Search results for: survival predictive values
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8643

Search results for: survival predictive values

8583 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 109
8582 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control

Procedia PDF Downloads 375
8581 Predictive Modelling Approaches in Food Processing and Safety

Authors: Amandeep Sharma, Digvaijay Verma, Ruplal Choudhary

Abstract:

Food processing is an activity across the globe that help in better handling of agricultural produce, including dairy, meat, and fish. The operations carried out in the food industry includes raw material quality authenticity; sorting and grading; processing into various products using thermal treatments – heating, freezing, and chilling; packaging; and storage at the appropriate temperature to maximize the shelf life of the products. All this is done to safeguard the food products and to ensure the distribution up to the consumer. The approaches to develop predictive models based on mathematical or statistical tools or empirical models’ development has been reported for various milk processing activities, including plant maintenance and wastage. Recently AI is the key factor for the fourth industrial revolution. AI plays a vital role in the food industry, not only in quality and food security but also in different areas such as manufacturing, packaging, and cleaning. A new conceptual model was developed, which shows that smaller sample size as only spectra would be required to predict the other values hence leads to saving on raw materials and chemicals otherwise used for experimentation during the research and new product development activity. It would be a futuristic approach if these tools can be further clubbed with the mobile phones through some software development for their real time application in the field for quality check and traceability of the product.

Keywords: predictive modlleing, ann, ai, food

Procedia PDF Downloads 63
8580 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 145
8579 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data

Authors: Benjamin Leiby, Darryl Ahner

Abstract:

This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions while presenting a need for further refinement that mimics predictive mean matching.

Keywords: correlation, country conflict, imputation, stochastic regression

Procedia PDF Downloads 101
8578 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming

Authors: V. Pourmostaghimi, M. Zadshakoyan

Abstract:

Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.

Keywords: cutting parameters, flank wear, genetic programming, hard turning

Procedia PDF Downloads 160
8577 The Prognostic Values of Current Staging Schemes in Temporal Bone Carcinoma: A Real-World Evidence-Based Study

Authors: Minzi Mao, Jianjun Ren, Yu Zhao

Abstract:

Objectives: The absence of a uniform staging scheme for temporal bone carcinoma (TBC) seriously impedes the improvement of its management strategies. Therefore, this research was aimed to investigate the prognostic values of two currently applying staging schemes, namely, the modified Pittsburgh staging system (MPB) and Stell’s T classification (Stell-T) in patients with TBC. Methods: Areal-world single-institution retrospectivereview of patientsdiagnosed with TBC between2008 and 2019 was performed. Baseline characteristics were extracted, and patients were retrospectively staged by both the MPB and Stell-T classifications. Cox regression analyseswereconductedtocomparetheoverall survival (OS). Results: A total of 69 consecutive TBC patients were included in thisstudy. Univariate analysis showed that both Stell-T and T- classifications of the modified Pittsburgh staging system (MPB-T) were significant prognostic factors for all TBC patients as well as temporal bone squamous cell carcinoma (TBSCC, n=50) patients (P < 0.05). However, only Stell-T was confirmed to be an independent prognostic factor in TBSCC patients (P = 0.004). Conclusions: Tumor extensions, quantified by both Stell-T and MPB-T classifications, are significant prognostic factors for TBC patients, especially for TBSCC patients. However, only the Stell-T classification is an independent prognostic factor for TBSCC patients.

Keywords: modified pittsburgh staging system, overall survival, prognostic factor, stell’s T- classification, temporal bone carcinoma

Procedia PDF Downloads 109
8576 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process

Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse

Abstract:

Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.

Keywords: additive manufacturing, decision-makings, environmental impact, predictive models

Procedia PDF Downloads 106
8575 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico

Authors: M. Gil, R. Montalvo

Abstract:

Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.

Keywords: business intelligence, predictive model, supply and demand, Mexico

Procedia PDF Downloads 98
8574 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.

Keywords: voltage source inverter, space vector pulse width modulation, model predictive control, comparison

Procedia PDF Downloads 489
8573 Implementation of a Predictive DTC-SVM of an Induction Motor

Authors: Chebaani Mohamed, Gplea Amar, Benchouia Mohamed Toufik

Abstract:

Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented.

Keywords: induction motor, DTC-SVM, predictive controller, implementation, dSPACE, Matlab, Simulink

Procedia PDF Downloads 495
8572 Competing Risk Analyses in Survival Trials During COVID-19 Pandemic

Authors: Ping Xu, Gregory T. Golm, Guanghan (Frank) Liu

Abstract:

In the presence of competing events, traditional survival analysis may not be appropriate and can result in biased estimates, as it assumes independence between competing events and the event of interest. Instead, competing risk analysis should be considered to correctly estimate the survival probability of the event of interest and the hazard ratio between treatment groups. The COVID-19 pandemic has provided a potential source of competing risks in clinical trials, as participants in trials may experienceCOVID-related competing events before the occurrence of the event of interest, for instance, death due to COVID-19, which can affect the incidence rate of the event of interest. We have performed simulation studies to compare multiple competing risk analysis models, including the cumulative incidence function, the sub-distribution hazard function, and the cause-specific hazard function, to the traditional survival analysis model under various scenarios. We also provide a general recommendation on conducting competing risk analysis in randomized clinical trials during the era of the COVID-19 pandemic based on the extensive simulation results.

Keywords: competing risk, survival analysis, simulations, randomized clinical trial, COVID-19 pandemic

Procedia PDF Downloads 165
8571 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study

Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras

Abstract:

Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.

Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality

Procedia PDF Downloads 326
8570 Survival and Growth Factors of Korean Start-Ups: Focusing on the Industrial Characteristics

Authors: Hanei Son

Abstract:

Since the beginning of the 2010s, ‘start-up boom’ has continued with the creation of many new enterprises in Korea. Such tendency was led by various changes in society such as emergence and diffusion of smartphones. Especially, the Korean government has been interested in start-ups and entrepreneurship as an alternative engine for Korea's economic growth. With strong support from the government, as a result, many new enterprises have been established for recent years and the Korean government seems to have achieved its goal: expanding the basis of start-ups. However, it is unclear which factors affect the survival and growth of these new enterprises after their creation. Therefore, this study aims to identify which start-ups from early 2010s survived and which factors influenced their survival and growth. The study will strongly focus on which industries the new enterprises were in, as environmental elements are expected to be critical factors for business of start-ups in Korean context. For this purpose, 105 companies which were introduced as high potential start-ups from 2010 to 2012 were considered in the analysis. According to their current status, dead or alive, the start-ups were categorized by their industries and service area. Through this analysis, it was observed that many start-ups that are still in business are in internet or mobile platform businesses and four major sectors. In each group, a representative case has been studied to reveal its survival and growth factors. The results point to the importance of industrial characteristics for the survival and success of Korean startups and offer political implications in which sector and business more potentials for start-ups in Korea lie in.

Keywords: government support for start-ups, industrial characteristics, Korean start-ups, survival of start-ups

Procedia PDF Downloads 165
8569 Predictive Value of Hepatitis B Core-Related Antigen (HBcrAg) during Natural History of Hepatitis B Virus Infection

Authors: Yanhua Zhao, Yu Gou, Shu Feng, Dongdong Li, Chuanmin Tao

Abstract:

The natural history of HBV infection could experience immune tolerant (IT), immune clearance (IC), HBeAg-negative inactive/quienscent carrier (ENQ), and HBeAg-negative hepatitis (ENH). As current biomarkers for discriminating these four phases have some weaknesses, additional serological indicators are needed. Hepatits B core-related antigen (HBcrAg) encoded with precore/core gene contains denatured HBeAg, HBV core antigen (HBcAg) and a 22KDa precore protein (p22cr), which was demonstrated to have a close association with natural history of hepatitis B infection, but no specific cutoff values and diagnostic parameters to evaluate the diagnostic efficacy. This study aimed to clarify the distribution of HBcrAg levels and evaluate its diagnostic performance during the natural history of infection from a Western Chinese perspective. 294 samples collected from treatment-naïve chronic hepatitis B (CHB) patients in different phases (IT=64; IC=72; ENQ=100, and ENH=58). We detected the HBcrAg values and analyzed the relationship between HBcrAg and HBV DNA. HBsAg and other clinical parameters were quantitatively tested. HBcrAg levels of four phases were 9.30 log U/mL, 8.80 log U/mL, 3.00 log U/mL, and 5.10 logU/mL, respectively (p < 0.0001). Receiver operating characteristic curve analysis demonstrated that the area under curves (AUCs) of HBcrAg and quantitative HBsAg at cutoff values of 9.25 log U/mL and 4.355 log IU/mL for distinguishing IT from IC phases were 0.704 and 0.694, with sensitivity 76.39% and 59.72%, specificity 53.13% and 79.69%, respectively. AUCs of HBcrAg and quantitative HBsAg at cutoff values of 4.15 log U/mlmL and 2.395 log IU/mlmL for discriminating between ENQ and ENH phases were 0.931 and 0.653, with sensitivity 87.93% and 84%, specificity 91.38% and 39%, respectively. Therefore, HBcrAg levels varied significantly among four natural phases of HBV infection. It had higher predictive performance than quantitative HBsAg for distinguishing between ENQ-patients and ENH-patients and similar performance with HBsAg for the discrimination between IT and IC phases, which indicated that HBcrAg could be a potential serological marker for CHB.

Keywords: chronic hepatitis B, hepatitis B core-related antigen, hepatitis B surface antigens, hepatitis B virus

Procedia PDF Downloads 388
8568 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation

Authors: U. Yavas, M. Gokasan

Abstract:

Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.

Keywords: predictive control, engine control, engine modeling, PID control, feedforward compensation

Procedia PDF Downloads 607
8567 Communication of Expected Survival Time to Cancer Patients: How It Is Done and How It Should Be Done

Authors: Geir Kirkebøen

Abstract:

Most patients with serious diagnoses want to know their prognosis, in particular their expected survival time. As part of the informed consent process, physicians are legally obligated to communicate such information to patients. However, there is no established (evidence based) ‘best practice’ for how to do this. The two questions explored in this study are: How do physicians communicate expected survival time to patients, and how should it be done? We explored the first, descriptive question in a study with Norwegian oncologists as participants. The study had a scenario and a survey part. In the scenario part, the doctors should imagine that a patient, recently diagnosed with a serious cancer diagnosis, has asked them: ‘How long can I expect to live with such a diagnosis? I want an honest answer from you!’ The doctors should assume that the diagnosis is certain, and that from an extensive recent study they had optimal statistical knowledge, described in detail as a right-skewed survival curve, about how long such patients with this kind of diagnosis could be expected to live. The main finding was that very few of the oncologists would explain to the patient the variation in survival time as described by the survival curve. The majority would not give the patient an answer at all. Of those who gave an answer, the typical answer was that survival time varies a lot, that it is hard to say in a specific case, that we will come back to it later etc. The survey part of the study clearly indicates that the main reason why the oncologists would not deliver the mortality prognosis was discomfort with its uncertainty. The scenario part of the study confirmed this finding. The majority of the oncologists explicitly used the uncertainty, the variation in survival time, as a reason to not give the patient an answer. Many studies show that patients want realistic information about their mortality prognosis, and that they should be given hope. The question then is how to communicate the uncertainty of the prognosis in a realistic and optimistic – hopeful – way. Based on psychological research, our hypothesis is that the best way to do this is by explicitly describing the variation in survival time, the (usually) right skewed survival curve of the prognosis, and emphasize to the patient the (small) possibility of being a ‘lucky outlier’. We tested this hypothesis in two scenario studies with lay people as participants. The data clearly show that people prefer to receive expected survival time as a median value together with explicit information about the survival curve’s right skewedness (e.g., concrete examples of ‘positive outliers’), and that communicating expected survival time this way not only provides people with hope, but also gives them a more realistic understanding compared with the typical way expected survival time is communicated. Our data indicate that it is not the existence of the uncertainty regarding the mortality prognosis that is the problem for patients, but how this uncertainty is, or is not, communicated and explained.

Keywords: cancer patients, decision psychology, doctor-patient communication, mortality prognosis

Procedia PDF Downloads 302
8566 Bivariate Time-to-Event Analysis with Copula-Based Cox Regression

Authors: Duhania O. Mahara, Santi W. Purnami, Aulia N. Fitria, Merissa N. Z. Wirontono, Revina Musfiroh, Shofi Andari, Sagiran Sagiran, Estiana Khoirunnisa, Wahyudi Widada

Abstract:

For assessing interventions in numerous disease areas, the use of multiple time-to-event outcomes is common. An individual might experience two different events called bivariate time-to-event data, the events may be correlated because it come from the same subject and also influenced by individual characteristics. The bivariate time-to-event case can be applied by copula-based bivariate Cox survival model, using the Clayton and Frank copulas to analyze the dependence structure of each event and also the covariates effect. By applying this method to modeling the recurrent event infection of hemodialysis insertion on chronic kidney disease (CKD) patients, from the AIC and BIC values we find that the Clayton copula model was the best model with Kendall’s Tau is (τ=0,02).

Keywords: bivariate cox, bivariate event, copula function, survival copula

Procedia PDF Downloads 54
8565 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 114
8564 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 176
8563 Assessing the Survival Time of Hospitalized Patients in Eastern Ethiopia During 2019–2020 Using the Bayesian Approach: A Retrospective Cohort Study

Authors: Chalachew Gashu, Yoseph Kassa, Habtamu Geremew, Mengestie Mulugeta

Abstract:

Background and Aims: Severe acute malnutrition remains a significant health challenge, particularly in low‐ and middle‐income countries. The aim of this study was to determine the survival time of under‐five children with severe acute malnutrition. Methods: A retrospective cohort study was conducted at a hospital, focusing on under‐five children with severe acute malnutrition. The study included 322 inpatients admitted to the Chiro hospital in Chiro, Ethiopia, between September 2019 and August 2020, whose data was obtained from medical records. Survival functions were analyzed using Kaplan‒Meier plots and log‐rank tests. The survival time of severe acute malnutrition was further analyzed using the Cox proportional hazards model and Bayesian parametric survival models, employing integrated nested Laplace approximation methods. Results: Among the 322 patients, 118 (36.6%) died as a result of severe acute malnutrition. The estimated median survival time for inpatients was found to be 2 weeks. Model selection criteria favored the Bayesian Weibull accelerated failure time model, which demonstrated that age, body temperature, pulse rate, nasogastric (NG) tube usage, hypoglycemia, anemia, diarrhea, dehydration, malaria, and pneumonia significantly influenced the survival time of severe acute malnutrition. Conclusions: This study revealed that children below 24 months, those with altered body temperature and pulse rate, NG tube usage, hypoglycemia, and comorbidities such as anemia, diarrhea, dehydration, malaria, and pneumonia had a shorter survival time when affected by severe acute malnutrition under the age of five. To reduce the death rate of children under 5 years of age, it is necessary to design community management for acute malnutrition to ensure early detection and improve access to and coverage for children who are malnourished.

Keywords: Bayesian analysis, severe acute malnutrition, survival data analysis, survival time

Procedia PDF Downloads 10
8562 Recurrent Neural Networks for Complex Survival Models

Authors: Pius Marthin, Nihal Ata Tutkun

Abstract:

Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.

Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)

Procedia PDF Downloads 68
8561 Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System

Authors: Toshiyuki Satoh, Hiroki Hara, Naoki Saito, Jun-ya Nagase, Norihiko Saga

Abstract:

This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller, and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.

Keywords: critical control, disturbance observer, mechatronics, motion control, predictive functional control, table drive systems

Procedia PDF Downloads 470
8560 Combined Fuzzy and Predictive Controller for Unity Power Factor Converter

Authors: Abdelhalim Kessal

Abstract:

This paper treats a design of combined control of a single phase power factor correction (PFC). The strategy of the proposed control is based on two parts, the first, for the outer loop (DC output regulated voltage), and the second govern the input current of the converter in order to achieve a sinusoidal form in phase with the grid voltage. Two kinds of regulators are used, Fuzzy controller for the outer loop and predictive controller for the inner loop. The controllers are verified and discussed through simulation under MATLAB/Simulink platform. Also an experimental confirmation is applied. Results present a high dynamic performance under various parameters changes.

Keywords: boost converter, harmonic distortion, Fuzzy, predictive, unity power factor

Procedia PDF Downloads 468
8559 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.

Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink

Procedia PDF Downloads 557
8558 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.

Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling

Procedia PDF Downloads 79
8557 In vitro Control of Aedes aegypti Larvae Using Beauveria bassiana

Authors: R. O. B. Bitencourt, F. S. Farias, M. C. Freitas, C. J. R. Balduino, E.S. Mesquita, A. R. C. Corval, P. S. Gôlo, E. G. Pontes, V. R. E. P. Bittencourt, I. C. Angelo

Abstract:

Aedes aegypti larval survival rate was assessed after exposure to blastopores or conidia (mineral oil-in-water formulation or aqueous suspension) of Beauveria bassiana CG 479 propagules (blastospores or conidia). Here, mineral oil was used in the fungal formulation to control Aedes aegypti larvae. 1%, 0.5% or 0.1% mineral oil-in-water solutions were used to evaluate mineral oil toxicity for mosquito larvae. In the oil toxicity test, 0.1% mineral oil solution reduced only 4.5% larval survival; accordingly, this concentration was chosen for fungal oil-in-water formulations. Aqueous suspensions were prepared using 0.01% Tween 80® in sterile dechlorinated water. A. aegypti larvae (L2) were exposed in aqueous suspensions or mineral oil-in-water fungal formulations at 1×107 propagules mL-1; the survival rate (assessed daily, for 7 days) and the median survival time (S50) were calculated. Seven days after the treatment, mosquito larvae survival rates were 8.56%, 16.22%, 58%, and 42.56% after exposure to oil-in-water blastospores, oil-in-water conidia, blastospores aqueous suspension and conidia aqueous suspension (respectively). Larvae exposed to 0.01% Tween 80® had 100% survival rate and the ones treated with 0.1% mineral oil-in-water had 95.11% survival rate. Larvae treated with conidia (regardless the presence of oil) or treated with blastospores formulation had survival median time (S50) ranging from one to two days. S50 was not determined (ND) when larvae were exposed to blastospores aqueous suspension, 0.01% Tween 80® (aqueous control) or 0.1% mineral oil-in-water formulation (oil control). B. bassiana conidia and blastospores (mineral oil-in-water formulated or suspended in water) had potential to control A. aegypti mosquito larvae, despite mineral oil-in-water formulation yielded better results in comparison to aqueous suspensions. Here, B. bassiana CG 479 isolate is suggested as a potential biocontrol agent of A. aegypti mosquito larvae.

Keywords: blastospores, formulation, mosquitoes, conidia

Procedia PDF Downloads 168
8556 Survival Analysis Based Delivery Time Estimates for Display FAB

Authors: Paul Han, Jun-Geol Baek

Abstract:

In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model

Procedia PDF Downloads 517
8555 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle

Procedia PDF Downloads 429
8554 RBF Modelling and Optimization Control for Semi-Batch Reactors

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors

Procedia PDF Downloads 449