Search results for: temporal reasoning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1424

Search results for: temporal reasoning

1364 Topic Prominence and Temporal Encoding in Mandarin Chinese

Authors: Tzu-I Chiang

Abstract:

A central question for finite-nonfinite distinction in Mandarin Chinese is how does Mandarin encode temporal information without the grammatical contrast between past and present tense. Moreover, how do L2 learners of Mandarin whose native language is English and whose L1 system has tense morphology, acquire the temporal encoding system in L2 Mandarin? The current study reports preliminary findings on the relationship between topic prominence and the temporal encoding in L1 and L2 Chinese. Oral narratives data from 30 natives and learners of Mandarin Chinese were collected via a film-retell task. In terms of coding, predicates collected from the narratives were transcribed and then coded based on four major verb types: n-degree Statives (quality-STA), point-scale Statives (status-STA), n-atom EVENT (ACT), and point EVENT (resultative-ACT). How native speakers and non-native speakers started retelling the story was calculated. Results of the study show that native speakers of Chinese tend to express Topic Time (TT) syntactically at the topic position; whereas L2 learners of Chinese across levels rely mainly on the default time encoded in the event types. Moreover, as the proficiency level of the learner increases, learners’ appropriate use of the event predicates increased, which supports the argument that L2 development of temporal encoding is affected by lexical aspect.

Keywords: topic prominence, temporal encoding, lexical aspect, L2 acquisition

Procedia PDF Downloads 202
1363 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy

Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh

Abstract:

Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.

Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography

Procedia PDF Downloads 157
1362 Spatial and Temporal Analysis of Violent Crime in Washington, DC

Authors: Pallavi Roe

Abstract:

Violent crime is a significant public safety concern in urban areas across the United States, and Washington, DC, is no exception. This research discusses the prevalence and types of crime, particularly violent crime, in Washington, DC, along with the factors contributing to the high rate of violent crime in the city, including poverty, inequality, access to guns, and racial disparities. The organizations working towards ensuring safety in neighborhoods are also listed. The proposal to perform spatial and temporal analysis on violent crime and the use of guns in crime analysis is presented to identify patterns and trends to inform evidence-based interventions to reduce violent crime and improve public safety in Washington, DC. The stakeholders for crime analysis are also discussed, including law enforcement agencies, prosecutors, judges, policymakers, and the public. The anticipated result of the spatial and temporal analysis is to provide stakeholders with valuable information to make informed decisions about preventing and responding to violent crimes.

Keywords: crime analysis, spatial analysis, temporal analysis, violent crime

Procedia PDF Downloads 328
1361 Explanation and Temporality in International Relations

Authors: Alasdair Stanton

Abstract:

What makes for a good explanation? Twenty years after Wendt’s important treatment of constitution and causation, non-causal explanations (sometimes referred to as ‘understanding’, or ‘descriptive inference’) have become, if not mainstream, at least accepted within International Relations. This article proceeds in two parts: firstly, it examines closely Wendt’s constitutional claims, and while it agrees there is a difference between causal and constitutional, rejects the view that constitutional explanations lack temporality. In fact, this author concludes that a constitutional argument is only possible if it relies upon a more foundational, causal argument. Secondly, through theoretical analysis of the constitutional argument, this research seeks to delineate temporal and non-temporal ways of explaining within International Relations. This article concludes that while the constitutional explanation, like other logical arguments, including comparative, and counter-factual, are not truly non-causal explanations, they are not bound as tightly to the ‘real world’ as temporal arguments such as cause-effect, process tracing, or even interpretivist accounts. However, like mathematical models, non-temporal arguments should aim for empirical testability as well as internal consistency. This work aims to give clear theoretical grounding to those authors using non-temporal arguments, but also to encourage them, and their positivist critics, to engage in thoroughgoing empirical tests.

Keywords: causal explanation, constitutional understanding, empirical, temporality

Procedia PDF Downloads 196
1360 Localization of Frontal and Temporal Speech Areas in Brain Tumor Patients by Their Structural Connections with Probabilistic Tractography

Authors: B.Shukir, H.Woo, P.Barzo, D.Kis

Abstract:

Preoperative brain mapping in tumors involving the speech areas has an important role to reduce surgical risks. Functional magnetic resonance imaging (fMRI) is the gold standard method to localize cortical speech areas preoperatively, but its availability in clinical routine is difficult. Diffusion MRI based probabilistic tractography is available in head MRI. It’s used to segment cortical subregions by their structural connectivity. In our study, we used probabilistic tractography to localize the frontal and temporal cortical speech areas. 15 patients with left frontal tumor were enrolled to our study. Speech fMRI and diffusion MRI acquired preoperatively. The standard automated anatomical labelling atlas 3 (AAL3) cortical atlas used to define 76 left frontal and 118 left temporal potential speech areas. 4 types of tractography were run according to the structural connection of these regions to the left arcuate fascicle (FA) to localize those cortical areas which have speech functions: 1, frontal through FA; 2, frontal with FA; 3, temporal to FA; 4, temporal with FA connections were determined. Thresholds of 1%, 5%, 10% and 15% applied. At each level, the number of affected frontal and temporal regions by fMRI and tractography were defined, the sensitivity and specificity were calculated. At the level of 1% threshold showed the best results. Sensitivity was 61,631,4% and 67,1523,12%, specificity was 87,210,4% and 75,611,37% for frontal and temporal regions, respectively. From our study, we conclude that probabilistic tractography is a reliable preoperative technique to localize cortical speech areas. However, its results are not feasible that the neurosurgeon rely on during the operation.

Keywords: brain mapping, brain tumor, fMRI, probabilistic tractography

Procedia PDF Downloads 166
1359 Social Studies Teachers Experiences in Teaching Spatial Thinking in Social Studies Classrooms in Kuwait: Exploratory Study

Authors: Huda Alazmi

Abstract:

Social studies educational research has, so far, devoted very little attention towards spatial thinking in classroom teaching. To help address such paucity, this study explores the spatial thinking instructional experiences of middle school social studies teachers in Kuwait. The goal is to learn their teaching practices and assess teacher understanding for the spatial thinking concept to enable future improvements. Using a qualitative study approach, the researcher conducted semi-structured interviews to examine the relevant experiences of 14 social studies teachers. The findings revealed three major themes: (1) concepts of space, (2) tools of representation, and (3) spatial reasoning. These themes illustrated how social studies teachers focus predominantly upon simple concepts of space, using multiple tools of representation, but avoid addressing critical spatial reasoning. The findings help explain the current situation while identifying weaker areas for further analysis and improvement.

Keywords: spatial thinking, concepts of space, spatial representation, spatial reasoning

Procedia PDF Downloads 79
1358 Public Economic Efficiency and Case-Based Reasoning: A Theoretical Framework to Police Performance

Authors: Javier Parra-Domínguez, Juan Manuel Corchado

Abstract:

At present, public efficiency is a concept that intends to maximize return on public investment focus on minimizing the use of resources and maximizing the outputs. The concept takes into account statistical criteria drawn up according to techniques such as DEA (Data Envelopment Analysis). The purpose of the current work is to consider, more precisely, the theoretical application of CBR (Case-Based Reasoning) from economics and computer science, as a preliminary step to improving the efficiency of law enforcement agencies (public sector). With the aim of increasing the efficiency of the public sector, we have entered into a phase whose main objective is the implementation of new technologies. Our main conclusion is that the application of computer techniques, such as CBR, has become key to the efficiency of the public sector, which continues to require economic valuation based on methodologies such as DEA. As a theoretical result and conclusion, the incorporation of CBR systems will reduce the number of inputs and increase, theoretically, the number of outputs generated based on previous computer knowledge.

Keywords: case-based reasoning, knowledge, police, public efficiency

Procedia PDF Downloads 137
1357 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 262
1356 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation

Authors: Bubai Maji, Monorama Swain

Abstract:

Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.

Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition

Procedia PDF Downloads 114
1355 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis

Authors: Sofia Barbosa, Mariana Pinto, José António Almeida, Edgar Carvalho, Catarina Diamantino

Abstract:

The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps.

Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends

Procedia PDF Downloads 236
1354 Temporal Variation of Reference Evapotranspiration in Central Anatolia Region, Turkey and Meteorological Drought Analysis via Standardized Precipitation Evapotranspiration Index Method

Authors: Alper Serdar Anli

Abstract:

Analysis of temporal variation of reference evapotranspiration (ET0) is important in arid and semi-arid regions where water resources are limited. In this study, temporal variation of reference evapotranspiration (ET0) and meteorological drought analysis through SPEI (Standardized Precipitation Evapotranspiration Index) method have been carried out in provinces of Central Anatolia Region, Turkey. Reference evapotranspiration of concerning provinces in the region has been estimated using Penman-Monteith method and one calendar year has been split up four periods as r1, r2, r3 and r4. Temporal variation of reference evapotranspiration according to four periods has been analyzed through parametric Dickey-Fuller test and non-parametric Mann-Whitney U test. As a result, significant increasing trends for reference evapotranspiration have been detected and according to SPEI method used for estimating meteorological drought in provinces, mild drought has been experienced in general, and however there have been also a significant amount of events where moderate and severely droughts occurred.

Keywords: central Anatolia region, drought index, Penman-Monteith, reference evapotranspiration, temporal variation

Procedia PDF Downloads 313
1353 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models

Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton

Abstract:

Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.

Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets

Procedia PDF Downloads 429
1352 Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids

Authors: Rajani S. Pujar, Pandurangarao N. Kulkarni

Abstract:

Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech.

Keywords: MOS, PESQ, spectral subtraction, temporal splitting, wiener filter

Procedia PDF Downloads 328
1351 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory

Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino

Abstract:

In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.

Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler

Procedia PDF Downloads 345
1350 Superficial Temporal Artery Pseudoaneurysm Post Blepharoplasty: Case Report

Authors: Asaad Alhabsi, Alyaqdan Algafri

Abstract:

Aim: Reporting 83 years old man with history of left upper eyelid swelling post 4-lids blepharoplasty diagnosed based on clinical presentation and Radiological imaging with pseudoaneurysm of frontal branch of Superficial Temporal Artery post blepharoplasty. METHODS: 83 years old who presented to a Tertiary ophthalmic center with painless left upper eyelids swelling for 2 months post 4-lids blepharoplasty. Left subcutaneous, sub-brow lesion, in the supertemporal pre-septal area, large mass found and excised surgically. Then he developed recurrent larger mass twice first time treated with aspiration of blood, second time diagnosed with superficial temporal artery (STA) pseudoaneurysm of frontal branch treated with endovascular embolization. RESULTS: Pseudoaneurysm of superficial temporal artery (STA) is a rare, presenting usual post head or face trauma .literature reported few cases of such conditions post operatively, and no reported cases post blepharoplasty. CONCLUSIONS: Surgical intervention is the gold standard of treatment either directly by dissecting the aneurysmal sac and ligate both ends, or endovascular method of injecting thrombin or embolization which was done in this patient by interventional radiologist.

Keywords: superficial temporal artery, pseudoaneurysm, blepharoplasty, Oculoplasty

Procedia PDF Downloads 77
1349 Argumentation Frameworks and Theories of Judging

Authors: Sonia Anand Knowlton

Abstract:

With the rise of artificial intelligence, computer science is becoming increasingly integrated in virtually every area of life. Of course, the law is no exception. Through argumentation frameworks (AFs), computer scientists have used abstract algebra to structure the legal reasoning process in a way that allows conclusions to be drawn from a formalized system of arguments. In AFs, arguments compete against each other for logical success and are related to one another through the binary operation of the attack. The prevailing arguments make up the preferred extension of the given argumentation framework, telling us what set of arguments must be accepted from a logical standpoint. There have been several developments of AFs since its original conception in the early 90’s in efforts to make them more aligned with the human reasoning process. Generally, these developments have sought to add nuance to the factors that influence the logical success of competing arguments (e.g., giving an argument more logical strength based on the underlying value it promotes). The most cogent development was that of the Extended Argumentation Framework (EAF), in which attacks can themselves be attacked by other arguments, and the promotion of different competing values can be formalized within the system. This article applies the logical structure of EAFs to current theoretical understandings of judicial reasoning to contribute to theories of judging and to the evolution of AFs simultaneously. The argument is that the main limitation of EAFs, when applied to judicial reasoning, is that they require judges to themselves assign values to different arguments and then lexically order these values to determine the given framework’s preferred extension. Drawing on John Rawls’ Theory of Justice, the examination that follows is whether values are lexical and commensurable to this extent. The analysis that follows then suggests a potential extension of the EAF system with an approach that formalizes different “planes of attack” for competing arguments that promote lexically ordered values. This article concludes with a summary of how these insights contribute to theories of judging and of legal reasoning more broadly, specifically in indeterminate cases where judges must turn to value-based approaches.

Keywords: computer science, mathematics, law, legal theory, judging

Procedia PDF Downloads 60
1348 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance

Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass

Abstract:

For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.

Keywords: temporal differencing, video summarization, histogram differencing, sum conditional variance

Procedia PDF Downloads 349
1347 A Qualitative Case Study Exploring Zambian Mathematics Teachers' Content Knowledge of Functions

Authors: Priestly Malambo, Sonja Van Putten, Hanlie Botha, Gerrit Stols

Abstract:

The relevance of what is content is taught in tertiary teacher training has long been in question. This study attempts to understand how advanced mathematics courses equip student teachers to teach functions at secondary school level. This paper reports on an investigation that was conducted in an African university, where preservice teachers were purposefully selected for participation in individual semi-structured interviews after completing a test on functions as taught at secondary school. They were asked to justify their reasoning in the test and to explain functions in a way that might bring about understanding of the topic in someone who did not know how functions work. These were final year preservice mathematics teachers who had studied advanced mathematics courses for three years. More than 50% of the students were not able to explain concepts or to justify their reasoning about secondary school functions in a coherent way. The results of this study suggest that the study of advanced mathematics does not automatically enable students to teach secondary school functions, and that, although these students were able to do advanced mathematics, they were unable to explain the working of functions in a way that would allow them to teach this topic successfully.

Keywords: secondary school, mathematical reasoning, student-teachers, functions

Procedia PDF Downloads 255
1346 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices

Authors: Mst Ilme Faridatul, Bo Wu

Abstract:

Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.

Keywords: land cover, mapping, multi-temporal, spectral indices

Procedia PDF Downloads 153
1345 Robot Spatial Reasoning via 3D Models

Authors: John Allard, Alex Rich, Iris Aguilar, Zachary Dodds

Abstract:

With this paper we present several experiences deploying novel, low-cost resources for computing with 3D spatial models. Certainly, computing with 3D models undergirds some of our field’s most important contributions to the human experience. Most often, those are contrived artifacts. This work extends that tradition by focusing on novel resources that deliver uncontrived models of a system’s current surroundings. Atop this new capability, we present several projects investigating the student-accessibility of the computational tools for reasoning about the 3D space around us. We conclude that, with current scaffolding, real-world 3D models are now an accessible and viable foundation for creative computational work.

Keywords: 3D vision, matterport model, real-world 3D models, mathematical and computational methods

Procedia PDF Downloads 537
1344 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 374
1343 Serial Position Curves under Compressively Expanding and Contracting Schedules of Presentation

Authors: Priya Varma, Denis John McKeown

Abstract:

Psychological time, unlike physical time, is believed to be ‘compressive’ in the sense that the mental representations of a series of events may be internally arranged with ever decreasing inter-event spacing (looking back from the most recently encoded event). If this is true, the record within immediate memory of recent events is severely temporally distorted. Although this notion of temporal distortion of the memory record is captured within some theoretical accounts of human forgetting, notably temporal distinctiveness accounts, the way in which the fundamental nature of the distortion underpins memory and forgetting broadly is barely recognised or at least directly investigated. Our intention here was to manipulate the spacing of items for recall in order to ‘reverse’ this supposed natural compression within the encoding of the items. In Experiment 1 three schedules of presentation (expanding, contracting and fixed irregular temporal spacing) were created using logarithmic spacing of the words for both free and serial recall conditions. The results of recall of lists of 7 words showed statistically significant benefits of temporal isolation, and more excitingly the contracting word series (which we may think of as reversing the natural compression within the mental representation of the word list) showed best performance. Experiment 2 tested for effects of active verbal rehearsal in the recall task; this reduced but did not remove the benefits of our temporal scheduling manipulation. Finally, a third experiment used the same design but with Chinese characters as memoranda, in a further attempt to subvert possible verbal maintenance of items. One change to the design here was to introduce a probe item following the sequence of items and record response times to this probe. Together the outcomes of the experiments broadly support the notion of temporal compression within immediate memory.

Keywords: memory, serial position curves, temporal isolation, temporal schedules

Procedia PDF Downloads 218
1342 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
1341 Toward a Characteristic Optimal Power Flow Model for Temporal Constraints

Authors: Zongjie Wang, Zhizhong Guo

Abstract:

While the regular optimal power flow model focuses on a single time scan, the optimization of power systems is typically intended for a time duration with respect to a desired objective function. In this paper, a temporal optimal power flow model for a time period is proposed. To reduce the computation burden needed for calculating temporal optimal power flow, a characteristic optimal power flow model is proposed, which employs different characteristic load patterns to represent the objective function and security constraints. A numerical method based on the interior point method is also proposed for solving the characteristic optimal power flow model. Both the temporal optimal power flow model and characteristic optimal power flow model can improve the systems’ desired objective function for the entire time period. Numerical studies are conducted on the IEEE 14 and 118-bus test systems to demonstrate the effectiveness of the proposed characteristic optimal power flow model.

Keywords: optimal power flow, time period, security, economy

Procedia PDF Downloads 452
1340 Spatial and Temporal Variability of Fog Over the Indo-Gangetic Plains, India

Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva

Abstract:

The aim of the paper is to analyze the characteristics of winter fog in terms of its trend and spatial-temporal variability over Indo-Gangetic plains. The study reveals that during last four and half decades (1971-2015), an alarming increasing trend in fog frequency has been observed during the winter months of December and January over the study area. The frequency of fog has increased by 118.4% during the peak winter months of December and January. It has also been observed that on an average central part of IGP has 66.29% fog days followed by west IGP with 41.94% fog days. Further, Empirical Orthogonal Function (EOF) decomposition and Mann-Kendall variation analysis are used to analyze the spatial and temporal patterns of winter fog. The findings have significant implications for the further research of fog over IGP and formulate robust strategies to adapt the fog variability and mitigate its effects. The decision by Delhi Government to implement odd-even scheme to restrict the use of private vehicles in order to reduce pollution and improve quality of air may result in increasing the alarming increasing trend of fog over Delhi and its surrounding areas regions of IGP.

Keywords: fog, climatology, spatial variability, temporal variability

Procedia PDF Downloads 347
1339 The Potential Benefits of Multimedia Information Representation in Enhancing Students’ Critical Thinking and History Reasoning

Authors: Ang Ling Weay, Mona Masood

Abstract:

This paper discusses the potential benefits of an interactive multimedia information representation in enhancing students’ critical thinking aligned with history reasoning in learning history between Secondary School students in Malaysia. Two modes of multimedia information representation implemented which are chronological and thematic information representation. A qualitative study of an unstructured interview was conducted among two history teachers, one history education lecturer, two i-think expert and program trainers and five form 4 secondary school students. The interview was to elicit their opinions on the implementation of thinking maps and interactive multimedia information representation in history learning. The key elements of interactive multimedia (e.g. multiple media, user control, interactivity, and use of timelines and concept maps) were then considered to improve the learning process. Findings of the preliminary investigation reveal that the interactive multimedia information representations have the potential benefits to be implemented as instructional resource in enhancing students’ higher order thinking skills (HOTs). This paper concludes by giving suggestions for future work.

Keywords: multimedia information representation, critical thinking, history reasoning, chronological and thematic information representation

Procedia PDF Downloads 350
1338 The Effect of Information vs. Reasoning Gap Tasks on the Frequency of Conversational Strategies and Accuracy in Speaking among Iranian Intermediate EFL Learners

Authors: Hooriya Sadr Dadras, Shiva Seyed Erfani

Abstract:

Speaking skills merit meticulous attention both on the side of the learners and the teachers. In particular, accuracy is a critical component to guarantee the messages to be conveyed through conversation because a wrongful change may adversely alter the content and purpose of the talk. Different types of tasks have served teachers to meet numerous educational objectives. Besides, negotiation of meaning and the use of different strategies have been areas of concern in socio-cultural theories of SLA. Negotiation of meaning is among the conversational processes which have a crucial role in facilitating the understanding and expression of meaning in a given second language. Conversational strategies are used during interaction when there is a breakdown in communication that leads to the interlocutor attempting to remedy the gap through talk. Therefore, this study was an attempt to investigate if there was any significant difference between the effect of reasoning gap tasks and information gap tasks on the frequency of conversational strategies used in negotiation of meaning in classrooms on one hand, and on the accuracy in speaking of Iranian intermediate EFL learners on the other. After a pilot study to check the practicality of the treatments, at the outset of the main study, the Preliminary English Test was administered to ensure the homogeneity of 87 out of 107 participants who attended the intact classes of a 15 session term in one control and two experimental groups. Also, speaking sections of PET were used as pretest and posttest to examine their speaking accuracy. The tests were recorded and transcribed to estimate the percentage of the number of the clauses with no grammatical errors in the total produced clauses to measure the speaking accuracy. In all groups, the grammatical points of accuracy were instructed and the use of conversational strategies was practiced. Then, different kinds of reasoning gap tasks (matchmaking, deciding on the course of action, and working out a time table) and information gap tasks (restoring an incomplete chart, spot the differences, arranging sentences into stories, and guessing game) were manipulated in experimental groups during treatment sessions, and the students were required to practice conversational strategies when doing speaking tasks. The conversations throughout the terms were recorded and transcribed to count the frequency of the conversational strategies used in all groups. The results of statistical analysis demonstrated that applying both the reasoning gap tasks and information gap tasks significantly affected the frequency of conversational strategies through negotiation. In the face of the improvements, the reasoning gap tasks had a more significant impact on encouraging the negotiation of meaning and increasing the number of conversational frequencies every session. The findings also indicated both task types could help learners significantly improve their speaking accuracy. Here, applying the reasoning gap tasks was more effective than the information gap tasks in improving the level of learners’ speaking accuracy.

Keywords: accuracy in speaking, conversational strategies, information gap tasks, reasoning gap tasks

Procedia PDF Downloads 309
1337 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
1336 Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse

Authors: Ping Li, Bing Feng, Junpu Zhao, Xudong Xie, Dangpeng Xu, Kuixing Zheng, Qihua Zhu, Xiaofeng Wei

Abstract:

In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility.

Keywords: inertial confinement fusion, laser pulse control, beam spatio-temporal multiplexing, power balance

Procedia PDF Downloads 148
1335 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery

Authors: Yongquan Zhao, Bo Huang

Abstract:

Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.

Keywords: hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation

Procedia PDF Downloads 235