Search results for: stochastic signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1437

Search results for: stochastic signals

567 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 103
566 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System

Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong

Abstract:

Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.

Keywords: OFDM, Mach Zehnder bias voltage, switching voltage, radio-over-fiber, RF gain

Procedia PDF Downloads 477
565 Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error

Authors: R. Sabre, W. Horrigue, J. C. Simon

Abstract:

This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error.

Keywords: spectral density, stable processes, aliasing, periodogram

Procedia PDF Downloads 138
564 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 293
563 Multi-Band Frequency Conversion Scheme with Multi-Phase Shift Based on Optical Frequency Comb

Authors: Tao Lin, Shanghong Zhao, Yufu Yin, Zihang Zhu, Wei Jiang, Xuan Li, Qiurong Zheng

Abstract:

A simple operated, stable and compact multi-band frequency conversion and multi-phase shift is proposed to satisfy the demands of multi-band communication and radar phase array system. The dual polarization quadrature phase shift keying (DP-QPSK) modulator is employed to support the LO sideband and the optical frequency comb simultaneously. Meanwhile, the fiber is also used to introduce different phase shifts to different sidebands. The simulation result shows that by controlling the DC bias voltages and a C band microwave signal with frequency of 4.5 GHz can be simultaneously converted into other signals that cover from C band to K band with multiple phases. It also verifies that the multi-band and multi-phase frequency conversion system can be stably performed based on current manufacturing art and can well cope with the DC drifting. It should be noted that the phase shift of the converted signal also partly depends of the length of the optical fiber.

Keywords: microwave photonics, multi-band frequency conversion, multi-phase shift, conversion efficiency

Procedia PDF Downloads 254
562 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm

Authors: Rashid Ahmed , John N. Avaritsiotis

Abstract:

Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.

Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis

Procedia PDF Downloads 451
561 Large-Scale Electroencephalogram Biometrics through Contrastive Learning

Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes

Abstract:

EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.

Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification

Procedia PDF Downloads 157
560 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 386
559 Identification of Factors Affecting Technical Efficiency Sugar Cane Farming in East Java

Authors: Noor Rizkiyah, Djoko Koestiono, Budi Setiawan, Nuhfil Hanani

Abstract:

This research aims to identify the factors that affect the production of sugar cane, the level of technical efficiency of farming sugar cane ratooning and factors that affect technical inefficiency. Research carried out in Malang of East Java with sampling in a non random sampling stratified proportioned and obtained 172 household sugar cane farmers who are classified based on the level of ratooning i.e. ratooning I 3-4 times ratoning, ratooning II 5-10 times ratoning as well as ratooning III > 10 times ratoning. The method used is the Stochastic Production Frontier approach MLE (maximum likelihood estimation). From the results obtained by analysis of the factors affecting the production of sugar cane farming land, namely ratooning fertilizer use ZA petroganic, use of fertilizer and seeds of embroidery and labor. While the average level of sugar cane farmers ratooning efficiency of 0.78 and categorized yet efficient technically. For the factors that influence the technical inefficiency i.e. age, number of dependents and the frequency of family ratooning. Though not yet technically efficient but sugar cane farmers cultivate cultivation remains ratooning. But if it is done repeatedly ratooning will result in a decrease in the production of sugar cane. Whereas the results of the analysis of farming level of feasibility or RC ratooning sugar cane ratio of 1.15 so worth trying to accomplish. Thus with increased technology and combining the use of inputs is an attempt to let the technical efficiency can be achieved so that the more worthy to be organised.

Keywords: technical efficiency, production, sugarcane, frontier

Procedia PDF Downloads 172
558 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms

Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen

Abstract:

This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.

Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control

Procedia PDF Downloads 229
557 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 524
556 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 189
555 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 89
554 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification

Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui

Abstract:

The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.

Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor

Procedia PDF Downloads 143
553 Geographic Information System for Simulating Air Traffic By Applying Different Multi-Radar Positioning Techniques

Authors: Amara Rafik, Mostefa Belhadj Aissa

Abstract:

Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.

Keywords: ATM, GIS, radar data, simulation

Procedia PDF Downloads 118
552 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 132
551 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development

Authors: Jiahui Yang, John Quigley, Lesley Walls

Abstract:

In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.

Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management

Procedia PDF Downloads 288
550 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis

Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba

Abstract:

In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.

Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece

Procedia PDF Downloads 273
549 Focusing of Technology Monitoring Activities Using Indicators

Authors: Günther Schuh, Christina König, Toni Drescher

Abstract:

One of the key factors for the competitiveness and market success of technology-driven companies is the timely provision of information about emerging technologies, changes in existing technologies, as well as relevant related changes in the market's structures and participants. Therefore, many companies conduct technology intelligence (TI) activities to ensure an early identification of appropriate technologies and other (weak) signals. One base activity of TI is technology monitoring, which is defined as the systematic tracking of developments within a specified topic of interest as well as related trends over a long period of time. Due to the very large number of dynamically changing parameters within the technological and the market environment of a company as well as their possible interdependencies, it is necessary to focus technology monitoring on specific indicators or other criteria, which are able to point out technological developments and market changes. In addition to the execution of a literature review on existing approaches, which mainly propose patent-based indicators, it is examined in this paper whether indicator systems from other branches such as risk management or economic research could be transferred to technology monitoring in order to enable an efficient and focused technology monitoring for companies.

Keywords: technology forecasting, technology indicator, technology intelligence, technology management, technology monitoring

Procedia PDF Downloads 471
548 Artificial Generation of Visual Evoked Potential to Enhance Visual Ability

Authors: A. Vani, M. N. Mamatha

Abstract:

Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient. 

Keywords: BioMEMS, neuro-prosthetic, openvibe, visual evoked potential

Procedia PDF Downloads 315
547 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.

Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length

Procedia PDF Downloads 178
546 Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current

Authors: Hyungil Chae

Abstract:

This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device).

Keywords: chopper stabilization, Hall-effect sensor, pulse width modulation, spinning current

Procedia PDF Downloads 484
545 The Effects of Gender and Socioeconomic Status on Academic Motivation: The Case of Lithuania

Authors: Ausra Turcinskaite-Balciuniene, Jonas Balciunas, Gediminas Merkys

Abstract:

The problematic of gender and socioeconomic status biased differences in academic motivation patterns is discussed. Gender identity is understood according to symbolic interactionism perspective: as a result of reflected appraisals, social comparisons, self-attributions, and identifications, shaped by social environment and family context. The effects of socioeconomic status on academic motivation are conceptualized according to Bourdieu’s habitus concept, reflecting the role of unconscious and internalized cultural signals, proper to low and high socioeconomic status family contexts. Since families differ by various socioeconomic features, the hypothesis about possible impact of parents’ socioeconomic status on their children’s academic motivation interfering with gender socialization effects is held. The survey, aiming to seize gender differences in academic motivation and self-recorded improvement-oriented efforts as a result of socialization processes operating in the families of low and high socioeconomic status, was designed. The results of Lithuanian higher education students’ survey are presented and discussed.

Keywords: academic motivation, gender, socialization, socioeconomic status

Procedia PDF Downloads 396
544 Using Cyclic Structure to Improve Inference on Network Community Structure

Authors: Behnaz Moradijamei, Michael Higgins

Abstract:

Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.

Keywords: hypothesis testing, RNBRW, network inference, community structure

Procedia PDF Downloads 150
543 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 283
542 A Supply Chain Traceability Improvement Using RFID

Authors: Yaser Miaji, Mohammad Sabbagh

Abstract:

Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries.

Keywords: supply chain, RFID, tractability, radio frequency identification

Procedia PDF Downloads 488
541 Co-Seismic Gravity Gradient Changes of the 2006–2007 Great Earthquakes in the Central Kuril Islands from GRACE Observations

Authors: Armin Rahimi

Abstract:

In this study, we reveal co-seismic signals of two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of the gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore that preseismic activity can be better illustrated. We show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from − 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from − 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.

Keywords: GRACE observation, gravitational gradient changes, Kuril island earthquakes, PSGRN/PSCMP

Procedia PDF Downloads 276
540 The Strategic Entering Time of a Commerce Platform

Authors: Chia-li Wang

Abstract:

The surge of service and commerce platforms, such as e-commerce and internet-of-things, have rapidly changed our lives. How to avoid the congestion and get the job done in the platform is now a common problem that many people encounter every day. This requires platform users to make decisions about when to enter the platform. To that end, we investigate the strategic entering time of a simple platform containing random numbers of buyers and sellers of some item. Upon a trade, the buyer and the seller gain respective profits, yet they pay the cost of waiting in the platform. To maximize their expected payoffs from trading, both buyers and sellers can choose their entering times. This creates an interesting and practical framework of a game that is played among buyers, among sellers, and between them. That is, a strategy employed by a player is not only against players of its type but also a response to those of the other type, and, thus, a strategy profile is composed of strategies of buyers and sellers. The players' best response, the Nash equilibrium (NE) strategy profile, is derived by a pair of differential equations, which, in turn, are used to establish its existence and uniqueness. More importantly, its structure sheds valuable insights of how the entering strategy of one side (buyers or sellers) is affected by the entering behavior of the other side. These results provide a base for the study of dynamic pricing for stochastic demand-supply imbalances. Finally, comparisons between the social welfares (the sum of the payoffs incurred by individual participants) obtained by the optimal strategy and by the NE strategy are conducted for showing the efficiency loss relative to the socially optimal solution. That should help to manage the platform better.

Keywords: double-sided queue, non-cooperative game, nash equilibrium, price of anarchy

Procedia PDF Downloads 86
539 Electricity Load Modeling: An Application to Italian Market

Authors: Giovanni Masala, Stefania Marica

Abstract:

Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.

Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression

Procedia PDF Downloads 395
538 Impact of Hard Limited Clipping Crest Factor Reduction Technique on Bit Error Rate in OFDM Based Systems

Authors: Theodore Grosch, Felipe Koji Godinho Hoshino

Abstract:

In wireless communications, 3GPP LTE is one of the solutions to meet the greater transmission data rate demand. One issue inherent to this technology is the PAPR (Peak-to-Average Power Ratio) of OFDM (Orthogonal Frequency Division Multiplexing) modulation. This high PAPR affects the efficiency of power amplifiers. One approach to mitigate this effect is the Crest Factor Reduction (CFR) technique. In this work, we simulate the impact of Hard Limited Clipping Crest Factor Reduction technique on BER (Bit Error Rate) in OFDM based Systems. In general, the results showed that CFR has more effects on higher digital modulation schemes, as expected. More importantly, we show the worst-case degradation due to CFR on QPSK, 16QAM, and 64QAM signals in a linear system. For example, hard clipping of 9 dB results in a 2 dB increase in signal to noise energy at a 1% BER for 64-QAM modulation.

Keywords: bit error rate, crest factor reduction, OFDM, physical layer simulation

Procedia PDF Downloads 366