BLE (Bluetooth Low Energy) beacon. Based on our pre-research, we decided to design our application for young people who walk around the area actively, but know little about the tradition and culture of Nikko. One solution is to construct many information boards to explain; however, it is difficult to construct new guide plates in cultural world heritage sites. The smartphone is a good solution to send such information to such visitors. This application was designed using a combination of the smartphone and beacons, set in the area, so that when a tourist passes near a beacon, the application displays information about the area including a map, historical or cultural information about the temples and shrines, and local shops nearby as well as a bus timetable. It is useful for foreigners, too. In addition, we developed quizzes relating to the culture and tradition of Nikko to provide information based on the Zeigarnik effect, a psychological effect. According to the results of our trials, tourists positively evaluated the basic information and young people who used the quiz function were able to learn the historical and cultural points. This application helped young visitors at Nikko to understand the cultural elements of the site. In addition, this application has a function to send notifications. This function is designed to provide information about the local community such as shops, local transportation companies and information office. The application hopes to also encourage people living in the area, and such cooperation from the local people will make this application vivid and inspire young visitors to feel that the cultural heritage site is still alive today. This is a gateway for young people to learn about a traditional place and understand the gravity of preserving such areas.

Keywords: BLE beacon, smartphone application, Zeigarnik effect, world heritage site, school trip

Procedia PDF Downloads 322
35677 The Impact of Foliar Application of the Calcium-Containing Compounds in Increasing Resistance to Blue Mold on Apples

Authors: Masoud Baghalian, Musa Arshad

Abstract:

In order to investigate the effect of foliar application of calcium chloride on the resistance of fruits such as Red and Golden Lebanese apple varieties to blue mold, a split plot experiment in time and space, based on accidental blocks, with three replications under foliar application were done (Control, one in a thousand, two in thousands) and the results of the variance analysis showed that there is a significant difference between the levels of foliar and variety at 5% level and between time, there is significant difference in interaction of variety × time and three way interaction of foliar×variety×time, at 1% level. The highest resistance to the blue mold disease in foliar application was observed at two in thousands calcium (calcium chloride) level.

Keywords: apple, blue mold, foliar calcium, resistance

Procedia PDF Downloads 263
35676 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 311
35675 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images

Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion

Abstract:

Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.

Keywords: aerial LiDAR, colorization, deep learning, intensity images

Procedia PDF Downloads 164
35674 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 331
35673 Intelligent Process and Model Applied for E-Learning Systems

Authors: Mafawez Alharbi, Mahdi Jemmali

Abstract:

E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.

Keywords: artificial intelligence, architecture, e-learning, software engineering, processing

Procedia PDF Downloads 189
35672 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 60
35671 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 167