Search results for: Continuous wavelet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2475

Search results for: Continuous wavelet

2415 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis

Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri

Abstract:

In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.

Keywords: automotive gearbox, mathematical morphology, wavelet, bispectrum

Procedia PDF Downloads 474
2414 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 384
2413 The Effect of Technology on Advanced Automotive Electronics

Authors: Abanob Nady Wasef Moawed

Abstract:

In more complicated systems, inclusive of automotive gearboxes, a rigorous remedy of the data is essential because there are several transferring elements (gears, bearings, shafts, and many others.), and in this way, there are numerous viable sources of mistakes and also noise. The fundamental goal of these elements are the detection of damage in car gearbox. The detection strategies used are the wavelet technique, the bispectrum, advanced filtering techniques (selective filtering) of vibrational alerts and mathematical morphology. Gearbox vibration assessments were achieved (gearboxes in proper circumstance and with defects) of a manufacturing line of a huge car assembler. The vibration indicators have acquired the use of five accelerometers in distinct positions of the sample. The effects acquired using the kurtosis, bispectrum, wavelet and mathematical morphology confirmed that it's far possible to identify the lifestyles of defects in automobile gearboxes.

Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioningautomotive gearbox, mathematical morphology, wavelet, bispectrum

Procedia PDF Downloads 30
2412 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
2411 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 639
2410 The Relationship between Spanish Economic Variables: Evidence from the Wavelet Techniques

Authors: Concepcion Gonzalez-Concepcion, Maria Candelaria Gil-Fariña, Celina Pestano-Gabino

Abstract:

We analyze six relevant economic and financial variables for the period 2000M1-2015M3 in the context of the Spanish economy: a financial index (IBEX35), a commodity (Crude Oil Price in euros), a foreign exchange index (EUR/USD), a bond (Spanish 10-Year Bond), the Spanish National Debt and the Consumer Price Index. The goal of this paper is to analyze the main relations between them by computing the Wavelet Power Spectrum and the Cross Wavelet Coherency associated with Morlet wavelets. By using a special toolbox in MATLAB, we focus our interest on the period variable. We decompose the time-frequency effects and improve the interpretation of the results by non-expert users in the theory of wavelets. The empirical evidence shows certain instability periods and reveals various changes and breaks in the causality relationships for sample data. These variables were individually analyzed with Daubechies Wavelets to visualize high-frequency variance, seasonality, and trend. The results are included in Proceeding 20th International Academic Conference, 2015, International Institute of Social and Economic Sciences (IISES), Madrid.

Keywords: economic and financial variables, Spain, time-frequency domain, wavelet coherency

Procedia PDF Downloads 240
2409 Release Management with Continuous Delivery: A Case Study

Authors: A. Maruf Aytekin

Abstract:

We present our approach on using continuous delivery pattern for release management. One of the key practices of agile and lean teams is the continuous delivery of new features to stakeholders. The main benefits of this approach lie in the ability to release new applications rapidly which has real strategic impact on the competitive advantage of an organization. Organizations that successfully implement Continuous Delivery have the ability to evolve rapidly to support innovation, provide stable and reliable software in more efficient ways, decrease the amount of resources need for maintenance, and lower the software delivery time and costs. One of the objectives of this paper is to elaborate a case study where IT division of Central Securities Depository Institution (MKK) of Turkey apply Continuous Delivery pattern to improve release management process.

Keywords: automation, continuous delivery, deployment, release management

Procedia PDF Downloads 256
2408 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus

Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti

Abstract:

Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.

Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel

Procedia PDF Downloads 195
2407 Robust Medical Image Watermarking based on Contourlet and Extraction Using ICA

Authors: S. Saju, G. Thirugnanam

Abstract:

In this paper, a medical image watermarking algorithm based on contourlet is proposed. Medical image watermarking is a special subcategory of image watermarking in the sense that images have special requirements. Watermarked medical images should not differ perceptually from their original counterparts because clinical reading of images must not be affected. Watermarking techniques based on wavelet transform are reported in many literatures but robustness and security using contourlet are better when compared to wavelet transform. The main challenge in exploring geometry in images comes from the discrete nature of the data. In this paper, original image is decomposed to two level using contourlet and the watermark is embedded in the resultant sub-bands. Sub-band selection is based on the value of Peak Signal to Noise Ratio (PSNR) that is calculated between watermarked and original image. To extract the watermark, Kernel ICA is used and it has a novel characteristic is that it does not require the transformation process to extract the watermark. Simulation results show that proposed scheme is robust against attacks such as Salt and Pepper noise, Median filtering and rotation. The performance measures like PSNR and Similarity measure are evaluated and compared with Discrete Wavelet Transform (DWT) to prove the robustness of the scheme. Simulations are carried out using Matlab Software.

Keywords: digital watermarking, independent component analysis, wavelet transform, contourlet

Procedia PDF Downloads 528
2406 Stator Short-Circuits Fault Diagnosis in Induction Motors

Authors: K. Yahia, M. Sahraoui, A. Guettaf

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental results, show the effectiveness of the used method.

Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), Current Park’s Vector Modulus (CPVM)

Procedia PDF Downloads 457
2405 Sampling Two-Channel Nonseparable Wavelets and Its Applications in Multispectral Image Fusion

Authors: Bin Liu, Weijie Liu, Bin Sun, Yihui Luo

Abstract:

In order to solve the problem of lower spatial resolution and block effect in the fusion method based on separable wavelet transform in the resulting fusion image, a new sampling mode based on multi-resolution analysis of two-channel non separable wavelet transform, whose dilation matrix is [1,1;1,-1], is presented and a multispectral image fusion method based on this kind of sampling mode is proposed. Filter banks related to this kind of wavelet are constructed, and multiresolution decomposition of the intensity of the MS and panchromatic image are performed in the sampled mode using the constructed filter bank. The low- and high-frequency coefficients are fused by different fusion rules. The experiment results show that this method has good visual effect. The fusion performance has been noted to outperform the IHS fusion method, as well as, the fusion methods based on DWT, IHS-DWT, IHS-Contourlet transform, and IHS-Curvelet transform in preserving both spectral quality and high spatial resolution information. Furthermore, when compared with the fusion method based on nonsubsampled two-channel non separable wavelet, the proposed method has been observed to have higher spatial resolution and good global spectral information.

Keywords: image fusion, two-channel sampled nonseparable wavelets, multispectral image, panchromatic image

Procedia PDF Downloads 440
2404 A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding

Authors: R. S. Remya, U. S. Sethulekshmi

Abstract:

Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background.

Keywords: discrete wavelet transform, optical flow, optical flow variation, video tampering

Procedia PDF Downloads 359
2403 Image Compression Based on Regression SVM and Biorthogonal Wavelets

Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane

Abstract:

In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.

Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding

Procedia PDF Downloads 382
2402 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: discrete wavelet transform, speech intelligibility, STOI, standard deviation

Procedia PDF Downloads 148
2401 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 279
2400 The OQAM-OFDM System Using WPT/IWPT Replaced FFT/IFFT

Authors: Alaa H. Thabet, Ehab F. Badran, Moustafa H. Aly

Abstract:

With the rapid expand of wireless digital communications, demand for wireless systems that are reliable and have a high spectral efficiency have increased too. FBMC scheme based on the OFDM/OQAM has been recognized for its good performance to achieve high data rates. Fast Fourier Transforms (FFT) has been used to produce the orthogonal sub-carriers. Due to the drawbacks of OFDM -FFT based system which are the high peak-to-average ratio (PAR) and the synchronization. In this paper, Wavelet Packet Transform (WPT) is used in the place of FFT, and show better performance.

Keywords: OQAM-OFDM, wavelet packet transform, PAPR, FFT

Procedia PDF Downloads 460
2399 Continuous Improvement in Emerging Economies: Insights from a Multi-Case Analysis

Authors: Luis A. Paipa-Galeano, Yavar Jarrah-Nezhad, César A. Bernal-Torres

Abstract:

This paper presents a case study of four companies in an emerging economy to identify the key success factors and barriers to sustaining continuous improvement practices. The study analyzes the empirical evidence and compares it to the literature review to provide insights for companies looking to increase their maturity level in this area. The five success factors identified are the availability of resources, commitment and support from management, participation of employees in identifying tasks to improve, clear and realistic objectives for continuous improvement, and the existence of a leader or responsible for continuous improvement. The major barriers to success are a lack of alignment between the organization’s strategic objectives and continuous improvement objectives, a lack of motivation in the team, and resistance to change. The paper concludes with recommendations for companies to reduce the risk of improvement failure and increase their maturity level in continuous improvement.

Keywords: emerging economies, Kaizen, continuous improvement sustainability, maturity model

Procedia PDF Downloads 74
2398 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 91
2397 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 371
2396 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 85
2395 Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation

Authors: Péter Tanos, József Kovács, Angéla Anda, Gábor Várbíró, Sándor Molnár, István Gábor Hatvani

Abstract:

The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream.

Keywords: annual periodicity water quality, spatiotemporal variability of periodic behavior, Morlet wavelet spectrum analysis, River Tisza

Procedia PDF Downloads 344
2394 Video Compression Using Contourlet Transform

Authors: Delara Kazempour, Mashallah Abasi Dezfuli, Reza Javidan

Abstract:

Video compression used for channels with limited bandwidth and storage devices has limited storage capabilities. One of the most popular approaches in video compression is the usage of different transforms. Discrete cosine transform is one of the video compression methods that have some problems such as blocking, noising and high distortion inappropriate effect in compression ratio. wavelet transform is another approach is better than cosine transforms in balancing of compression and quality but the recognizing of curve curvature is so limit. Because of the importance of the compression and problems of the cosine and wavelet transforms, the contourlet transform is most popular in video compression. In the new proposed method, we used contourlet transform in video image compression. Contourlet transform can save details of the image better than the previous transforms because this transform is multi-scale and oriented. This transform can recognize discontinuity such as edges. In this approach we lost data less than previous approaches. Contourlet transform finds discrete space structure. This transform is useful for represented of two dimension smooth images. This transform, produces compressed images with high compression ratio along with texture and edge preservation. Finally, the results show that the majority of the images, the parameters of the mean square error and maximum signal-to-noise ratio of the new method based contourlet transform compared to wavelet transform are improved but in most of the images, the parameters of the mean square error and maximum signal-to-noise ratio in the cosine transform is better than the method based on contourlet transform.

Keywords: video compression, contourlet transform, discrete cosine transform, wavelet transform

Procedia PDF Downloads 444
2393 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers

Authors: Rajkumar Kolangarakandy

Abstract:

Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.

Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL

Procedia PDF Downloads 335
2392 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising

Procedia PDF Downloads 123
2391 Comparative Study Between Continuous Versus Pulsed Ultrasound in Knee Osteoarthritis

Authors: Karim Mohamed Fawzy Ghuiba, Alaa Aldeen Abd Al Hakeem Balbaa, Shams Elbaz

Abstract:

Objectives: To compare between the effects continuous and pulsed ultrasound on pain and function in patient with knee osteoarthritis. Design: Randomized-Single blinded Study. Participants: 6 patients with knee osteoarthritis with mean age 53.66±3.61years, Altman Grade II or III. Interventions: Subjects were randomly assigned into two groups; Group A received continuous ultrasound and Group B received pulsed ultrasound. Outcome measures: Effects of pulsed and continuous ultrasound were evaluated by pain threshold assessed by visual analogue scale (VAS) scores and function assessed by the Western Ontario and McMaster Universities osteoarthritis index (WOMAC) scores. Results: There was no significant decrease in VAS and WOMAC scores in patients treated with pulsed or continuous ultrasound; and there were no significant differences between both groups. Conclusion: there is no difference between the effects of pulsed and continuous ultrasound in pain relief or functional outcome in patients with knee osteoarthritis.

Keywords: knee osteoarthritis, pulsed ultrasound, ultrasound therapy, continuous ultrasound

Procedia PDF Downloads 285
2390 Optimization of Shear Frame Structures Applying Various Forms of Wavelet Transforms

Authors: Seyed Sadegh Naseralavi, Sohrab Nemati, Ehsan Khojastehfar, Sadegh Balaghi

Abstract:

In the present research, various formulations of wavelet transform are applied on acceleration time history of earthquake. The mentioned transforms decompose the strong ground motion into low and high frequency parts. Since the high frequency portion of strong ground motion has a minor effect on dynamic response of structures, the structure is excited by low frequency part. Consequently, the seismic response of structure is predicted consuming one half of computational time, comparing with conventional time history analysis. Towards reducing the computational effort needed in seismic optimization of structure, seismic optimization of a shear frame structure is conducted by applying various forms of mentioned transformation through genetic algorithm.

Keywords: time history analysis, wavelet transform, optimization, earthquake

Procedia PDF Downloads 234
2389 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork

Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting

Abstract:

This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.

Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark

Procedia PDF Downloads 268
2388 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement

Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini

Abstract:

Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.

Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis

Procedia PDF Downloads 138
2387 Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform

Authors: Bruno S. Soria, Mauricio R. Policena, Andre J. Souza

Abstract:

The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors.

Keywords: face milling, stainless steel, tool condition monitoring, wavelet discrete transform

Procedia PDF Downloads 146
2386 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems

Authors: T. A. Biala

Abstract:

This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.

Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence

Procedia PDF Downloads 377