Search results for: multiscale retinex
20 Research and Application of Multi-Scale Three Dimensional Plant Modeling
Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao
Abstract:
Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition
Procedia PDF Downloads 27819 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites
Authors: Sarra Haouala, Issam Doghri
Abstract:
In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization
Procedia PDF Downloads 37118 Using 3-Glycidoxypropyltrimethoxysilane Functionalized Silica Nanoparticles to Improve Flexural Properties of E-Glass/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. Also, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties, energy absorption
Procedia PDF Downloads 25117 Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures, which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components, which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane-coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, considerable energy absorption was observed after the primary failure related to the load peak. In addition, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties
Procedia PDF Downloads 24416 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe
Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante
Abstract:
High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation
Procedia PDF Downloads 35115 Enhancing Green Infrastructure as a Climate Change Adaptation Strategy in Addis Ababa: Unlocking Institutional, Socio-Cultural and Cognitive Barriers for Application
Authors: Eyasu Markos Woldesemayat, Paolo Vincenzo Genovese
Abstract:
In recent years with an increase in the concentration of Green House Gases (GHG), Climate Change (CC) externalities are mounting, regardless of governments, are scrambling to implement mitigation and adaptation measures. With multiple social, economic and environmental benefits, Green Infrastructure (GI) has evolved as a highly valuable policy tool to promote sustainable development and smart growth by meeting multiple objectives towards quality of life. However, despite the wide range of benefits, it's uptake in African cities such as Addis Ababa is very low due to several constraining factors. This study, through content analysis and key informant interviews, examined barriers for the uptake of GI among spatial planners in Addis Ababa. Added to this, the study has revealed that the spatial planners had insufficient knowledge about GI planning principles such as multi-functionality, integration, and connectivity, and multiscale. The practice of implementing these holistic principles in urban spatial planning is phenomenally nonexistent. The findings also revealed 20 barriers categorized under four themes, i.e., institutional, socio-cultural, resource, and cognitive barriers. Similarly, it was identified that institutional barriers (0.756), socio-cultural barriers (0.730), cognitive barriers (0.700) and resource barriers (0.642), respectively, are the foremost impending factors for the promotion of GI in Addis Ababa. It was realized that resource barriers were the least constraining factor for enshrining the GI uptake in the city. Strategies to hasten the adoption of GI in the city mainly focus on improving political will, harmonization sectorial plans, improve spatial planning and implementation practice, prioritization of GI in all planning activities, enforcement of environmental laws, introducing collaborative GI governance, creating strong and stable institutions and raising awareness on the need to conserve environment and CC externalities through education and outreach mechanisms.Keywords: Addis Ababa, climate change, green infrastructure, spatial planning, spatial planners
Procedia PDF Downloads 12214 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 13813 A Normalized Non-Stationary Wavelet Based Analysis Approach for a Computer Assisted Classification of Laryngoscopic High-Speed Video Recordings
Authors: Mona K. Fehling, Jakob Unger, Dietmar J. Hecker, Bernhard Schick, Joerg Lohscheller
Abstract:
Voice disorders origin from disturbances of the vibration patterns of the two vocal folds located within the human larynx. Consequently, the visual examination of vocal fold vibrations is an integral part within the clinical diagnostic process. For an objective analysis of the vocal fold vibration patterns, the two-dimensional vocal fold dynamics are captured during sustained phonation using an endoscopic high-speed camera. In this work, we present an approach allowing a fully automatic analysis of the high-speed video data including a computerized classification of healthy and pathological voices. The approach bases on a wavelet-based analysis of so-called phonovibrograms (PVG), which are extracted from the high-speed videos and comprise the entire two-dimensional vibration pattern of each vocal fold individually. Using a principal component analysis (PCA) strategy a low-dimensional feature set is computed from each phonovibrogram. From the PCA-space clinically relevant measures can be derived that quantify objectively vibration abnormalities. In the first part of the work it will be shown that, using a machine learning approach, the derived measures are suitable to distinguish automatically between healthy and pathological voices. Within the approach the formation of the PCA-space and consequently the extracted quantitative measures depend on the clinical data, which were used to compute the principle components. Therefore, in the second part of the work we proposed a strategy to achieve a normalization of the PCA-space by registering the PCA-space to a coordinate system using a set of synthetically generated vibration patterns. The results show that owing to the normalization step potential ambiguousness of the parameter space can be eliminated. The normalization further allows a direct comparison of research results, which bases on PCA-spaces obtained from different clinical subjects.Keywords: Wavelet-based analysis, Multiscale product, normalization, computer assisted classification, high-speed laryngoscopy, vocal fold analysis, phonovibrogram
Procedia PDF Downloads 26612 Prioritizing Biodiversity Conservation Areas based on the Vulnerability and the Irreplaceability Framework in Mexico
Authors: Alma Mendoza-Ponce, Rogelio Corona-Núñez, Florian Kraxner
Abstract:
Mexico is a megadiverse country and it has nearly halved its natural vegetation in the last century due to agricultural and livestock expansion. Impacts of land use cover change and climate change are unevenly distributed and spatial prioritization to minimize the affectations on biodiversity is crucial. Global and national efforts for prioritizing biodiversity conservation show that ~33% to 45% of Mexico should be protected. The width of these targets makes difficult to lead resources. We use a framework based on vulnerability and irreplaceability to prioritize conservation efforts in Mexico. Vulnerability considered exposure, sensitivity and adaptive capacity under two scenarios (business as usual, BAU based, on the SSP2 and RCP 4.5 and a Green scenario, based on the SSP1 and the RCP 2.6). Exposure to land use is the magnitude of change from natural vegetation to anthropogenic covers while exposure to climate change is the difference between current and future values for both scenarios. Sensitivity was considered as the number of endemic species of terrestrial vertebrates which are critically endangered and endangered. Adaptive capacity is used as the ration between the percentage of converted area (natural to anthropogenic) and the percentage of protected area at municipality level. The results suggest that by 2050, between 11.6 and 13.9% of Mexico show vulnerability ≥ 50%, and by 2070, between 12.0 and 14.8%, in the Green and BAU scenario, respectively. From an ecosystem perspective cloud forests, followed by tropical dry forests, natural grasslands and temperate forests will be the most vulnerable (≥ 50%). Amphibians are the most threatened vertebrates; 62% of the endemic amphibians are critically endangered or endangered while 39%, 12% and 9% of the mammals, birds, and reptiles, respectively. However, the distribution of these amphibians counts for only 3.3% of the country, while mammals, birds, and reptiles in these categories represent 10%, 16% and 29% of Mexico. There are 5 municipalities out of the 2,457 that Mexico has that represent 31% of the most vulnerable areas (70%).These municipalities account for 0.05% of Mexico. This multiscale approach can be used to address resources to conservation targets as ecosystems, municipalities or species considering land use cover change, climate change and biodiversity uniqueness.Keywords: biodiversity, climate change, land use change, Mexico, vulnerability
Procedia PDF Downloads 16811 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy
Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren
Abstract:
Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment
Procedia PDF Downloads 4010 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 3169 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)
Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé
Abstract:
Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)
Procedia PDF Downloads 928 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes
Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang
Abstract:
The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations
Procedia PDF Downloads 2507 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics
Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer
Abstract:
Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS
Procedia PDF Downloads 3476 An Unified Model for Longshore Sediment Transport Rate Estimation
Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza
Abstract:
Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone
Procedia PDF Downloads 3875 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging
Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi
Abstract:
Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA
Procedia PDF Downloads 2814 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods
Authors: Dario Milani, Guido Morgenthal
Abstract:
Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method
Procedia PDF Downloads 2633 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles
Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol
Abstract:
Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.Keywords: bone, PCL, 3D printing, tissue engineering
Procedia PDF Downloads 592 Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona
Authors: Chuyuan Wang, Nayan Khare, Lily Villa, Patricia Solis, Elizabeth A. Wentz
Abstract:
Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables.Keywords: census, empirical modeling, heat-related morbidity, spatial analysis
Procedia PDF Downloads 1281 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming
Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero
Abstract:
Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up
Procedia PDF Downloads 244