Search results for: patch-based similarity metric
87 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose
Authors: Mariamawit T. Belete
Abstract:
Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.Keywords: sorghum anthracnose, data mining, case based reasoning, integration
Procedia PDF Downloads 8286 Structural Investigation of the GAF Domain Protein BPSL2418 from Burkholderia pseudomallei
Authors: Mona G. Alharbi
Abstract:
A new family of methionine-sulfoxide reductase (Msr) was recently discovered and was named free methionine sulfoxide reductase (fRMsr). This family includes enzymes with a reductase activity toward the free R isomer of a methionine sulfoxide substrate. The fRMsrs have a GAF domain topology, a domain, which was previously identified as having in some cases a cyclic nucleotide phosphodiesterase activity. The classification of fRMsrs as GAF domains revealed a new function can be added to the GAF domain family. Interestingly the four members identified in the fRMsr family share the GAF domain structure and the presence of three conserved cysteines in the active site with free R methionine sulfoxide substrate specificity. This thesis presents the crystal structures of reduced, free Met-SO substrate-bound and MES-bound forms of a new fRMsr from Burkholderia pseudomallei (BPSL2418). BPSL2418 was cloned, overexpressed and purified to enable protein crystallization. The crystallization trials for reduced, Met-SO-bound and MES-bound forms of BPSL2418 were prepared and reasonable crystals of each form were produced. The crystal structures of BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced were solved at 1.18, 1.4 and 2.0Å, respectively by molecular replacement. The BPSL2418MES crystal belongs to space group P 21 21 21 while BPSL2418Met-SO and BPSL2418Reduced crystals belong to space group P 1 21 1. All three forms share the GAF domain structure of six antiparallel β-strands and four α-helices with connecting loops. The antiparallel β-strands (β1, β2, β5 and β6) are located in the center of the BPSL2418 structure flanked on one side by a three α-helices (α1, α2 and α4) and on the other side by a (loop1, β3, loop2, α3, β4 loop4) unit where loop4 forms a capping flap and covers the active site. The structural comparison of the three forms of BPSL2418 indicates that the catalytically important cysteine is CYS109, where the resolving cysteine is CYS75, which forms a disulfide bond with CYS109. They also suggest that the third conserved cysteine in the active site, CYS85, which is located in α3, is a non-essential cysteine for the catalytic function but it may play a role in the binding of the substrate. The structural comparison of the three forms reveals that conformational changes appear in the active site particularly involving loop4 and CYS109 during catalysis. The 3D structure of BPSL2418 shows strong structure similarity to fRMsrs enzymes, which further suggests that BPSL2418 acts as a free Met-R-SO reductase and shares the catalytic mechanism of fRMsr family.Keywords: Burkholderia pseudomallei, GAF domain protein, methionine sulfoxide reductase, protein crystallization
Procedia PDF Downloads 38685 Sample Preparation and Coring of Highly Friable and Heterogeneous Bonded Geomaterials
Authors: Mohammad Khoshini, Arman Khoshghalb, Meghdad Payan, Nasser Khalili
Abstract:
Most of the Earth’s crust surface rocks are technically categorized as weak rocks or weakly bonded geomaterials. Deeply weathered, weakly cemented, friable and easily erodible, they demonstrate complex material behaviour and understanding the overlooked mechanical behaviour of such materials is of particular importance in geotechnical engineering practice. Weakly bonded geomaterials are so susceptible to surface shear and moisture that conventional methods of core drilling fail to extract high-quality undisturbed samples out of them. Moreover, most of these geomaterials are of high heterogeneity rendering less reliable and feasible material characterization. In order to compensate for the unpredictability of the material response, either numerous experiments are needed to be conducted or large factors of safety must be implemented in the design process. However, none of these approaches is sustainable. In this study, a method for dry core drilling of such materials is introduced to take high-quality undisturbed core samples. By freezing the material at certain moisture content, a secondary structure is developed throughout the material which helps the whole structure to remain intact during the core drilling process. Moreover, to address the heterogeneity issue, the natural material was reconstructed artificially to obtain a homogeneous material with very high similarity to the natural one in both micro and macro-mechanical perspectives. The method is verified for both micro and macro scale. In terms of micro-scale analysis, using Scanning Electron Microscopy (SEM), pore spaces and inter-particle bonds were investigated and compared between natural and artificial materials. X-Ray Diffraction, XRD, analyses are also performed to control the chemical composition. At the macro scale, several uniaxial compressive strength tests, as well as triaxial tests, were performed to verify the similar mechanical response of the materials. A high level of agreement is observed between micro and macro results of natural and artificially bonded geomaterials. The proposed methods can play an important role to cut down the costs of experimental programs for material characterization and also to promote the accuracy of the numerical modellings based on the experimental results.Keywords: Artificial geomaterial, core drilling, macro-mechanical behavior, micro-scale, sample preparation, SEM photography, weakly bonded geomaterials
Procedia PDF Downloads 21684 Carbon Footprint Assessment and Application in Urban Planning and Geography
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
Human life, activity, and culture depend on the wider environment. Cities offer economic opportunities for goods and services, but cannot exist in environments without food, energy, and water supply. Technological innovation in energy supply and transport speeds up the expansion of urban areas and the physical separation from agricultural land. As a result, division of urban agricultural areas causes more energy demand for food and goods transport between the regions. As the energy resources are leaking all over the world, the impact on the environment crossing the boundaries of cities is also growing. While advances in energy and other technologies can reduce the environmental impact of consumption, there is still a gap between energy supply and demand by current technology, even in technically advanced countries. Therefore, reducing energy demand is more realistic than relying solely on the development of technology for sustainable development. The purpose of this study is to introduce the application of carbon footprint assessment in fields of urban planning and geography. In urban studies, carbon footprint has been assessed at different geographical scales, such as nation, city, region, household, and individual. Carbon footprint assessment for a nation and a city is available by using national or city level statistics of energy consumption categories. By means of carbon footprint calculation, it is possible to compare the ecological capacity and deficit among nations and cities. Carbon footprint also offers great insight on the geographical distribution of carbon intensity at a regional level in the agricultural field. The study shows the background of carbon footprint applications in urban planning and geography by case studies such as figuring out sustainable land-use measures in urban planning and geography. For micro level, footprint quiz or survey can be adapted to measure household and individual carbon footprint. For example, first case study collected carbon footprint data from the survey measuring home energy use and travel behavior of 2,064 households in eight cities in Gyeonggi-do, Korea. Second case study analyzed the effects of the net and gross population densities on carbon footprint of residents at an intra-urban scale in the capital city of Seoul, Korea. In this study, the individual carbon footprint of residents was calculated by converting the carbon intensities of home and travel fossil fuel use of respondents to the unit of metric ton of carbon dioxide (tCO₂) by multiplying the conversion factors equivalent to the carbon intensities of each energy source, such as electricity, natural gas, and gasoline. Carbon footprint is an important concept not only for reducing climate change but also for sustainable development. As seen in case studies carbon footprint may be measured and applied in various spatial units, including but not limited to countries and regions. These examples may provide new perspectives on carbon footprint application in planning and geography. In addition, additional concerns for consumption of food, goods, and services can be included in carbon footprint calculation in the area of urban planning and geography.Keywords: carbon footprint, case study, geography, urban planning
Procedia PDF Downloads 28983 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach
Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi
Abstract:
Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.
Procedia PDF Downloads 7382 Revealing the Sustainable Development Mechanism of Guilin Tourism Based on Driving Force/Pressure/State/Impact/Response Framework
Authors: Xiujing Chen, Thammananya Sakcharoen, Wilailuk Niyommaneerat
Abstract:
China's tourism industry is in a state of shock and recovery, although COVID-19 has brought great impact and challenges to the tourism industry. The theory of sustainable development originates from the contradiction of increasing awareness of environmental protection and the pursuit of economic interests. The sustainable development of tourism should consider social, economic, and environmental factors and develop tourism in a planned and targeted way from the overall situation. Guilin is one of the popular tourist cities in China. However, there exist several problems in Guilin tourism, such as low quality of scenic spot construction and low efficiency of tourism resource development. Due to its unwell-managed, Guilin's tourism industry is facing problems such as supply and demand crowding pressure for tourists. According to the data from 2009 to 2019, there is a change in the degree of sustainable development of Guilin tourism. This research aimed to evaluate the sustainable development state of Guilin tourism using the DPSIR (driving force/pressure/state/impact/response) framework and to provide suggestions and recommendations for sustainable development in Guilin. An improved TOPSIS (technology for order preference by similarity to an ideal solution) model based on the entropy weights relationship is applied to the quantitative analysis and to analyze the mechanisms of sustainable development of tourism in Guilin. The DPSIR framework organizes indicators into sub-five categories: of which twenty-eight indicators related to sustainable aspects of Guilin tourism are classified. The study analyzed and summarized the economic, social, and ecological effects generated by tourism development in Guilin from 2009-2019. The results show that the conversion rate of tourism development in Guilin into regional economic benefits is more efficient than that into social benefits. Thus, tourism development is an important driving force of Guilin's economic growth. In addition, the study also analyzed the static weights of 28 relevant indicators of sustainable development of tourism in Guilin and ranked them from largest to smallest. Then it was found that the economic and social factors related to tourism revenue occupy the highest weight, which means that the economic and social development of Guilin can influence the sustainable development of Guilin tourism to a greater extent. Therefore, there is a two-way causal relationship between tourism development and economic growth in Guilin. At the same time, ecological development-related indicators also have relatively large weights, so ecological and environmental resources also have a great influence on the sustainable development of Guilin tourism.Keywords: DPSIR framework, entropy weights analysis, sustainable development of tourism, TOPSIS analysis
Procedia PDF Downloads 10181 Cyclocoelids (Trematoda: Echinostomata) from Gadwall Mareca strepera in the South of the Russian Far East
Authors: Konstantin S. Vainutis, Mark E. Andreev, Anastasia N. Voronova, Mikhail Yu. Shchelkanov
Abstract:
Introduction: The trematodes from the family Cyclocoelidae (cyclocoelids) belong to the superfamily Echinostomatoidea infecting air sacs and trachea of wild birds. At present, the family Cyclocoelidae comprises nine valid genera in three subfamilies: Cyclocoelinae (type taxon), Haematotrephinae, and Typhlocoelinae. To our best knowledge, in this study, molecular genetic methods were used for the first time for studying cyclocoelids from the Russian Far East. Here we provide the data on the morphology and phylogeny of cyclocoelids from gadwall from the Russian Far East. The morphological and genetic data obtained for cyclocoelids indicated the necessity to revise the previously proposed classification within the family Cyclocoelidae. Objectives: The first objective was performing the morphological study of cyclocoelids found in M. strepera from the Russian Far East. The second objective is to reconstruct the phylogenetic relationships of the studied trematodes with other cyclocoelids using the 28S gene. Material and methods: During the field studies in the Khasansky district of the Primorsky region, 21 cyclocoelids were recovered from the air sacs of a single gadwall Mareca strepera. Seven samples of cyclocoelids were overstained in alum carmine, dehydrated in a graded ethanol series, cleared in clove oil, and mounted in Canada balsam. Genomic DNA was extracted from four cyclocoelids using the alkaline lysis method HotShot. The 28S rDNA fragment was amplified using the forward primer Digl2 and the reverse primer 1500R. Results: According to morphological features (ovary intratesticular, forming a triangle with the testes), the studied worms belong to the subfamily Cyclocoelinae Stossich, 1902. In particular, the highest morphological similarity was observed in relation to the trematodes of the genus Cyclocoelum Brandes, 1892 – genital pores are pharyngeal. However, the genetic analysis has shown significant discrepancies between the trematodes studied regarding the genus Cyclocoelum. On the phylogenetic tree, these trematodes took the sister position in relation to the genus Morishitium (previously considered in the subfamily Szidatitrematinae). Conclusion: Based on the results of the morphological and genetic studies, cyclocoelids isolated from Mareca strepera are suggested to be described in the previously unknown genus and differentiated from the type genus Cyclocoelum of the type subfamily Cyclocoelinae. Considering the available molecular data, including described cyclocoelids, the family Cyclocoelidae comprises ten valid genera in the three subfamilies mentioned above.Keywords: new species, trematoda, phylogeny, cyclocoelidae
Procedia PDF Downloads 85380 Basics for Corruption Reduction and Fraud Prevention in Industrial/Humanitarian Organizations through Supplier Management in Supply Chain Systems
Authors: Ibrahim Burki
Abstract:
Unfortunately, all organizations (Industrial and Humanitarian/ Non-governmental organizations) are prone to fraud and corruption in their supply chain management routines. The reputational and financial fallout can be disastrous. With the growing number of companies using suppliers based in the local market has certainly increased the threat of fraud as well as corruption. There are various potential threats like, poor or non-existent record keeping, purchasing of lower quality goods at higher price, excessive entertainment of staff by suppliers, deviations in communications between procurement staff and suppliers, such as calls or text messaging to mobile phones, staff demanding extended periods of notice before they allow an audit to take place, inexperienced buyers and more. But despite all the above-mentioned threats, this research paper emphasize upon the effectiveness of well-maintained vendor/s records and sorting/filtration of vendor/s to cut down the possible threats of corruption and fraud. This exercise is applied in a humanitarian organization of Pakistan but it is applicable to whole South Asia region due to the similarity of culture and contexts. In that firm, there were more than 550 (five hundred and fifty) registered vendors. As during the disasters or emergency phases requirements are met on urgent basis thus, providing golden opportunities for the fake companies or for the brother/sister companies of the already registered companies to be involved in the tendering process without declaration or even under some different (new) company’s name. Therefore, a list of required documents (along with checklist) was developed and sent to all of the vendor(s) in the current database and based upon the receipt of the requested documents vendors were sorted out. Furthermore, these vendors were divided into active (meeting the entire set criterion) and non-active groups. This initial filtration stage allowed the firm to continue its work without a complete shutdown that is only vendors falling in the active group shall be allowed to participate in the tenders by the time whole process is completed. Likewise only those companies or firms meeting the set criterion (active category) shall be allowed to get registered in the future along with a dedicated filing system (soft and hard shall be maintained), and all of the companies/firms in the active group shall be physically verified (visited) by the Committee comprising of senior members of at least Finance department, Supply Chain (other than procurement) and Security department.Keywords: corruption reduction, fraud prevention, supplier management, industrial/humanitarian organizations
Procedia PDF Downloads 54079 Relations between the Internal Employment Conditions of International Organizations and the Characteristics of the National Civil Service
Authors: Renata Hrecska
Abstract:
This research seeks to fully examine the internal employment law of international organizations by comparing it with the characteristics of the national civil service. The aim of the research is to compare the legal system that has developed over many centuries and the relatively new internal staffing regulations to find out what solution schemes can help each other through mutual legal development in order to respond effectively to the social challenges of everyday life. Generally, the rules of civil service of any country or international entity have in common that they have, in their pragmatics inherently, the characteristic that makes them serving public interests. Though behind the common base there are many differences: there is the clear fragmentation of state regulation and the unity of organizational regulation. On the other hand, however, this difference disappears to some extent: the public service regulation of international organizations can be considered uniform until we examine it within, but not outside an organization. As soon as we compare the different organizations we may find many different solutions for staffing regulations. It is clear that the national civil service is a strong model for international organizations, but the question may be whether the staffing policy of international organizations can serve the national civil service as an example, too. In this respect, the easiest way to imagine a legislative environment would be to have a single comprehensive code, the general part of which is the Civil Service Act itself, and the specific part containing specific, necessarily differentiating rules for each layer of the civil service. Would it be advantageous to follow the footsteps of the leading international organizations, or is there any speciality in national level civil service that we cannot avoid during regulating processes? In addition to the above, the personal competencies of officials working in international organizations and public administrations also show a high degree of similarity, regardless of the type of employment. Thus, the whole public service system is characterized by the fundamental and special values that a person capable of holding a public office must be able to demonstrate, in some cases, even without special qualifications. It is also interesting how we can compare the two spheres of employment in light of the theory of Lawyer Louis Brandeis, a judge at the US Supreme Court, who formulated a complex theory of profession as distinguished from other occupations. From this point of view we can examine the continuous development of research and specialized knowledge at work; the community recognition and social status; that to what extent we can see a close-knit professional organization of altruistic philosophy; that how stability grows in the working conditions due to the stability of the profession; and that how the autonomy of the profession can prevail.Keywords: civil service, comparative law, international organizations, regulatory systems
Procedia PDF Downloads 13578 DNA Hypomethylating Agents Induced Histone Acetylation Changes in Leukemia
Authors: Sridhar A. Malkaram, Tamer E. Fandy
Abstract:
Purpose: 5-Azacytidine (5AC) and decitabine (DC) are DNA hypomethylating agents. We recently demonstrated that both drugs increase the enzymatic activity of the histone deacetylase enzyme SIRT6. Accordingly, we are comparing the changes H3K9 acetylation changes in the whole genome induced by both drugs using leukemia cells. Description of Methods & Materials: Mononuclear cells from the bone marrow of six de-identified naive acute myeloid leukemia (AML) patients were cultured with either 500 nM of DC or 5AC for 72 h followed by ChIP-Seq analysis using a ChIP-validated acetylated-H3K9 (H3K9ac) antibody. Chip-Seq libraries were prepared from treated and untreated cells using SMARTer ThruPLEX DNA- seq kit (Takara Bio, USA) according to the manufacturer’s instructions. Libraries were purified and size-selected with AMPure XP beads at 1:1 (v/v) ratio. All libraries were pooled prior to sequencing on an Illumina HiSeq 1500. The dual-indexed single-read Rapid Run was performed with 1x120 cycles at 5 pM final concentration of the library pool. Sequence reads with average Phred quality < 20, with length < 35bp, PCR duplicates, and those aligning to blacklisted regions of the genome were filtered out using Trim Galore v0.4.4 and cutadapt v1.18. Reads were aligned to the reference human genome (hg38) using Bowtie v2.3.4.1 in end-to-end alignment mode. H3K9ac enriched (peak) regions were identified using diffReps v1.55.4 software using input samples for background correction. The statistical significance of differential peak counts was assessed using a negative binomial test using all individuals as replicates. Data & Results: The data from the six patients showed significant (Padj<0.05) acetylation changes at 925 loci after 5AC treatment versus 182 loci after DC treatment. Both drugs induced H3K9 acetylation changes at different chromosomal regions, including promoters, coding exons, introns, and distal intergenic regions. Ten common genes showed H3K9 acetylation changes by both drugs. Approximately 84% of the genes showed an H3K9 acetylation decrease by 5AC versus 54% only by DC. Figures 1 and 2 show the heatmaps for the top 100 genes and the 99 genes showing H3K9 acetylation decrease after 5AC treatment and DC treatment, respectively. Conclusion: Despite the similarity in hypomethylating activity and chemical structure, the effect of both drugs on H3K9 acetylation change was significantly different. More changes in H3K9 acetylation were observed after 5 AC treatments compared to DC. The impact of these changes on gene expression and the clinical efficacy of these drugs requires further investigation.Keywords: DNA methylation, leukemia, decitabine, 5-Azacytidine, epigenetics
Procedia PDF Downloads 14977 Increase in the Shelf Life Anchovy (Engraulis ringens) from Flaying then Bleeding in a Sodium Citrate Solution
Authors: Santos Maza, Enzo Aldoradin, Carlos Pariona, Eliud Arpi, Maria Rosales
Abstract:
The objective of this study was to investigate the effect of flaying then bleeding anchovy (Engraulis ringens) immersed within a sodium citrate solution. Anchovy is a pelagic fish that readily deteriorates due to its high content of polyunsaturated fatty acids. As such, within the Peruvian food industry, the shelf life of frozen anchovy is explicitly 6 months, this short duration imparts a barrier to use for direct consumption human. Thus, almost all capture of anchovy by the fishing industry is eventually used in the production of fishmeal. We offer this an alternative to its typical production process in order to increase shelf life. In the present study, 100 kg of anchovies were captured and immediately mixed with ice on ship, maintaining a high quality sensory metric (e.g., with color blue in back) while still arriving for processing less than 2 h after capture. Anchovies with fat content of 3% were immediately flayed (i.e., reducing subcutaneous fat), beheaded, gutted and bled (i.e., removing hemoglobin) by immersion in water (Control) or in a solution of 2.5% sodium citrate (treatment), then subsequently frozen at -30 °C for 8 h in 2 kg batches. Subsequent glazing and storage at -25 °C for 14 months completed the experiments parameters. The peroxide value (PV), acidity (A), fatty acid profile (FAP), thiobarbituric acid reactive substances (TBARS), heme iron (HI), pH and sensory attributes of the samples were evaluated monthly. The results of the PV, TBARS, A, pH and sensory analyses displayed significant differences (p<0.05) between treatment and control sample; where the sodium citrate treated samples showed increased preservation features. Specifically, at the beginning of the study, flayed, beheaded, gutted and bled anchovies displayed low content of fat (1.5%) with moderate amount of PV, A and TBARS, and were not rejected by sensory analysis. HI values and FAP displayed varying behavior, however, results of HI did not reveal a decreasing trend. This result is indicative of the fact that levels of iron were maintained as HI and did not convert into no heme iron, which is known to be the primary catalyst of lipid oxidation in fish. According to the FAP results, the major quantity of fatty acid was of polyunsaturated fatty acid (PFA) followed by saturated fatty acid (SFA) and then monounsaturated fatty acid (MFA). According to sensory analysis, the shelf life of flayed, beheaded and gutted anchovy (control and treatment) was 14 months. This shelf life was reached at laboratory level because high quality anchovies were used and immediately flayed, beheaded, gutted, bled and frozen. Therefore, it is possible to maintain the shelf life of anchovies for a long time. Overall, this method displayed a large increase in shelf life relative to that commonly seen for anchovies in this industry. However, these results should be extrapolated at industrial scales to propose better processing conditions and improve the quality of anchovy for direct human consumption.Keywords: citrate sodium solution, heme iron, polyunsaturated fatty acids, shelf life of frozen anchovy
Procedia PDF Downloads 29876 Extraction of Urban Building Damage Using Spectral, Height and Corner Information
Authors: X. Wang
Abstract:
Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.Keywords: building damage, corner, earthquake, height, very high resolution (VHR)
Procedia PDF Downloads 21375 The Acquisition of Spanish L4 by Learners with Croatian L1, English L2 and Italian L3
Authors: Barbara Peric
Abstract:
The study of acquiring a third and additional language has garnered significant focus within second language acquisition (SLA) research. Initially, it was commonly viewed as merely an extension of second language acquisition (SLA). However, in the last two decades, numerous researchers have emphasized the need to recognize the unique characteristics of third language acquisition (TLA). This recognition is crucial for understanding the intricate cognitive processes that arise from the interaction of more than two linguistic systems in the learner's mind. This study investigates cross-linguistic influences in the acquisition of Spanish as a fourth language by students who have Croatian as a first language (L1). English as a second language (L2), and Italian as a third language (L3). Observational data suggests that influence or transfer of linguistic elements can arise not only from one's native language (L1) but also from non-native languages. This implies that, for individuals proficient in multiple languages, the native language doesn't consistently hold a superior position. Instead, it should be examined alongside other potential sources of linguistic transfer. Earlier studies have demonstrated that high proficiency in a second language can significantly impact cross-linguistic influences when acquiring a third and additional language. Among the extensively examined factors, the typological relationship stands out as one of the most scrutinized variables. The goal of the present study was to explore whether language typology and formal similarity or proficiency in the second language had a more significant impact on L4 acquisition. Participants in this study were third-year undergraduate students at Rochester Institute of Technology’s subsidiary in Croatia (RIT Croatia). All the participants had exclusively Croatian as L1, English as L2, Italian as L3 and were learning Spanish as L4 at the time of the study. All the participants had a high level of proficiency in English and low level of proficiency in Italian. Based on the error analysis the findings indicate that for some types of lexical errors such as coinage, language typology had a more significant impact and Italian language was the preferred source of transfer despite the law proficiency in that language. For some other types of lexical errors, such as calques, second language proficiency had a more significant impact, and English language was the preferred source of transfer. On the other hand, Croatian, Italian, and Spanish are more similar in the area of morphology due to higher degree of inflection compared to English and the strongest influence of the Croatian language was precisely in the area of morphology. The results emphasize the need to consider linguistic resemblances between the native language (L1) and the third and additional language as well as the learners' proficiency in the second language when developing successful teaching strategies for acquiring the third and additional language. These conclusions add to the expanding knowledge in the realm of Second Language Acquisition (SLA) and offer practical insights for language educators aiming to enhance the effectiveness of learning experiences in acquiring a third and additional language.Keywords: third and additional language acquisition, cross-linguistic influences, language proficiency, language typology
Procedia PDF Downloads 6174 Occipital Squama Convexity and Neurocranial Covariation in Extant Homo sapiens
Authors: Miranda E. Karban
Abstract:
A distinctive pattern of occipital squama convexity, known as the occipital bun or chignon, has traditionally been considered a derived Neandertal trait. However, some early modern and extant Homo sapiens share similar occipital bone morphology, showing pronounced internal and external occipital squama curvature and paralambdoidal flattening. It has been posited that these morphological patterns are homologous in the two groups, but this claim remains disputed. Many developmental hypotheses have been proposed, including assertions that the chignon represents a developmental response to a long and narrow cranial vault, a narrow or flexed basicranium, or a prognathic face. These claims, however, remain to be metrically quantified in a large subadult sample, and little is known about the feature’s developmental, functional, or evolutionary significance. This study assesses patterns of chignon development and covariation in a comparative sample of extant human growth study cephalograms. Cephalograms from a total of 549 European-derived North American subjects (286 male, 263 female) were scored on a 5-stage ranking system of chignon prominence. Occipital squama shape was found to exist along a continuum, with 34 subjects (6.19%) possessing defined chignons, and 54 subjects (9.84%) possessing very little occipital squama convexity. From this larger sample, those subjects represented by a complete radiographic series were selected for metric analysis. Measurements were collected from lateral and posteroanterior (PA) cephalograms of 26 subjects (16 male, 10 female), each represented at 3 longitudinal age groups. Age group 1 (range: 3.0-6.0 years) includes subjects during a period of rapid brain growth. Age group 2 (range: 8.0-9.5 years) includes subjects during a stage in which brain growth has largely ceased, but cranial and facial development continues. Age group 3 (range: 15.9-20.4 years) includes subjects at their adult stage. A total of 16 landmarks and 153 sliding semi-landmarks were digitized at each age point, and geometric morphometric analyses, including relative warps analysis and two-block partial least squares analysis, were conducted to study covariation patterns between midsagittal occipital bone shape and other aspects of craniofacial morphology. A convex occipital squama was found to covary significantly with a low, elongated neurocranial vault, and this pattern was found to exist from the youngest age group. Other tested patterns of covariation, including cranial and basicranial breadth, basicranial angle, midcoronal cranial vault shape, and facial prognathism, were not found to be significant at any age group. These results suggest that the chignon, at least in this sample, should not be considered an independent feature, but rather the result of developmental interactions relating to neurocranial elongation. While more work must be done to quantify chignon morphology in fossil subadults, this study finds no evidence to disprove the developmental homology of the feature in modern humans and Neandertals.Keywords: chignon, craniofacial covariation, human cranial development, longitudinal growth study, occipital bun
Procedia PDF Downloads 20273 The Effect of Chloride Dioxide and High Concentration of CO2 Gas Injection on the Quality and Shelf-Life for Exporting Strawberry 'Maehyang' in Modified Atmosphere Condition
Authors: Hyuk Sung Yoon, In-Lee Choi, Mohammad Zahirul Islam, Jun Pill Baek, Ho-Min Kang
Abstract:
The strawberry ‘Maehyang’ cultivated in South Korea has been increased to export to Southeast Asia. The degradation of quality often occurs in strawberries during short export period. Botrytis cinerea has been known to cause major damage to the export strawberries and the disease was caused during shipping and distribution. This study was conducted to find out the sterilized effect of chlorine dioxide(ClO2) gas and high concentration of CO2 gas injection for ‘Maehyang’ strawberry and it was packaged with oxygen transmission rate (OTR) films. The strawberry was harvested at 80% color changed stage and packaged with OTR film and perforated film (control). The treatments were a MAP used by with 20,000 cc·m-2·day·atm OTR film and gas injection in packages. The gas type of ClO2 and CO2 were injected into OTR film packages, and treatments were 6 mg/L ClO2, 15% CO2, and they were combined. The treated strawberries were stored at 3℃ for 30 days. Fresh weight loss rate was less than 1% in all OTR film packages but it was more than 15% in a perforated film treatment that showed severe deterioration of visual quality during storage. Carbon dioxide concentration within a package showed approximately 15% of the maximum CO2 concentration in all treatments except control until the 21st day, it was the tolerated range of maximum CO2 concentration of strawberry in recommended CA or MA conditions. But, it increased to almost 50% on the 30th day. Oxygen concentration showed a decrease down to approximately 0% in all treatments except control for 25 days. Ethylene concentration was shown to be steady until the 17th day, but it quickly increased on the 17th day and dropped down on the final storage day (30th day). All treatments did not show any significant differences in gas treatments. Firmness increased in CO2 (15%) and ClO2 (6mg/L) + CO2 (15%) treatments during storage. It might be the effect of high concentration CO2 known by reducing decay and cell wall degradation. The soluble solid decreased in all treatments during storage. These results were caused to use up the sugar by the increase of respiration during storage. The titratable acidity showed a similarity in all treatments. Incidence of fungi was 0% in CO2 (15%) and ClO2 (6mg/L)+ CO2 (15%), but was more than 20% in a perforated film treatment. Consequently, The result indicates that Chloride Dioxide(ClO2) and high concentration of CO2 inhibited fungi growth. Due to the fact that fresh weight loss rate and incidence of fungi were lower, the ClO2(6mg/L)+ CO2(15%) prove to be most efficient in sterilization. These results suggest that Chloride Dioxide (ClO2) and high concentration of CO2 gas injection treatments were an effective decontamination technique for improving the safety of strawberries.Keywords: chloride dioxide, high concentration of CO2, modified atmosphere condition, oxygen transmission rate films
Procedia PDF Downloads 33972 Structural and Biochemical Characterization of Red and Green Emitting Luciferase Enzymes
Authors: Wael M. Rabeh, Cesar Carrasco-Lopez, Juliana C. Ferreira, Pance Naumov
Abstract:
Bioluminescence, the emission of light from a biological process, is found in various living organisms including bacteria, fireflies, beetles, fungus and different marine organisms. Luciferase is an enzyme that catalyzes a two steps oxidation of luciferin in the presence of Mg2+ and ATP to produce oxyluciferin and releases energy in the form of light. The luciferase assay is used in biological research and clinical applications for in vivo imaging, cell proliferation, and protein folding and secretion analysis. The luciferase enzyme consists of two domains, a large N-terminal domain (1-436 residues) that is connected to a small C-terminal domain (440-544) by a flexible loop that functions as a hinge for opening and closing the active site. The two domains are separated by a large cleft housing the active site that closes after binding the substrates, luciferin and ATP. Even though all insect luciferases catalyze the same chemical reaction and share 50% to 90% sequence homology and high structural similarity, they emit light of different colors from green at 560nm to red at 640 nm. Currently, the majority of the structural and biochemical studies have been conducted on green-emitting firefly luciferases. To address the color emission mechanism, we expressed and purified two luciferase enzymes with blue-shifted green and red emission from indigenous Brazilian species Amydetes fanestratus and Phrixothrix, respectively. The two enzymes naturally emit light of different colors and they are an excellent system to study the color-emission mechanism of luciferases, as the current proposed mechanisms are based on mutagenesis studies. Using a vapor-diffusion method and a high-throughput approach, we crystallized and solved the crystal structure of both enzymes, at 1.7 Å and 3.1 Å resolution respectively, using X-ray crystallography. The free enzyme adopted two open conformations in the crystallographic unit cell that are different from the previously characterized firefly luciferase. The blue-shifted green luciferase crystalized as a monomer similar to other luciferases reported in literature, while the red luciferases crystalized as an octamer and was also purified as an octomer in solution. The octomer conformation is the first of its kind for any insect’s luciferase, which might be relate to the red color emission. Structurally designed mutations confirmed the importance of the transition between the open and close conformations in the fine-tuning of the color and the characterization of other interesting mutants is underway.Keywords: bioluminescence, enzymology, structural biology, x-ray crystallography
Procedia PDF Downloads 32671 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation
Authors: W. Meron Mebrahtu, R. Absi
Abstract:
Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.Keywords: accuracy, eddy viscosity, sewers, velocity profile
Procedia PDF Downloads 11270 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 16469 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics
Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee
Abstract:
Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru
Procedia PDF Downloads 8868 Inertial Spreading of Drop on Porous Surfaces
Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi
Abstract:
The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium
Procedia PDF Downloads 14067 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 22466 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 10465 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 11964 The Emerging Role of Cannabis as an Anti-Nociceptive Agent in the Treatment of Chronic Back Pain
Authors: Josiah Damisa, Michelle Louise Richardson, Morenike Adewuyi
Abstract:
Lower back pain is a significant cause of disability worldwide and associated with great implications in terms of the well-being of affected individuals and society as a whole due to its undeniable socio-economic impact. With its prevalence on the increase as a result of an aging global population, the need for novel forms of pain management is ever paramount. This review aims to provide further insight into current research regarding a role for the endocannabinoid signaling pathway as a target in the treatment of chronic pain, with particular emphasis on its potential use as part of the treatment of lower back pain. Potential advantages and limitations of cannabis-based medicines over other forms of analgesia currently licensed for medical use are discussed in addition to areas that require ongoing consideration and research. To evaluate the efficacy of cannabis-based medicines in chronic pain, studies pertaining to the role of medical cannabis in chronic disease were reviewed. Standard searches of PubMed, Google Scholar and Web of Science databases were undertaken with peer-reviewed journal articles reviewed based on the indication for pain management, cannabis treatment modality used and study outcomes. Multiple studies suggest an emerging role for cannabis-based medicines as therapeutic agents in the treatment of chronic back pain. A potential synergistic effect has also been purported if these medicines are co-administered with opiate analgesia due to the similarity of the opiate and endocannabinoid signaling pathways. However, whilst recent changes to legislation in the United Kingdom mean that cannabis is now licensed for medicinal use on NHS prescription for a number of chronic health conditions, concerns remain as to the efficacy and safety of cannabis-based medicines. Research is lacking into both their side effect profiles and the long-term effects of cannabis use. Legal and ethical considerations to the use of these products in standardized medical practice also persist due to the notoriety of cannabis as a drug of abuse. Despite this, cannabis is beginning to gain traction as an alternative or even complementary drug to opiates, with some preclinical studies showing opiate-sparing effects. Whilst there is a paucity of clinical trials in this field, there is scope for cannabinoids to be successful anti-nociceptive agents in managing chronic back pain. The ultimate aim would be to utilize cannabis-based medicines as alternative or complementary therapies, thereby reducing opiate over-reliance and providing hope to individuals who have exhausted all other forms of standard treatment.Keywords: endocannabinoids, cannabis-based medicines, chronic pain, lower back pain
Procedia PDF Downloads 20063 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications
Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino
Abstract:
The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses
Procedia PDF Downloads 18162 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers
Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang
Abstract:
In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.Keywords: centrality, patent coupling network, patent influence, social network analysis
Procedia PDF Downloads 5461 Gender Policies and Political Culture: An Examination of the Canadian Context
Authors: Chantal Maille
Abstract:
This paper is about gender-based analysis plus (GBA+), an intersectional gender policy used in Canada to assess the impact of policies and programs for men and women from different origins. It looks at Canada’s political culture to explain the nature of its gender policies. GBA+ is defined as an analysis method that makes it possible to assess the eventual effects of policies, programs, services, and other initiatives on women and men of different backgrounds because it takes account of gender and other identity factors. The ‘plus’ in the name serves to emphasize that GBA+ goes beyond gender to include an examination of a wide range of other related identity factors, such as age, education, language, geography, culture, and income. The point of departure for GBA+ is that women and men are not homogeneous populations and gender is never the only factor in defining a person’s identity; rather, it interacts with factors such as ethnic origin, age, disabilities, where the person lives, and other aspects of individual and social identity. GBA+ takes account of these factors and thus challenges notions of similarity or homogeneity within populations of women and men. Comparative analysis based on sex and gender may serve as a gateway to studying a given question, but women, men, girls, and boys do not form homogeneous populations. In the 1990s, intersectionality emerged as a new feminist framework. The popularity of the notion of intersectionality corresponds to a time when, in hindsight, the damage done to minoritized groups by state disengagement policies in concert with global intensification of neoliberalism, and vice versa, can be measured. Although GBA+ constitutes a form of intersectionalization of GBA, it must be understood that the two frameworks do not spring from a similar logic. Intersectionality first emerged as a dynamic analysis of differences between women that was oriented toward change and social justice, whereas GBA is a technique developed by state feminists in a context of analyzing governmental policies and aiming to promote equality between men and women. It can nevertheless be assumed that there might be interest in such a policy and program analysis grid that is decentred from gender and offers enough flexibility to take account of a group of inequalities. In terms of methodology, the research is supported by a qualitative analysis of governmental documents about GBA+ in Canada. Research findings identify links between Canadian gender policies and its political culture. In Canada, diversity has been taken into account as an element at the basis of gendered analysis of public policies since 1995. The GBA+ adopted by the government of Canada conveys an opening to intersectionality and a sensitivity to multiculturalism. The Canadian Multiculturalism Act, adopted 1988, proposes to recognize the fact that multiculturalism is a fundamental characteristic of the Canadian identity and heritage and constitutes an invaluable resource for the future of the country. In conclusion, Canada’s distinct political culture can be associated with the specific nature of its gender policies.Keywords: Canada, gender-based analysis, gender policies, political culture
Procedia PDF Downloads 22460 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 5059 Learning to Translate by Learning to Communicate to an Entailment Classifier
Authors: Szymon Rutkowski, Tomasz Korbak
Abstract:
We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning
Procedia PDF Downloads 12858 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 76