Search results for: multi MPPT-inverter
3260 Multi-Criteria Decision Approach to Performance Measurement Techniques Data Envelopment Analysis: Case Study of Kerman City’s Parks
Authors: Ali A. Abdollahi
Abstract:
During the last several decades, scientists have consistently applied Multiple Criteria Decision-Making methods in making decisions about multi-faceted, complicated subjects. While making such decisions and in order to achieve more accurate evaluations, they have regularly used a variety of criteria instead of applying just one Optimum Evaluation Criterion. The method presented here utilizes both ‘quantity’ and ‘quality’ to assess the function of the Multiple-Criteria method. Applying Data envelopment analysis (DEA), weighted aggregated sum product assessment (WASPAS), Weighted Sum Approach (WSA), Analytic Network Process (ANP), and Charnes, Cooper, Rhodes (CCR) methods, we have analyzed thirteen parks in Kerman city. It further indicates that the functions of WASPAS and WSA are compatible with each other, but also that their deviation from DEA is extensive. Finally, the results for the CCR technique do not match the results of the DEA technique. Our study indicates that the ANP method, with the average rate of 1/51, ranks closest to the DEA method, which has an average rate of 1/49.Keywords: multiple criteria decision making, Data envelopment analysis (DEA), Charnes Cooper Rhodes (CCR), Weighted Sum Approach (WSA)
Procedia PDF Downloads 2173259 The Use of Geographic Information System for Selecting Landfill Sites in Osogbo
Authors: Nureni Amoo, Sunday Aroge, Oluranti Akintola, Hakeem Olujide, Ibrahim Alabi
Abstract:
This study investigated the optimum landfill site in Osogbo so as to identify suitable solid waste dumpsite for proper waste management in the capital city. Despite an increase in alternative techniques for disposing of waste, landfilling remains the primary means of waste disposal. These changes in attitudes in many parts of the world have been supported by changes in laws and policies regarding the environment and waste disposal. Selecting the most suitable site for landfill can avoid any ecological and socio-economic effects. The increase in industrial and economic development, along with the increase of population growth in Osogbo town, generates a tremendous amount of solid waste within the region. Factors such as the scarcity of land, the lifespan of the landfill, and environmental considerations warrant that the scientific and fundamental studies are carried out in determining the suitability of a landfill site. The analysis of spatial data and consideration of regulations and accepted criteria are part of the important elements in the site selection. This paper presents a multi-criteria decision-making method using geographic information system (GIS) with the integration of the fuzzy logic multi-criteria decision making (FMCDM) technique for landfill suitability site evaluation. By using the fuzzy logic method (classification of suitable areas in the range of 0 to 1 scale), the superposing of the information layers related to drainage, soil, land use/land cover, slope, land use, and geology maps were performed in the study. Based on the result obtained in this study, five (5) potential sites are suitable for the construction of a landfill are proposed, two of which belong to the most suitable zone, and the existing waste disposal site belonged to the unsuitable zone.Keywords: fuzzy logic multi-criteria decision making, geographic information system, landfill, suitable site, waste disposal
Procedia PDF Downloads 1423258 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria
Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti
Abstract:
We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence
Procedia PDF Downloads 3633257 Multi-Generational Analysis of Perception and Acceptance of Mental Illnesses: Current Indian Context
Authors: Anvi Kumar
Abstract:
This paper explores the attitudes and awareness of multiple generations ranging from Boomers I to GenZ (i.e. from 1954 to 2012) towards mental health issues. A convenient sample of 191 people was gathered in India aged 11-77. 20 people each were considered from 5 generational cohorts, namely- Boomers I, Boomers II, Gen X, Millennials, and Gen Z. The study tool comprised a survey that included demographic questions and the Community Attitude towards Mental Illness (CAMI) scale by Taylor & Dear (1981). Descriptive statistics, ANOVA, and Bonferonni’s post-hoc analysis have been used to perform the analysis. The findings reveal that the level of kindness towards those who struggle with mental health varies through certain age groups. An overall sense of exclusion of those struggling with mental health is prevalent among all age groups. GenZ’s awareness of mental health issues is primarily via social media, as against the rest of the generations seeking it from close relatives and friends. The study’s findings suggest a need to investigate further the quality of mental health knowledge content and its consumption pattern. Understanding the dynamics of information sharing and the potential for biases requires further discovery.Keywords: attitude, behaviour, mental illness, Gen Z, millennials, Gen Y, multi-generations, generational differences
Procedia PDF Downloads 753256 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation
Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang
Abstract:
Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method
Procedia PDF Downloads 2123255 Multi Data Management Systems in a Cluster Randomized Trial in Poor Resource Setting: The Pneumococcal Vaccine Schedules Trial
Authors: Abdoullah Nyassi, Golam Sarwar, Sarra Baldeh, Mamadou S. K. Jallow, Bai Lamin Dondeh, Isaac Osei, Grant A. Mackenzie
Abstract:
A randomized controlled trial is the "gold standard" for evaluating the efficacy of an intervention. Large-scale, cluster-randomized trials are expensive and difficult to conduct, though. To guarantee the validity and generalizability of findings, high-quality, dependable, and accurate data management systems are necessary. Robust data management systems are crucial for optimizing and validating the quality, accuracy, and dependability of trial data. Regarding the difficulties of data gathering in clinical trials in low-resource areas, there is a scarcity of literature on this subject, which may raise concerns. Effective data management systems and implementation goals should be part of trial procedures. Publicizing the creative clinical data management techniques used in clinical trials should boost public confidence in the study's conclusions and encourage further replication. In the ongoing pneumococcal vaccine schedule study in rural Gambia, this report details the development and deployment of multi-data management systems and methodologies. We implemented six different data management, synchronization, and reporting systems using Microsoft Access, RedCap, SQL, Visual Basic, Ruby, and ASP.NET. Additionally, data synchronization tools were developed to integrate data from these systems into the central server for reporting systems. Clinician, lab, and field data validation systems and methodologies are the main topics of this report. Our process development efforts across all domains were driven by the complexity of research project data collected in real-time data, online reporting, data synchronization, and ways for cleaning and verifying data. Consequently, we effectively used multi-data management systems, demonstrating the value of creative approaches in enhancing the consistency, accuracy, and reporting of trial data in a poor resource setting.Keywords: data management, data collection, data cleaning, cluster-randomized trial
Procedia PDF Downloads 273254 A Weighted Group EI Incorporating Role Information for More Representative Group EI Measurement
Authors: Siyu Wang, Anthony Ward
Abstract:
Emotional intelligence (EI) is a well-established personal characteristic. It has been viewed as a critical factor which can influence an individual's academic achievement, ability to work and potential to succeed. When working in a group, EI is fundamentally connected to the group members' interaction and ability to work as a team. The ability of a group member to intelligently perceive and understand own emotions (Intrapersonal EI), to intelligently perceive and understand other members' emotions (Interpersonal EI), and to intelligently perceive and understand emotions between different groups (Cross-boundary EI) can be considered as Group emotional intelligence (Group EI). In this research, a more representative Group EI measurement approach, which incorporates the information of the composition of a group and an individual’s role in that group, is proposed. To demonstrate the claim of being more representative Group EI measurement approach, this study adopts a multi-method research design, involving a combination of both qualitative and quantitative techniques to establish a metric of Group EI. From the results, it can be concluded that by introducing the weight coefficient of each group member on group work into the measurement of Group EI, Group EI will be more representative and more capable of understanding what happens during teamwork than previous approaches.Keywords: case study, emotional intelligence, group EI, multi-method research
Procedia PDF Downloads 1243253 Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide – 3 (4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode
Authors: Illyas Md Isa, Sharifah Norain Mohd Sharif, Norhayati Hashima
Abstract:
A mercury(II) sensor was developed by using multi-walled carbon nanotubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl)propionate nanocomposite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1x10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury(II).Keywords: cyclic voltammetry, mercury(II), modified carbon paste electrode, nanocomposite
Procedia PDF Downloads 3083252 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images
Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu
Abstract:
The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.Keywords: level set model, multi-temporal image, lake contour extraction, contour update
Procedia PDF Downloads 3663251 Vaccine Development for Newcastle Disease Virus in Poultry
Authors: Muhammad Asif Rasheed
Abstract:
Newcastle disease virus (NDV), an avian orthoavulavirus, is a causative agent of Newcastle disease named (NDV) and can cause even the epidemics when the disease is not treated. Previously several vaccines based on attenuated and inactivated viruses have been reported, which are rendered useless with the passage of time due to versatile changes in viral genome. Therefore, we aimed to develop an effective multi-epitope vaccine against the haemagglutinin neuraminidase (HN) protein of 26 NDV strains from Pakistan through a modern immunoinformatic approaches. As a result, a vaccine chimaera was constructed by combining T-cell and B-cell epitopes with the appropriate linkers and adjuvant. The designed vaccine was highly immunogenic, non-allergen, and antigenic; therefore, the potential 3D-structureof multi epitope vaccine was constructed, refined, and validated. A molecular docking study of a multiepitope vaccine candidate with the chicken Toll-like receptor-4 indicated successful binding. An In silico immunological simulation was used to evaluate the candidate vaccine's ability to elicit an effective immune response. According to the computational studies, the proposed multiepitope vaccine is physically stable and may induce immune responses, whichsuggested it a strong candidate against 26 Newcastle disease virus strains from Pakistan. A wet lab study is under process to confirm the results.Keywords: epitopes, newcastle disease virus, paramyxovirus virus, vaccine
Procedia PDF Downloads 1203250 Measurement of Ionospheric Plasma Distribution over Myanmar Using Single Frequency Global Positioning System Receiver
Authors: Win Zaw Hein, Khin Sandar Linn, Su Su Yi Mon, Yoshitaka Goto
Abstract:
The Earth ionosphere is located at the altitude of about 70 km to several 100 km from the ground, and it is composed of ions and electrons called plasma. In the ionosphere, these plasma makes delay in GPS (Global Positioning System) signals and reflect in radio waves. The delay along the signal path from the satellite to the receiver is directly proportional to the total electron content (TEC) of plasma, and this delay is the largest error factor in satellite positioning and navigation. Sounding observation from the top and bottom of the ionosphere was popular to investigate such ionospheric plasma for a long time. Recently, continuous monitoring of the TEC using networks of GNSS (Global Navigation Satellite System) observation stations, which are basically built for land survey, has been conducted in several countries. However, in these stations, multi-frequency support receivers are installed to estimate the effect of plasma delay using their frequency dependence and the cost of multi-frequency support receivers are much higher than single frequency support GPS receiver. In this research, single frequency GPS receiver was used instead of expensive multi-frequency GNSS receivers to measure the ionospheric plasma variation such as vertical TEC distribution. In this measurement, single-frequency support ublox GPS receiver was used to probe ionospheric TEC. The location of observation was assigned at Mandalay Technological University in Myanmar. In the method, the ionospheric TEC distribution is represented by polynomial functions for latitude and longitude, and parameters of the functions are determined by least-squares fitting on pseudorange data obtained at a known location under an assumption of thin layer ionosphere. The validity of the method was evaluated by measurements obtained by the Japanese GNSS observation network called GEONET. The performance of measurement results using single-frequency of GPS receiver was compared with the results by dual-frequency measurement.Keywords: ionosphere, global positioning system, GPS, ionospheric delay, total electron content, TEC
Procedia PDF Downloads 1373249 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 2283248 Multi-Criteria Nautical Ports Capacity and Services Planning
Authors: N. Perko, N. Kavran, M. Bukljas, I. Berbic
Abstract:
This paper is a result of implemented research on proposed introduced methodology for nautical ports capacity planning by introducing a multi-criteria approach of defined criteria and impacts at the Adriatic Sea. The purpose was analysing the determinants -characteristics of infrastructure and services of nautical ports capacity allocated, especially nowadays due to COVID-19 pandemic, as crucial for the successful operation of nautical ports. Giving the importance of the defined priorities for short-term and long-term planning is essential not only in terms of the development of nautical tourism but also in terms of developing the maritime system, but unfortunately, this is not always carried out. Evaluation of the use of resources should follow from a detailed analysis of all aspects of resources bearing in mind that nautical tourism used resources in a sustainable manner and generate effects in the tourism and maritime sectors. Consequently, the identified multiplier effect of nautical tourism, which should be defined and quantified in detail, should be one of the major competitive products on the Croatian Adriatic and the Mediterranean. Research of nautical tourism is necessary to quantify the effects and required planning system development. In the future, the greatest threat to the long-term sustainable development of nautical tourism can be its further uncontrolled or unlimited and undirected development, especially under pressure markedly higher demand than supply for new moorings in the Mediterranean. Results of this implemented research are applicable to nautical ports management and decision-makers of maritime transport system development. This paper will present implemented research and obtained result-developed methodology for nautical port capacity planning -port capacity planning multi-criteria decision-making. A proposed methodological approach of multi-criteria capacity planning includes four criteria (spatial - transport, cost - infrastructure, ecological and organizational criteria, and additional services). The importance of the criteria and sub-criteria is evaluated and carried out as the basis for sensitivity analysis of the importance of the criteria and sub-criteria. Based on the analysis of the identified and quantified importance of certain criteria and sub-criteria, as well as sensitivity analysis and analysis of changes of the quantified importance, scientific and applicable results will be presented. These obtained results have practical applicability by management of nautical ports in the planning of increasing capacity and further development and for the adaptation of existing nautical ports. Obtained research is applicable and replicable in other seas, and results are especially important and useful in this COVID-19 pandemic challenging maritime development framework.Keywords: Adriatic Sea, capacity, infrastructures, maritime system, methodology, nautical ports, nautical tourism, service
Procedia PDF Downloads 1903247 3D Human Body Reconstruction Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information.Keywords: 3D human reconstruction, multi-view, joint point, SMPL-X
Procedia PDF Downloads 703246 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System
Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple
Abstract:
This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation
Procedia PDF Downloads 1033245 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: dexel, process stability, material removal, milling
Procedia PDF Downloads 5253244 An Investigation of the Relevant Factors of Unplanned Readmission within 14 Days of Discharge in a Regional Teaching Hospital in South Taiwan
Authors: Xuan Hua Huang, Shu Fen Wu, Yi Ting Huang, Pi Yueh Lee
Abstract:
Background: In Taiwan, the Taiwan healthcare care Indicator Series regards the rate of hospital readmission as an important indicator of healthcare quality. Unplanned readmission not only effects patient’s condition but also increase healthcare utilization rate and healthcare costs. Purpose: The purpose of this study was explored the effects of adult unplanned readmission within 14 days of discharge at a regional teaching hospital in South Taiwan. Methods: The retrospectively review design was used. A total 495 participants of unplanned readmissions and 878 of non-readmissions within 14 days recruited from a regional teaching hospital in Southern Taiwan. The instruments used included the Charlson Comorbidity Index, and demographic characteristics, and disease-related variables. Statistical analyses were performed with SPSS version 22.0. The descriptive statistics were used (means, standard deviations, and percentage) and the inferential statistics were used T-test, Chi-square test and Logistic regression. Results: The unplanned readmissions within 14 days rate was 36%. The majorities were 268 males (54.1%), aged >65 were 318 (64.2%), and mean age was 68.8±14.65 years (23-98years). The mean score for the comorbidities was 3.77±2.73. The top three diagnosed of the readmission were digestive diseases (32.7%), respiratory diseases (15.2%), and genitourinary diseases (10.5%). There were significant relationships among the gender, age, marriage, comorbidity status, and discharge planning services (χ2: 3.816-16.474, p: 0.051~0.000). Logistic regression analysis showed that old age (OR = 1.012, 95% CI: 1.003, 1.021), had the multi-morbidity (OR = 0.712~4.040, 95% CI: 0.559~8.522), had been consult with discharge planning services (OR = 1.696, 95% CI: 1.105, 2.061) have a higher risk of readmission. Conclusions: This study finds that multi-morbidity was independent risk factor for unplanned readmissions at 14 days, recommended that the interventional treatment of the medical team be provided to provide integrated care for multi-morbidity to improve the patient's self-care ability and reduce the 14-day unplanned readmission rate.Keywords: unplanned readmission, comorbidities, Charlson comorbidity index, logistic regression
Procedia PDF Downloads 1473243 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation
Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo
Abstract:
The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation
Procedia PDF Downloads 1853242 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher
Abstract:
Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture
Procedia PDF Downloads 1573241 Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide-3(4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode
Authors: Illyas Md Isa, Sharifah Norain Mohd Sharif, Norhayati Hashim
Abstract:
A mercury(II) sensor was developed by using multi-walled carbon nano tubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl) propionate nano composite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1 x 10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury.Keywords: Cyclic voltammetry, Mercury(II), Modified carbon paste electrode, Nanocomposite
Procedia PDF Downloads 4333240 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure
Authors: Nosakhare Enoma, Alphose Zingoni
Abstract:
The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis
Procedia PDF Downloads 3203239 Business Domain Modelling Using an Integrated Framework
Authors: Mohammed Hasan Salahat, Stave Wade
Abstract:
This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology
Procedia PDF Downloads 5603238 A High Reliable Space-Borne File System with Applications of Device Partition and Intra-Channel Pipeline in Nand Flash
Authors: Xin Li, Ji-Yang Yu, Yue-Hua Niu, Lu-Yuan Wang
Abstract:
As an inevitable chain of the space data acquirement system, space-borne storage system based on Nand Flash has gradually been implemented in spacecraft. In face of massive, parallel and varied data on board, efficient data management become an important issue of storage research. Face to the requirements of high-performance and reliability in Nand Flash storage system, a combination of hardware and file system design can drastically increase system dependability, even for missions with a very long duration. More sophisticated flash storage concepts with advanced operating systems have been researched to improve the reliability of Nand Flash storage system on satellites. In this paper, architecture of file system with multi-channel data acquisition and storage on board is proposed, which obtains large-capacity and high-performance with the combine of intra-channel pipeline and device partition in Nand Flash. Multi-channel data in different rate are stored as independent files with parallel-storage system in device partition, which assures the high-effective and reliable throughput of file treatments. For massive and high-speed data storage, an efficiency assessment model is established to calculate the bandwidth formula of intra-channel pipeline. Information tables designed in Magnetoresistive RAM (MRAM) hold the management of bad block in Nand Flash and the arrangement of file system address for the high-reliability of data storage. During the full-load test, the throughput of 3D PLUS Module 160Gb Nand Flash can reach 120Mbps for store and reach 120Mbps for playback, which efficiently satisfies the requirement of multi-channel data acquisition in Satellite. Compared with previous literature, the results of experiments verify the advantages of the proposed system.Keywords: device partition architecture, intra-channel pipelining, nand flash, parallel storage
Procedia PDF Downloads 2893237 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 1143236 Supergrid Modeling and Operation and Control of Multi Terminal DC Grids for the Deployment of a Meshed HVDC Grid in South Asia
Authors: Farhan Beg, Raymond Moberly
Abstract:
The Indian subcontinent is facing a massive challenge with regards to energy security in member countries, to provide reliable electricity to facilitate development across various sectors of the economy and consequently achieve the developmental targets. The instability of the current precarious situation is observable in the frequent system failures and blackouts. The deployment of interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the Indian sub-continent is proposed in this paper. Besides enabling energy security in the subcontinent, it will also provide a platform for Renewable Energy Sources (RES) integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on Voltage Source High Voltage Direct Current (VSC-HVDC) converters for the Supergrid modeling. Various control schemes for the control of voltage and power are utilized for the regulation of the network parameters. A 3 terminal Multi Terminal Direct Current (MTDC) network is used for the simulations.Keywords: super grid, wind and solar energy, high voltage direct current, electricity management, load flow analysis
Procedia PDF Downloads 4283235 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 1393234 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin
Authors: Triveni Gogoi, Rima Chatterjee
Abstract:
Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs
Procedia PDF Downloads 2293233 Multi-Criteria Decision-Making Evaluations for Oily Waste Management of Marine Oil Spill
Authors: Naznin Sultana Daisy, Mohammad Hesam Hafezi, Lei Liu
Abstract:
Nowadays, oily solid waste management has become an important issue for many countries due to frequent oil spill accidents and the increase of industrial oily wastewater. The historical oil spill data show that marine oil spills that affect the shoreline can, in extreme cases, produce up to 30 or 40 times more waste than the volume of oil initially released. Hence, responsive authorities aim to develop the most effective oily waste management solution in a timely manner to manage and minimize the waste generated. In this study initially, we tried to develop the roadmap of oily waste management for three-tiered spill scenarios for Atlantic Canada. For that purpose, three oily waste disposal scenarios are evaluated via six criteria which are determined according to the opinions of the experts from the field. Consequently, through sustainable response strategies, the most appropriate and feasible scenario is determined. The results of this study will assist to develop an integrated oily waste management system for identifying the optimal waste-generation-allocation-disposal schemes and generating the optimal management alternatives based on the holistic consideration of environmental, technological, economic, social, and regulatory factors.Keywords: oily waste management, marine oil spill, multi-criteria decision making, oil spill response
Procedia PDF Downloads 1373232 Effective Infection Control Measures to Prevent Transmission of Multi-Drug Resistant Organisms from Burn Transfer Cases in a Regional Burn Centre
Authors: Si Jack Chong, Chew Theng Yap, Wan Loong James Mok
Abstract:
Introduction: Regional burn centres face the spectra of introduced multi-drug resistant organisms (MDRO) from transfer patients resident in MDRO endemic countries. MDRO can cause severe nosocomial infection, which in massive burn patients, will lead to greater morbidity and mortality and strain the institution financially. We aim to highlight 4 key measures that have effectively prevented transmission of imported MDRO. Methods: A case of Candida auris (C. auris) from a massive burn patient transferred from an MDRO endemic country is used to illustrate the measures. C. auris is a globally emerging multi-drug resistant fungal pathogen causing nosocomial transmission. Results: Infection control measures used to mitigate the risk of outbreak from transfer cases are: (1) Multidisciplinary team approach involving Infection Control and Infectious Disease specialists early to ensure appropriate antibiotics use and implementation of barrier measures, (2) aseptic procedures for dressing change with strict isolation and donning of personal protective equipment in the ward, (3) early screening of massive burn patient from MDRO endemic region, (4) hydrogen peroxide vaporization terminal cleaning for operating theatres and rooms. Conclusion: The prevalence of air travel and international transfer to regional burn centres will need effective infection control measures to reduce the risk of transmission from imported massive burn patients. In our centre, we have effectively implemented 4 measures which have reduced the risks of local contamination. We share a recent case report to illustrate successful management of a potential MDRO outbreak resulting from transfer of massive burn patient resident in an MDRO endemic area.Keywords: burns, burn unit, cross infection, infection control
Procedia PDF Downloads 1503231 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation
Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou
Abstract:
This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units
Procedia PDF Downloads 157