Search results for: multicore and manycore programming
101 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing
Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou
Abstract:
The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation
Procedia PDF Downloads 118100 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 13599 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China
Authors: Yan-Shen Yang, Bai-Chen Xie
Abstract:
Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model
Procedia PDF Downloads 14798 Inverterless Grid Compatible Micro Turbine Generator
Authors: S. Ozeri, D. Shmilovitz
Abstract:
Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.Keywords: gas turbine, inverter, power multiplier, distributed generation
Procedia PDF Downloads 23897 Pathway to Sustainable Shipping: Electric Ships
Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang
Abstract:
Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.Keywords: cost reduction, electric ship, environmental protection, sustainable shipping
Procedia PDF Downloads 7796 Logistics and Supply Chain Management Using Smart Contracts on Blockchain
Authors: Armen Grigoryan, Milena Arakelyan
Abstract:
The idea of smart logistics is still quite a complicated one. It can be used to market products to a large number of customers or to acquire raw materials of the highest quality at the lowest cost in geographically dispersed areas. The use of smart contracts in logistics and supply chain management has the potential to revolutionize the way that goods are tracked, transported, and managed. Smart contracts are simply computer programs written in one of the blockchain programming languages (Solidity, Rust, Vyper), which are capable of self-execution once the predetermined conditions are met. They can be used to automate and streamline many of the traditional manual processes that are currently used in logistics and supply chain management, including the tracking and movement of goods, the management of inventory, and the facilitation of payments and settlements between different parties in the supply chain. Currently, logistics is a core area for companies which is concerned with transporting products between parties. Still, the problem of this sector is that its scale may lead to detainments and defaults in the delivery of goods, as well as other issues. Moreover, large distributors require a large number of workers to meet all the needs of their stores. All this may contribute to big detainments in order processing and increases the potentiality of losing orders. In an attempt to break this problem, companies have automated all their procedures, contributing to a significant augmentation in the number of businesses and distributors in the logistics sector. Hence, blockchain technology and smart contracted legal agreements seem to be suitable concepts to redesign and optimize collaborative business processes and supply chains. The main purpose of this paper is to examine the scope of blockchain technology and smart contracts in the field of logistics and supply chain management. This study discusses the research question of how and to which extent smart contracts and blockchain technology can facilitate and improve the implementation of collaborative business structures for sustainable entrepreneurial activities in smart supply chains. The intention is to provide a comprehensive overview of the existing research on the use of smart contracts in logistics and supply chain management and to identify any gaps or limitations in the current knowledge on this topic. This review aims to provide a summary and evaluation of the key findings and themes that emerge from the research, as well as to suggest potential directions for future research on the use of smart contracts in logistics and supply chain management.Keywords: smart contracts, smart logistics, smart supply chain management, blockchain and smart contracts in logistics, smart contracts for controlling supply chain management
Procedia PDF Downloads 9595 A Geo DataBase to Investigate the Maximum Distance Error in Quality of Life Studies
Authors: Paolino Di Felice
Abstract:
The background and significance of this study come from papers already appeared in the literature which measured the impact of public services (e.g., hospitals, schools, ...) on the citizens’ needs satisfaction (one of the dimensions of QOL studies) by calculating the distance between the place where they live and the location on the territory of the services. Those studies assume that the citizens' dwelling coincides with the centroid of the polygon that expresses the boundary of the administrative district, within the city, they belong to. Such an assumption “introduces a maximum measurement error equal to the greatest distance between the centroid and the border of the administrative district.”. The case study, this abstract reports about, investigates the implications descending from the adoption of such an approach but at geographical scales greater than the urban one, namely at the three levels of nesting of the Italian administrative units: the (20) regions, the (110) provinces, and the 8,094 municipalities. To carry out this study, it needs to be decided: a) how to store the huge amount of (spatial and descriptive) input data and b) how to process them. The latter aspect involves: b.1) the design of algorithms to investigate the geometry of the boundary of the Italian administrative units; b.2) their coding in a programming language; b.3) their execution and, eventually, b.4) archiving the results in a permanent support. The IT solution we implemented is centered around a (PostgreSQL/PostGIS) Geo DataBase structured in terms of three tables that fit well to the hierarchy of nesting of the Italian administrative units: municipality(id, name, provinceId, istatCode, regionId, geometry) province(id, name, regionId, geometry) region(id, name, geometry). The adoption of the DBMS technology allows us to implement the steps "a)" and "b)" easily. In particular, step "b)" is simplified dramatically by calling spatial operators and spatial built-in User Defined Functions within SQL queries against the Geo DB. The major findings coming from our experiments can be summarized as follows. The approximation that, on the average, descends from assimilating the residence of the citizens with the centroid of the administrative unit of reference is of few kilometers (4.9) at the municipalities level, while it becomes conspicuous at the other two levels (28.9 and 36.1, respectively). Therefore, studies such as those mentioned above can be extended up to the municipal level without affecting the correctness of the interpretation of the results, but not further. The IT framework implemented to carry out the experiments can be replicated for studies referring to the territory of other countries all over the world.Keywords: quality of life, distance measurement error, Italian administrative units, spatial database
Procedia PDF Downloads 37194 Mural Exhibition as a Promotive Strategy to Proper Hygiene and Sanitation Practices among Children: A Case Study from Urban Slum Schools in Nairobi, Kenya
Authors: Abdulaziz Kikanga, Kellen Muchira, Styvers Kathuni, Paul Saitoti
Abstract:
Background: Provision of adequate levels of water, sanitation, and hygiene in schools is a strategic objective in achieving universal primary education among children in low and middle-income countries. However, lack of proper sanitation and hygiene practices in schools, especially those in informal settlement has resulted to an increased rate of school absenteeism thereby affecting the education and health outcomes of the children in those setting. Intervention or Response: Catholic Relief Services in Kenya supports five schools in informal settlements of Nairobi by painting of key hygiene messages on school walls to promote proper hygiene and sanitation practices among the school children. The mural exhibitions depict the essence of proper hygiene practices, proper latrine use, and hand washing after visiting the latrine. The artwork is context specific and its aimed at improving the uptake of proper hygiene and sanitation practices among the school children. Review of project related documents was conducted including interviews with the school children. Thematic analysis was used to interpret the qualitative information generated. Results and Lessons Learnt: 12 school children have interviewed on proper hygiene and sanitation practices and the exercise revealed that painted murals were the best communication platforms for creating awareness on proper sanitation on issues relating to water, sanitation, and hygiene in schools. The painting mural provided a strong knowledge base for the formation of healthy habits in both the school and informal settlement. In addition, these sanitation messages on the school walls empower the children to share these practices with their siblings, parents, and other family members thereby acting as agents of change to proper hygiene and sanitation in those informal settlements. The findings revealed that by adopting proper sanitation and hygiene practices, there has been a reduction of school absenteeism due to a decrease in disease related to inadequate sanitation and hygiene in schools. Conclusion: The adoption of proper sanitation in schools entails more than just a painted mural wall. Insights revealed that to have a lasting sanitation and hygiene intervention, there is a need to invest in effective hygiene educational programming that encourages the formation of proper hygiene habits and promotes changes in behavior.Keywords: education outcomes, informal settlement, mural exhibition, school hygiene and sanitation
Procedia PDF Downloads 25493 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 12192 Development of a Multi-User Country Specific Food Composition Table for Malawi
Authors: Averalda van Graan, Joelaine Chetty, Malory Links, Agness Mwangwela, Sitilitha Masangwi, Dalitso Chimwala, Shiban Ghosh, Elizabeth Marino-Costello
Abstract:
Food composition data is becoming increasingly important as dealing with food insecurity and malnutrition in its persistent form of under-nutrition is now coupled with increasing over-nutrition and its related ailments in the developing world, of which Malawi is not spared. In the absence of a food composition database (FCDB) inherent to our dietary patterns, efforts were made to develop a country-specific FCDB for nutrition practice, research, and programming. The main objective was to develop a multi-user, country-specific food composition database, and table from existing published and unpublished scientific literature. A multi-phased approach guided by the project framework was employed. Phase 1 comprised a scoping mission to assess the nutrition landscape for compilation activities. Phase 2 involved training of a compiler and data collection from various sources, primarily; institutional libraries, online databases, and food industry nutrient data. Phase 3 subsumed evaluation and compilation of data using FAO and IN FOODS standards and guidelines. Phase 4 concluded the process with quality assurance. 316 Malawian food items categorized into eight food groups for 42 components were captured. The majority were from the baby food group (27%), followed by a staple (22%) and animal (22%) food group. Fats and oils consisted the least number of food items (2%), followed by fruits (6%). Proximate values are well represented; however, the percent missing data is huge for some components, including Se 68%, I 75%, Vitamin A 42%, and lipid profile; saturated fat 53%, mono-saturated fat 59%, poly-saturated fat 59% and cholesterol 56%. A multi-phased approach following the project framework led to the development of the first Malawian FCDB and table. The table reflects inherent Malawian dietary patterns and nutritional concerns. The FCDB can be used by various professionals in nutrition and health. Rising over-nutrition, NCD, and changing diets challenge us for nutrient profiles of processed foods and complete lipid profiles.Keywords: analytical data, dietary pattern, food composition data, multi-phased approach
Procedia PDF Downloads 9391 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed
Authors: Marion G. Ben-Jacob, David Wang
Abstract:
There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.Keywords: emporium model, mathematics, pedagogy, STEM
Procedia PDF Downloads 7590 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business
Authors: Kritchakhris Na-Wattanaprasert
Abstract:
The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.Keywords: key performance indicator, warehouse management, warehouse operation, logistics management
Procedia PDF Downloads 43189 Fraud in the Higher Educational Institutions in Assam, India: Issues and Challenges
Authors: Kalidas Sarma
Abstract:
Fraud is a social problem changing with social change and it has a regional and global impact. Introduction of private domain in higher education along with public institutions has led to commercialization of higher education which encourages unprecedented mushrooming of private institutions resulting in fraudulent activities in higher educational institutions in Assam, India. Presently, fraud has been noticed in in-service promotion, fake entry qualification by teachers in different levels of work-place by using fake master degrees, master of philosophy and doctor of philosophy degree certificates. The aim and objective of the study are to identify grey areas in maintenance of quality in higher educational institutions in Assam and also to draw the contour for planning and implementation. This study is based on both primary and secondary data collected through questionnaire and seeking information through Right to Information Act 2005. In Assam, there are 301 undergraduate and graduate colleges distributed in 27 (Twenty seven) administrative districts with 11000 (Eleven thousand) college teachers. Total 421 (Four hundred twenty one) college teachers from the 14 respondent colleges have been taken for analysis. Data collected has been analyzed by using 'Hypertext Pre-processor' (PhP) application with My Sequel Structure Query Language (MySQL) and Google Map Application Programming Interface (APIs). Graph has been generated by using open source tool Chart.js. Spatial distribution maps have been generated with the help of geo-references of the colleges. The result shows: (i) the violation of University Grants Commission's (UGCs) Regulation for the awards of M. Phil/Ph.D. clearly exhibits. (ii) There is a gap between apex regulatory bodies of higher education at national and as well as state level to check fraud. (iii) Mala fide 'No Objection Certificate' (NOC) issued by the Government of Assam have played pivotal role in the occurrence of fraudulent practices in higher educational institutions of Assam. (iv) Violation of verdict of the Hon'ble Supreme Court of India regarding territorial jurisdiction of Universities for the awards of Ph.D. and M. Phil degrees in distance mode/study centre is also a responsible factor for the spread of these academic frauds in Assam and other states. The challenges and mitigation of these issues have been discussed.Keywords: Assam, fraud, higher education, mitigation
Procedia PDF Downloads 16788 A Multi-Criteria Decision Making Approach for Disassembly-To-Order Systems under Uncertainty
Authors: Ammar Y. Alqahtani
Abstract:
In order to minimize the negative impact on the environment, it is essential to manage the waste that generated from the premature disposal of end-of-life (EOL) products properly. Consequently, government and international organizations introduced new policies and regulations to minimize the amount of waste being sent to landfills. Moreover, the consumers’ awareness regards environment has forced original equipment manufacturers to consider being more environmentally conscious. Therefore, manufacturers have thought of different ways to deal with waste generated from EOL products viz., remanufacturing, reusing, recycling, or disposing of EOL products. The rate of depletion of virgin natural resources and their dependency on the natural resources can be reduced by manufacturers when EOL products are treated as remanufactured, reused, or recycled, as well as this will cut on the amount of harmful waste sent to landfills. However, disposal of EOL products contributes to the problem and therefore is used as a last option. Number of EOL need to be estimated in order to fulfill the components demand. Then, disassembly process needs to be performed to extract individual components and subassemblies. Smart products, built with sensors embedded and network connectivity to enable the collection and exchange of data, utilize sensors that are implanted into products during production. These sensors are used for remanufacturers to predict an optimal warranty policy and time period that should be offered to customers who purchase remanufactured components and products. Sensor-provided data can help to evaluate the overall condition of a product, as well as the remaining lives of product components, prior to perform a disassembly process. In this paper, a multi-period disassembly-to-order (DTO) model is developed that takes into consideration the different system uncertainties. The DTO model is solved using Nonlinear Programming (NLP) in multiple periods. A DTO system is considered where a variety of EOL products are purchased for disassembly. The model’s main objective is to determine the best combination of EOL products to be purchased from every supplier in each period which maximized the total profit of the system while satisfying the demand. This paper also addressed the impact of sensor embedded products on the cost of warranties. Lastly, this paper presented and analyzed a case study involving various simulation conditions to illustrate the applicability of the model.Keywords: closed-loop supply chains, environmentally conscious manufacturing, product recovery, reverse logistics
Procedia PDF Downloads 13787 Review of the Model-Based Supply Chain Management Research in the Construction Industry
Authors: Aspasia Koutsokosta, Stefanos Katsavounis
Abstract:
This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.Keywords: construction supply chain management, modeling, operations research, optimization, simulation
Procedia PDF Downloads 50386 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions
Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini
Abstract:
This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing
Procedia PDF Downloads 14685 Mental Health Impacts of COVID-19 on Diverse Youth and Families in Canada
Authors: Lucksini Raveendran
Abstract:
Introduction: This mixed-methods study focuses on the experiences of ethnocultural youth and families in Canada, identifying key barriers and opportunities to inform service programming and policies that can better meet their mental health needs during the COVID-19 pandemic and beyond. Methods: Mental Health Commission of Canada's Headstrong initiative administered the youth survey (April – June 2020) and family survey (June – August 2020) with a total sample size of 137 and 481 respondents, respectively. Thematic analysis was conducted to identify key challenges faced, coping strategies used, and help-seeking behaviours. A similar approach was also applied to the family survey data, but instead, a representative sample was collated to analyze geographically variable and ethnically diverse subgroups. Results and analysis: Multiple challenges have impacted families, including increased feelings of loneliness and distress from border travel restrictions, especially among those navigating pregnancy alone or managing children with developmental needs, which is often understudied. Also, marginalized groups were disproportionately affected by inequitable access to communication technologies, further deepening the digital divide. Some reported living in congregated homes with regular conflicts, thus leading to increased anxiety and exposure to violence. For many families, urbanicity and ethnicity played a key role in how families reported coping with feelings of uncertainty while managing work commitments, navigating community resources, fulfilling care responsibilities, and homeschooling children of all ages. Despite these challenges, there was evidence of post-traumatic growth and building community resiliency. Conclusions and implications for policy, practice, or additional research: There is a need to foster opportunities to promote and sustain mental health, wellness, and resilience for families through social connections. Also, intersectionality must be embedded in the collection, analysis, and application of data to improve equitable access to evidence-based and recovery-oriented mental health supports among diverse families in Canada. Lastly, address future research on the long-term COVID-19 impacts of travel border restrictions on family wellness.Keywords: mental health, youth mental health, family wellness, health equity
Procedia PDF Downloads 9484 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts
Authors: Elham Kiyani
Abstract:
In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization
Procedia PDF Downloads 21683 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis
Authors: Elcin Timur Cakmak, Ayse Oguzlar
Abstract:
This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.Keywords: classification algorithms, machine learning, sentiment analysis, Twitter
Procedia PDF Downloads 7382 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School
Authors: Martín Pratto Burgos
Abstract:
The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.Keywords: machine-learning, engineering, university, education, computational models
Procedia PDF Downloads 9481 Participatory Planning of the III Young Sea Meeting: An Experience of the Young Albatroz Collective
Authors: Victor V. Ribeiro, Thais C. Lopes, Rafael A. A. Monteiro
Abstract:
The Albatroz, Baleia Jubarte, Coral Vivo, Golfinho Rotador and Tamar projects make up the Young Sea Network (YSN), part of the BIOMAR Network, which aims to integrate the environmental youths of the Brazilian coast. For this, three editions of the Young Sea Meeting (YSM) were performed. Seeking to stimulate belonging, self-knowledge, participation, autonomy and youth protagonism, the Albatroz Project hosted the III YSM, in Bertioga (SP), in April 2019 and aimed to collectively plan the meeting. Five pillars of Environmental Education were used: identity, community, dialogue, power to act and happiness, the OCA Method and the Young Educates Young; Young Chooses Young; and One Generation Learns from the Other principals. In December 2018, still in the II YSM, the participatory planning of the III YSM began. Two "representatives" of each group were voluntarily elected to facilitate joint decisions, propose, receive and communicate demands from their groups and coordinators. The Young Albatroz Collective (YAC) facilitated the organization process as a whole. The purpose of the meeting was collectively constructed, answering the following question: "What is the YSM for?". Only two of the five pairs of representatives responded. There was difficulty gathering the young people in each group, because it was the end of the year, with people traveling. Thus, due to the short planning time, the YAC built a pre-programming to be validated by the other groups, defining as the objective of the meeting the strengthening of youth protagonism within the YSN. In the planning process, the YAC held 20 meetings, with 60 hours of face-to-face work, in three months, and two technical visits to the headquarters of the III YSM. The participatory dynamics of consultation, when it occurred, required up to two weeks, evidencing the limits of participation. The project coordinations stated that they were not being included in the process by their young people. There is a need to work more to be able to aloud the participation, developing skills and understanding about its principles. This training must take place in an articulated way between the network, implying the important role of the five projects in jointly developing and implementing educator processes with this objective in a national dimension, but without forgetting the specificities of each young group. Finally, it is worth highlighting the great potential of the III YSM by stimulating the exercise of leading environmental youth in more than 50 young people from Brazilian coast, linked to the YSN, stimulating the learning and mobilization of young people in favor of coastal and marine conservation.Keywords: Marine Conservation, Environmental Education, Youth, Participation, Planning
Procedia PDF Downloads 16680 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation
Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim
Abstract:
In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement
Procedia PDF Downloads 11779 Using Digital Innovations to Increase Awareness and Intent to Use Depo-Medroxy Progesterone Acetate-Subcutaneous Contraception among Women of Reproductive Age in Nigeria, Uganda, and Malawi
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Introduction: Digital innovations have been useful in supporting a client’s contraceptive user journey from awareness to method initiation. The concept of contraceptive self-care is being promoted globally as a means for achieving universal access to quality contraceptive care; however, information about this approach is limited. An important determinant of the scale of awareness is the message construct, choice of information channel, and an understanding of the socio-epidemiological dynamics within the target audience. Significant gains have been made recently in expanding the awareness base of DMPA-SC -a relatively new entrant into the family planning method mix. The cornerstone of this success is a multichannel promotion campaign themed Discover your Power (DYP). The DYP campaign combines content marketing across select social media platforms, chatbots, Cyber-IPC, Interactive Voice Response (IVR), and radio campaigns. Methodology: During implementation, the project monitored predefined metrics of awareness and intent, such as the number of persons reached with the messages, the number of impressions, and meaningful engagement (link-clicks). Metrics/indicators are extracted through native insight/analytics tools across the various platforms. The project also enlists community mobilizers (CMs) who go door-to-door and engage WRA to advertise DISC’s online presence and support them to engage with IVR, digital companion (chatbot), Facebook page, and DiscoverYourPower website. Results: The result showed that the digital platforms recorded 242 million impressions and reached 82 million users with key DMPA-SC self-injection messaging in the three countries. As many as 3.4 million persons engaged (liked, clicked, shared, or reposted) digital posts -an indication of intention. Conclusion: Digital solutions and innovations are gradually becoming the archetype for the advancement of the self-care agenda. Digital innovations can also be used to increase awareness and normalize contraceptive self-care behavior amongst women of reproductive age if they are made an integral part of reproductive health programming.Keywords: digital transformation, health systems, DMPA-SC, family planning, self-care
Procedia PDF Downloads 8178 A First Step towards Automatic Evolutionary for Gas Lifts Allocation Optimization
Authors: Younis Elhaddad, Alfonso Ortega
Abstract:
Oil production by means of gas lift is a standard technique in oil production industry. To optimize the total amount of oil production in terms of the amount of gas injected is a key question in this domain. Different methods have been tested to propose a general methodology. Many of them apply well-known numerical methods. Some of them have taken into account the power of evolutionary approaches. Our goal is to provide the experts of the domain with a powerful automatic searching engine into which they can introduce their knowledge in a format close to the one used in their domain, and get solutions comprehensible in the same terms, as well. These proposals introduced in the genetic engine the most expressive formal models to represent the solutions to the problem. These algorithms have proven to be as effective as other genetic systems but more flexible and comfortable for the researcher although they usually require huge search spaces to justify their use due to the computational resources involved in the formal models. The first step to evaluate the viability of applying our approaches to this realm is to fully understand the domain and to select an instance of the problem (gas lift optimization) in which applying genetic approaches could seem promising. After analyzing the state of the art of this topic, we have decided to choose a previous work from the literature that faces the problem by means of numerical methods. This contribution includes details enough to be reproduced and complete data to be carefully analyzed. We have designed a classical, simple genetic algorithm just to try to get the same results and to understand the problem in depth. We could easily incorporate the well mathematical model, and the well data used by the authors and easily translate their mathematical model, to be numerically optimized, into a proper fitness function. We have analyzed the 100 curves they use in their experiment, similar results were observed, in addition, our system has automatically inferred an optimum total amount of injected gas for the field compatible with the addition of the optimum gas injected in each well by them. We have identified several constraints that could be interesting to incorporate to the optimization process but that could be difficult to numerically express. It could be interesting to automatically propose other mathematical models to fit both, individual well curves and also the behaviour of the complete field. All these facts and conclusions justify continuing exploring the viability of applying the approaches more sophisticated previously proposed by our research group.Keywords: evolutionary automatic programming, gas lift, genetic algorithms, oil production
Procedia PDF Downloads 16277 Heating Demand Reduction in Single Family Houses Community through Home Energy Management: Putting Users in Charge
Authors: Omar Shafqat, Jaime Arias, Cristian Bogdan, Björn Palm
Abstract:
Heating constitutes a major part of the overall energy consumption in Sweden. In 2013 heating and hot water accounted for about 55% of the total energy use in the housing sector. Historically, the end users have not been able to make a significant impact on their consumption on account of traditional control systems that do not facilitate interaction and control of the heating systems. However, in recent years internet connected home energy management systems have become increasingly available which allow users to visualize the indoor temperatures as well as control the heating system. However, the adoption of these systems is still in its nascent stages. This paper presents the outcome of a study carried out in a community of single-family houses in Stockholm. Heating in the area is provided through district heating, and the neighbourhood is connected through a local micro thermal grid, which is owned and operated by the local community. Heating in the houses is accomplished through a hydronic system equipped with radiators. The system installed offers the households to control the indoor temperature through a mobile application as well as through a physical thermostat. It was also possible to program the system to, for instance, lower the temperatures during night time and when the users were away. The users could also monitor the indoor temperatures through the application. It was additionally possible to create different zones in the house with their own individual programming. The historical heating data (in the form of billing data) was available for several previous years and has been used to perform quantitative analysis for the study after necessary normalization for weather variations. The experiment involved 30 households out of a community of 178 houses. The area was selected due to uniform construction profile in the area. It was observed that despite similar design and construction period there was a large variation in the heating energy consumption in the area which can for a large part be attributed to user behaviour. The paper also presents qualitative analysis done through survey questions as well as a focus group carried out with the participants. Overall, considerable energy savings were accomplished during the trial, however, there was a considerable variation between the participating households. The paper additionally presents recommendations to improve the impact of home energy management systems for heating in terms of improving user engagement and hence the energy impact.Keywords: energy efficiency in buildings, energy behavior, heating control system, home energy management system
Procedia PDF Downloads 17376 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models
Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble
Abstract:
Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate
Procedia PDF Downloads 21575 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building
Authors: A. Schuchter, M. Promegger
Abstract:
The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning
Procedia PDF Downloads 12074 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana
Authors: Gautier Viaud, Paul-Henry Cournède
Abstract:
Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models
Procedia PDF Downloads 30373 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence
Authors: Garry Gorman, Nigel McKelvey, James Connolly
Abstract:
This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.Keywords: computer science education, artificial intelligence, growth mindset, pedagogy
Procedia PDF Downloads 8772 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 62