Search results for: orbit propagation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 910

Search results for: orbit propagation

850 The Crack Propagation on Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

In the laser cleavage of glass, the laser is mostly adopted as a heat source to generate a thermal stress state on the substrates. The crack propagation of the soda-lime glass in the laser thermal cleavage with the straight-turning paths was investigated in this study experimentally and numerically. The crack propagation was visualized by a high speed camera with the off-line examination on the micro-crack propagation. The temperature and stress distributions induced by the laser heat source were calculated by ANSYS software based on the finite element method (FEM). With the cutting paths in various turning directions, the experimental and numerical results were in comparison and verified. The fracture modes due to the normal and shear stresses were verified at the turning point of the laser cleavage path. It shows a significant variation of the stress profiles along the straight-turning paths and causes a change on the fracture modes.

Keywords: laser cleavage, glass, fracture, stress analysis

Procedia PDF Downloads 228
849 Modeling of Dam Break Flood Wave Propagation Using HEC-RAS 2D and GIS: A Case Study of Taksebt Dam in Algeria

Authors: Abdelghani Leghouchi

Abstract:

This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan (EAP) for mitigation purposes. To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam. Geospatial analysis of the simulation results conducted in a Geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk. Overall, the present study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures.

Keywords: taksebt dam, dam break, wave propagation time, HEC-RAS 2D

Procedia PDF Downloads 108
848 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: atomic matters, crystal electric field (CEF) spin-orbit coupling, localized states, electron subshell, fine electronic structure

Procedia PDF Downloads 318
847 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning

Authors: Guang Zou, Kian Banisoleiman, Arturo González

Abstract:

Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.

Keywords: crack initiation, fatigue reliability, inspection planning, welded joints

Procedia PDF Downloads 352
846 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders

Authors: Gregory Sullivan

Abstract:

The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.

Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders

Procedia PDF Downloads 69
845 Investigated Optimization of Davidson Path Loss Model for Digital Terrestrial Television (DTTV) Propagation in Urban Area

Authors: Pitak Keawbunsong, Sathaporn Promwong

Abstract:

This paper presents an investigation on the efficiency of the optimized Davison path loss model in order to look for a suitable path loss model to design and planning DTTV propagation for small and medium urban areas in southern Thailand. Hadyai City in Songkla Province is chosen as the case study to collect the analytical data on the electric field strength. The optimization is conducted through the least square method while the efficiency index is through the statistical value of relative error (RE). The result of the least square method is the offset and slop of the frequency to be used in the optimized process. The statistical result shows that RE of the old Davidson model is at the least when being compared with the optimized Davison and the Hata models. Thus, the old Davison path loss model is the most accurate that further becomes the most optimized for the plan on the propagation network design.

Keywords: DTTV propagation, path loss model, Davidson model, least square method

Procedia PDF Downloads 337
844 Radiologic Assessment of Orbital Dimensions Among Omani Subjects: Computed Tomography Imaging-Based Study

Authors: Marwa Al-Subhi, Eiman Al-Ajmi, Mallak Al-Maamari, Humood Al-Dhuhli, Srinivasa Rao

Abstract:

The orbit and its contents are affected by various pathologies and craniofacial anomalies. Sound knowledge of the normal orbital dimensions is clinically essential for successful surgical outcomes and also in the field of forensic anthropology. Racial, ethnic, and regional variations in the orbital dimensions have been reported. This study sought to determine the orbital dimensions of Omani subjects who had been referred for computed tomography (CT) images at a tertiary care hospital. A total of 273 patients’ CT images were evaluated retrospectively by using an electronic medical records database. The orbital dimensions were recorded using both axial and sagittal planes of CT images. The mean orbital index (OI) was found to be 83.25±4.83 and the prevalent orbital type was categorized as mesoseme. The mean orbital index was 83.34±5.05 and 83.16±4.57 in males and females, respectively, with their difference being statistically not significant (p=0.76). A statistically significant association was observed between the right and left orbits with regard to horizontal distance (p<0.05) and vertical distance (p<0.01) of orbit and OI (p<0.05). No significant difference between the OI and age groups was observed in both males and females. The mean interorbital distance and interzygomatic distance were found to be 19.45±1.52 mm and 95.59±4.08 mm, respectively. Both of these parameters were significantly higher in males (p<0.05). Results of the present study provide reference values of orbital dimensions in Omani subjects. The prevalent orbital type of Omani subjects is mesoseme, which is a hallmark of the white race.

Keywords: orbit, orbital index, mesoseme, ethnicity, variation

Procedia PDF Downloads 147
843 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: UWB, propagation, LOS, NLOS, identification

Procedia PDF Downloads 248
842 Lamb Waves in Plates Subjected to Uniaxial Stresses

Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng

Abstract:

On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.

Keywords: acoustoelasticity, dispersion, finite deformation, lamb waves

Procedia PDF Downloads 466
841 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation

Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei

Abstract:

Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.

Keywords: hammershock, IDDES, S-bend, surge signature

Procedia PDF Downloads 297
840 Analysis of 3 dB Directional Coupler Based On Silicon-On-Insulator (SOI) Large Cross-Section Rib Waveguide

Authors: Nurdiani Zamhari, Abang Annuar Ehsan

Abstract:

The 3 dB directional coupler is designed by using silicon-on-insulator (SOI) large cross-section and simulate by Beam Propagation Method at the communication wavelength of 1.55 µm and 1.48 µm. The geometry is shaped with rib height (H) of 6 µm and varied in step factor (r) which is 0.5, 0.6, 0.7 and 0.8. The wave guide spacing is also fixed to 5 µm and the slab width is symmetrical. In general, the 3 dB coupling lengths for four different cross-sections are several millimetre long. The 1.48 of wavelength give the longer coupling length if compare to 1.55 at the same step factor (r). Besides, the low loss propagation is achieved with less than 2 % of propagation loss.

Keywords: 3 dB directional couplers, silicon-on-insulator, symmetrical rib waveguide, OptiBPM 9

Procedia PDF Downloads 515
839 Yarkovsky Effect on the Orbital Dynamics of the Asteroid (101955) Bennu

Authors: Sanjay Narayan Deo, Badam Singh Kushvah

Abstract:

Bennu(101955) is a half kilometer potentially hazardous near-Earth asteroid. We analyze the influence of Yarkovsky effect and relativistic effect of the Sun on the motion of the asteroid Bennu. The transverse model is used to compute Yarkovsky force on asteroid Bennu. Our dynamical model includes Newtonian perturbations of eight planets, the Moon, the Sun and three massive asteroid (1Ceres, 2Palas and 4Vesta). We showed the variation in orbital elements of nominal orbit of the asteroid. In the presence of Yarkovsky effect, the Semi-major axis of the orbit of the asteroid is decreases by 350 m over one period of orbital motion. The magnitude of Yarkovsky force is computed. We find that maximum magnitude of Yarkovsky force is 0.09 N at the perihelion . We also found that the magnitude of the Sun relativity effect is greater than the Yarkovsky effect on the motion the asteroid Bennu.

Keywords: Bennu, orbital elements, relativistic effect, Yarkovsky effect

Procedia PDF Downloads 292
838 Mechanism of Failure of Pipeline Steels in Sour Environment

Authors: Abhishek Kumar

Abstract:

X70 pipeline steel was electrochemically charged with hydrogen for different durations in order to find crack nucleation and propagation sites. After 3 hours charging, suitable regions for crack initiation and propagation were found. These regions were studied by OM, SEM, EDS and later Vicker hardness test was done. The results brought out that HIC cracks nucleated from regions rich of inclusions and further propagated through the segregation area of some elements, such as manganese, carbon, silicon and sulfur. It is worth-mentioning that all these potential sites for crack nucleation and propagation appeared at the centre of cross section of the specimens. Additionally, cracked area has harder phase than the non-cracked area which was confirmed by hardness test.

Keywords: X70 steel, morphology of inclusions, SEM/EDS/OM, simulation, statistical data

Procedia PDF Downloads 316
837 Macro-Somatic Clonal Propagation of Tree-Borne Oil Seed Species (Calophyllum inophyllum Linn. and Pongamia pinnata Mer.)

Authors: Amelyn M. Ambal, Jose Hermis Patricio

Abstract:

A macro-somatic clonal propagation study was undertaken to determine the effects of method of propagation, rooting hormone, and level of rooting hormone concentration of TBOS (Calophyllum inophyllum Mer. and Pongamia pinnata L.). A factorial experiment in SSSPD with three replications was used in the study and analyzed using ANOVA and LSD. Open mist propagation is effective for rooting Calophyllum inophyllum and Pongamia pinnata cuttings as it gave statistically higher number of adventitious roots, longer length of roots, and higher rooting percentage. C. inophyllum cuttings exhibit statistically higher rooting percentage compared to P. pinnata cuttings when subjected to open mist method and treated with 600 ppm of NAA. NAA is more effective than IBA in terms of number and length of roots, and rooting percentage produced. However, levels of hormone concentration were not generally effective on the rooting performance and shoot production of both species.

Keywords: adventitious roots, Calophyllum, close-mist, macro-somatic clonal propagation, Pongamia, open-mist

Procedia PDF Downloads 467
836 The Magnitude Scale Evaluation of Cross-Platform Internet Public Opinion

Authors: Yi Wang, Xun Liang

Abstract:

This paper introduces a model of internet public opinion waves, which describes the message propagation and measures the influence of a detected event. We collect data on public opinion propagation from different platforms on the internet, including micro-blogs and news. Then, we compare the spread of public opinion to the seismic waves and correspondently define the P-wave and S-wave and other essential attributes and characteristics in the process. Further, a model is established to evaluate the magnitude scale of the events. In the end, a practical example is used to analyze the influence of network public opinion and test the reasonability and effectiveness of the proposed model.

Keywords: internet public opinion waves (IPOW), magnitude scale, cross-platform, information propagation

Procedia PDF Downloads 287
835 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable

Authors: Seon Soon Choi

Abstract:

The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.

Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable

Procedia PDF Downloads 409
834 Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement

Authors: G. A. Rombach, A. Faron

Abstract:

Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members.

Keywords: concrete damage plasticity, crack propagation, extended finite element method, fracture mechanics

Procedia PDF Downloads 118
833 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 310
832 Shock and Particle Velocity Determination from Microwave Interrogation

Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert

Abstract:

Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.

Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation

Procedia PDF Downloads 211
831 Rumour Containment Using Monitor Placement and Truth Propagation

Authors: Amrah Maryam

Abstract:

The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks.

Keywords: online social networks, monitor placement, independent cascade model, spread of misinformation

Procedia PDF Downloads 159
830 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset

Procedia PDF Downloads 128
829 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 107
828 Evaluating Structural Crack Propagation Induced by Soundless Chemical Demolition Agent Using an Energy Release Rate Approach

Authors: Shyaka Eugene

Abstract:

The efficient and safe demolition of structures is a critical challenge in civil engineering and construction. This study focuses on the development of optimal demolition strategies by investigating the crack propagation behavior in beams induced by soundless cracking agents. It is commonly used in controlled demolition and has gained prominence due to its non-explosive and environmentally friendly nature. This research employs a comprehensive experimental and computational approach to analyze the crack initiation, propagation, and eventual failure in beams subjected to soundless cracking agents. Experimental testing involves the application of various cracking agents under controlled conditions to understand their effects on the structural integrity of beams. High-resolution imaging and strain measurements are used to capture the crack propagation process. In parallel, numerical simulations are conducted using advanced finite element analysis (FEA) techniques to model crack propagation in beams, considering various parameters such as cracking agent composition, loading conditions, and beam properties. The FEA models are validated against experimental results, ensuring their accuracy in predicting crack propagation patterns. The findings of this study provide valuable insights into optimizing demolition strategies, allowing engineers and demolition experts to make informed decisions regarding the selection of cracking agents, their application techniques, and structural reinforcement methods. Ultimately, this research contributes to enhancing the safety, efficiency, and sustainability of demolition practices in the construction industry, reducing environmental impact and ensuring the protection of adjacent structures and the surrounding environment.

Keywords: expansion pressure, energy release rate, soundless chemical demolition agent, crack propagation

Procedia PDF Downloads 61
827 Energy Content and Spectral Energy Representation of Wave Propagation in a Granular Chain

Authors: Rohit Shrivastava, Stefan Luding

Abstract:

A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder. For obtaining macroscopic/continuum properties, ensemble averaging has been used. Interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder leads to faster attenuation of the signal and decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies also increases. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits diffusive like propagation, which eventually becomes localized at long periods of time.

Keywords: discrete elements, energy attenuation, mass disorder, granular chain, spectral energy, wave propagation

Procedia PDF Downloads 287
826 An Experimental Study on the Positive Streamer Leader Propagation under Slow Front Impulse Voltages in a 10m Rod-Plane Air Gap

Authors: Wahab Ali Shah, Junjia He

Abstract:

In this work, we performed a large-scale investigation into leader development in a 10 m rod-plane gap under a long front positive impulse. To describe the leader propagation under slow front impulse voltages, we recorded the leader propagation with a high-speed charge coupled device (CCD) camera. It is important to figure out this phenomenon to deepen our understanding of leader discharge. The observation results showed that the leader mechanism is a very complex physical phenomenon; it could be categorized into two types of leader process, namely, continuous and the discontinuous leader streamer-leader propagation. Furthermore, we studied the continuous leader development parameters, including two-dimensional (2-D) leader length, injected charge, and final jump stage, as well as leader velocity for rod–plane configuration. We observed that the discontinuous leader makes an important contribution to the appearance of channel re-illuminations of the positive leader. The comparative study shows better results in terms of standard switch impulse and long front positive impulse. Finally, the results are presented with a view toward improving our understanding of propagation mechanisms related to restrike phenomena, which are rarely reported. To clarify the above doubts under long front cases, we carried out extensive experiments in this study.

Keywords: continuous and discontinuous leader, high-speed photographs, long air gap, positive long front impulse, restrike phenomena

Procedia PDF Downloads 167
825 A Patent Trend Analysis for Hydrogen Based Ironmaking: Identifying the Technology’s Development Phase

Authors: Ebru Kaymaz, Aslı İlbay Hamamcı, Yakup Enes Garip, Samet Ay

Abstract:

The use of hydrogen as a fuel is important for decreasing carbon emissions. For the steel industry, reducing carbon emissions is one of the most important agendas of recent times globally. Because of the Paris Agreement requirements, European steel industry studies on green steel production. Although many literature reviews have analyzed this topic from technological and hydrogen based ironmaking, there are very few studies focused on patents of decarbonize parts of the steel industry. Hence, this study focus on technological progress of hydrogen based ironmaking and on understanding the main trends through patent data. All available patent data were collected from Questel Orbit. The trend analysis of more than 900 patent documents has been carried out by using Questel Orbit Intellixir to analyze a large number of data for scientific intelligence.

Keywords: hydrogen based ironmaking, DRI, direct reduction, carbon emission, steelmaking, patent analysis

Procedia PDF Downloads 143
824 Standardization of Propagation Techniques for Celastrus paniculata: An Endangered Medicinal Plant of Western Ghats

Authors: Raviraja Shetty G., K. G. Poojitha

Abstract:

An experiment was conducted at College of Horticulture, Mudigere to study the effect of different growth regulators on seed germination and vegetative propagation by cuttings of Celastrus paniculata an endangered medicinal plant. The extracted seeds are subjected to 11 different pre-soaking treatments which include control, GA3 at 300, 350, 400ppm, KNO3 at 1.0%, 1.5%, 2.0%, H2SO4 at 0.5%, 1.0% and HCl 0.5%,1.0% for 100 seeds per treatment. Among the different germination inducing treatments, seeds treated with gibberellins responded well with high seed germination and vigorous seedling growth. The seeds treated with GA3 400 ppm recorded maximum germination and growth parameters like rate of germination, shoot length, root length, plant vigour, fresh and dry weight of which was followed GA3 350 ppm. The commencement of germination and 50 per cent germination was also earlier in the same treatment. The cuttings of C. paniculata took more time for root initiation up to four months and sprouting percent was moderate as compared to other easy to root species. Among different treatments, IBA 2000 ppm was found to be the best, which recorded the maximum shoot and also root parameters. The results of present investigation will be helpful for conservation of this endangered medicinal plant through propagation

Keywords: conservation, germination, growth, germination, propagation

Procedia PDF Downloads 428
823 Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Authors: L. Almulla

Abstract:

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Keywords: Kuwait desert, landscape, rooting percentage, vegetative propagation

Procedia PDF Downloads 121
822 Investigating Viscous Surface Wave Propagation Modes in a Finite Depth Fluid

Authors: Arash Ghahraman, Gyula Bene

Abstract:

The object of this study is to investigate the effect of viscosity on the propagation of free-surface waves in an incompressible viscous fluid layer of arbitrary depth. While we provide a more detailed study of properties of linear surface waves, the description of fully nonlinear waves in terms of KdV-like (Korteweg-de Vries) equations is discussed. In the linear case, we find that in shallow enough fluids, no surface waves can propagate. Even in any thicker fluid layers, propagation of very short and very long waves is forbidden. When wave propagation is possible, only a single propagating mode exists for any given horizontal wave number. The numerical results show that there can be two types of non-propagating modes. One type is always present, and there exist still infinitely many of such modes at the same parameters. In contrast, there can be zero, one or two modes belonging to the other type. Another significant feature is that KdV-like equations. They describe propagating nonlinear viscous surface waves. Since viscosity gives rise to a new wavenumber that cannot be small at the same time as the original one, these equations may not exist. Nonetheless, we propose a reasonable nonlinear description in terms of 1+1 variate functions that make possible successive approximations.

Keywords: free surface wave, water waves, KdV equation, viscosity

Procedia PDF Downloads 146
821 Boundary Conditions for 2D Site Response Analysis in OpenSees

Authors: M. Eskandarighadi, C. R. McGann

Abstract:

It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristicssuch as frequency content, amplitude, and duration of seismic waves. The most common method for investigating site response is one-dimensional seismic site response analysis. The infinite horizontal length of the model and the homogeneous characteristic of the soil are crucial assumptions of this method. One boundary condition that can be used in the sides is tying the sides horizontally for vertical 1D wave propagation. However, 1D analysis cannot account for the 2D nature of wave propagation in the condition where the soil profile is not fully horizontal or has heterogeneity within layers. Therefore, 2D seismic site response analysis can be used to take all of these limitations into account for a better understanding of local site conditions. Different types of boundary conditions can be appliedin 2D site response models, such as tied boundary condition, massive columns, and free-field boundary condition. The tied boundary condition has been used in 1D analysis, which is useful for 1D wave propagation. Employing two massive columns at the sides is another approach for capturing the 2D nature of wave propagation. Free-field boundary condition can simulate the free-field motion that would exist far from the domain of interest. The goal for free-field boundary condition is to minimize the unwanted reflection from sides. This research focuses on the comparison between these methods with examples and discusses the details and limitations of each of these boundary conditions.

Keywords: boundary condition, free-field, massive columns, opensees, site response analysis, wave propagation

Procedia PDF Downloads 181