Search results for: adaptive modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4902

Search results for: adaptive modeling

4842 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm

Authors: Alireza Alesaadi

Abstract:

Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.

Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering

Procedia PDF Downloads 508
4841 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller

Authors: Hossein Kheiri, Bashir Naderi, Mohamad Reza Niknam

Abstract:

In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method.

Keywords: Lyapunov stability, synchronization, chaos, optimal control, adaptive control

Procedia PDF Downloads 487
4840 Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies

Authors: Ayse Ozturk

Abstract:

The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling process

Keywords: cognition, collective learning, mathematical modeling competencies, problem-solving

Procedia PDF Downloads 158
4839 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine

Authors: Bessaad Taieb, Benbouali Abderrahmen

Abstract:

Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.

Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine

Procedia PDF Downloads 95
4838 Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant

Authors: Khaing Yadana Swe, Lillie Dewan

Abstract:

At present, the cascade PID control is widely used to control the super-heating temperature (main steam temperature). As the main steam temperature has the characteristics of large inertia, large time-delay, and time varying, etc., conventional PID control strategy can not achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.

Keywords: model-free adaptive control, cascade control, adaptive control, PID

Procedia PDF Downloads 602
4837 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids

Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao

Abstract:

An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.

Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.

Procedia PDF Downloads 148
4836 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets

Authors: Mohammad Ghavami, Reza S. Dilmaghani

Abstract:

This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.

Keywords: adaptive methods, LSE, MSE, prediction of financial Markets

Procedia PDF Downloads 336
4835 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System

Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia

Abstract:

The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.

Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition

Procedia PDF Downloads 489
4834 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel

Authors: Said Elkassimi, Said Safi, B. Manaut

Abstract:

This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.

Keywords: adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF

Procedia PDF Downloads 313
4833 Assessing the Adaptive Re-Use Potential of Buildings as Part of the Disaster Management Process

Authors: A. Esra İdemen, Sinan M. Şener, Emrah Acar

Abstract:

The technological paradigm of the disaster management field, especially in the case of governmental intervention strategies, is generally based on rapid and flexible accommodation solutions. From various technical solution patterns used to address the immediate housing needs of disaster victims, the adaptive re-use of existing buildings can be considered to be both low-cost and practical. However, there is a scarcity of analytical methods to screen, select and adapt buildings to help decision makers in cases of emergency. Following an extensive literature review, this paper aims to highlight key points and problem areas associated with the adaptive re-use of buildings within the disaster management context. In other disciplines such as real estate management, the adaptive re-use potential (ARP) of existing buildings is typically based on the prioritization of a set of technical and non-technical criteria which are then weighted to arrive at an economically viable investment decision. After a disaster, however, the assessment of the ARP of buildings requires consideration of different/additional layers of analysis which stem from general disaster management principles and the peculiarities of different types of disasters, as well as of their victims. In this paper, a discussion of the development of an adaptive re-use potential (ARP) assessment model is presented. It is thought that governmental and non-governmental decision makers who are required to take quick decisions to accommodate displaced masses following disasters are likely to benefit from the implementation of such a model.

Keywords: adaptive re-use of buildings, disaster management, temporary housing, assessment model

Procedia PDF Downloads 332
4832 Negative Sequence-Based Protection Techniques for Microgrid Connected Power Systems

Authors: Isabelle Snyder, Travis Smith

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low-induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected modes. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid-connected or microgrid-connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are labeled as follows: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR).

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection

Procedia PDF Downloads 96
4831 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 481
4830 Recursive Parametric Identification of a Doubly Fed Induction Generator-Based Wind Turbine

Authors: A. El Kachani, E. Chakir, A. Ait Laachir, A. Niaaniaa, J. Zerouaoui

Abstract:

This document presents an adaptive controller based on recursive parametric identification applied to a wind turbine based on the doubly-fed induction machine (DFIG), to compensate the faults and guarantee efficient of the DFIG. The proposed adaptive controller is based on the recursive least square algorithm which considers that the best estimator for the vector parameter is the vector x minimizing a quadratic criterion. Furthermore, this method can improve the rapidity and precision of the controller based on a model. The proposed controller is validated via simulation on a 5.5 kW DFIG-based wind turbine. The results obtained seem to be good. In addition, they show the advantages of an adaptive controller based on recursive least square algorithm.

Keywords: adaptive controller, recursive least squares algorithm, wind turbine, doubly fed induction generator

Procedia PDF Downloads 288
4829 The Variable Sampling Interval Xbar Chart versus the Double Sampling Xbar Chart

Authors: Michael B. C. Khoo, J. L. Khoo, W. C. Yeong, W. L. Teoh

Abstract:

The Shewhart Xbar control chart is a useful process monitoring tool in manufacturing industries to detect the presence of assignable causes. However, it is insensitive in detecting small process shifts. To circumvent this problem, adaptive control charts are suggested. An adaptive chart enables at least one of the chart’s parameters to be adjusted to increase the chart’s sensitivity. Two common adaptive charts that exist in the literature are the double sampling (DS) Xbar and variable sampling interval (VSI) Xbar charts. This paper compares the performances of the DS and VSI Xbar charts, based on the average time to signal (ATS) criterion. The ATS profiles of the DS Xbar and VSI Xbar charts are obtained using the Mathematica and Statistical Analysis System (SAS) programs, respectively. The results show that the VSI Xbar chart is generally superior to the DS Xbar chart.

Keywords: adaptive charts, average time to signal, double sampling, charts, variable sampling interval

Procedia PDF Downloads 286
4828 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: few-shot learning, triplet network, adaptive margin, deep learning

Procedia PDF Downloads 169
4827 Adaptive Nonparametric Approach for Guaranteed Real-Time Detection of Targeted Signals in Multichannel Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

An adaptive nonparametric method is proposed for stable real-time detection of seismoacoustic sources in multichannel C-OTDR systems with a significant number of channels. This method guarantees given upper boundaries for probabilities of Type I and Type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this report.

Keywords: guaranteed detection, multichannel monitoring systems, change point, interval estimation, adaptive detection

Procedia PDF Downloads 447
4826 Cooperative CDD scheme Based on Adaptive Modulation in Wireless Communiation System

Authors: Seung-Jun Yu, Hwan-Jun Choi, Hyoung-Kyu Song

Abstract:

Among spatial diversity scheme, orthogonal space-time block code (OSTBC) and cyclic delay diversity (CDD) have been widely studied for the cooperative wireless relaying system. However, conventional OSTBC and CDD cannot cope with change in the number of relays owing to low throughput or error performance. In this paper, we propose a cooperative cyclic delay diversity (CDD) scheme that use hierarchical modulation at the source and adaptive modulation based on cyclic redundancy check (CRC) code at the relays.

Keywords: adaptive modulation, cooperative communication, CDD, OSTBC

Procedia PDF Downloads 431
4825 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.

Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining

Procedia PDF Downloads 434
4824 Adaptive Multiple Transforms Hardware Architecture for Versatile Video Coding

Authors: T. Damak, S. Houidi, M. A. Ben Ayed, N. Masmoudi

Abstract:

The Versatile Video Coding standard (VVC) is actually under development by the Joint Video Exploration Team (or JVET). An Adaptive Multiple Transforms (AMT) approach was announced. It is based on different transform modules that provided an efficient coding. However, the AMT solution raises several issues especially regarding the complexity of the selected set of transforms. This can be an important issue, particularly for a future industrial adoption. This paper proposed an efficient hardware implementation of the most used transform in AMT approach: the DCT II. The developed circuit is adapted to different block sizes and can reach a minimum frequency of 192 MHz allowing an optimized execution time.

Keywords: adaptive multiple transforms, AMT, DCT II, hardware, transform, versatile video coding, VVC

Procedia PDF Downloads 146
4823 Adaptive Control Approach for an Unmanned Aerial Manipulator

Authors: Samah Riache, Madjid Kidouche

Abstract:

In this paper, we propose a nonlinear controller for Aerial Manipulator (AM) consists of a Quadrotor equipped with two degrees of freedom robotic arm. The kinematic and dynamic models were developed by considering the aerial manipulator as a coupled system. The proposed controller was designed using Nonsingular Terminal Sliding Mode Control. The objective of our approach is to improve performances and attenuate the chattering drawback using an adaptive algorithm in the discontinuous control part. Simulation results prove the effectiveness of the proposed control strategy compared with Sliding Mode Controller.

Keywords: adaptive algorithm, quadrotor, robotic arm, sliding mode control

Procedia PDF Downloads 183
4822 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning

Procedia PDF Downloads 417
4821 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: adaptive algorithm, fuzzy systems, membership functions, observer

Procedia PDF Downloads 206
4820 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms

Authors: Abdelghani Alidra, Mohamed Tahar Kimour

Abstract:

Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.

Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture

Procedia PDF Downloads 285
4819 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.

Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction

Procedia PDF Downloads 147
4818 Bridging the Gap between Different Interfaces for Business Process Modeling

Authors: Katalina Grigorova, Kaloyan Mironov

Abstract:

The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever-increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.

Keywords: business process modeling, business process modeling standards, workflow patterns, converting models

Procedia PDF Downloads 584
4817 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems

Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran

Abstract:

Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.

Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model

Procedia PDF Downloads 516
4816 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
4815 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System

Authors: S. Yaman, S. Rostami

Abstract:

In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.

Keywords: function tuner method (FTM), fuzzy modeling, fuzzy PID controller, genetic algorithm (GA)

Procedia PDF Downloads 308
4814 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang

Abstract:

This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search

Procedia PDF Downloads 157
4813 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation

Authors: R. Mellah, R. Toumi

Abstract:

This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation

Procedia PDF Downloads 324