Search results for: magnetic attraction force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3766

Search results for: magnetic attraction force

2926 Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics

Authors: David Nagy

Abstract:

This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force.

Keywords: aerodynamic simulation, aircraft, airfoil, computational fluid dynamics, lift to drag ratio, NACA 64-206, NACA 65-415

Procedia PDF Downloads 388
2925 Study of Drawing Characteristics due to Friction between the Materials by FEM

Authors: Won Jin Ryu, Mok Tan Ahn, Hyeok Choi, Joon Hong Park, Sung Min Kim, Jong Bae Park

Abstract:

Pipes for offshore plants require specifications that satisfy both high strength and high corrosion resistance. Therefore, currently, clad pipes are used in offshore plants. Clad pipes can be made using either overlay welding or clad plates. The present study was intended to figure out the effects of friction between two materials, which is a factor that affects two materials, were figured out using FEM to make clad pipes through heterogenous material drawing instead of the two methods mentioned above. Therefore, FEM has conducted while all other variables that the variable friction was fixed. The experimental results showed increases in pullout force along with increases in the friction in the boundary layer.

Keywords: clad pipe, FEM, friction, pullout force

Procedia PDF Downloads 494
2924 HR MRI CS Based Image Reconstruction

Authors: Krzysztof Malczewski

Abstract:

Magnetic Resonance Imaging (MRI) reconstruction algorithm using compressed sensing is presented in this paper. It is exhibited that the offered approach improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Magnetic Resonance Imaging (MRI) is a fundamental medical imaging method struggles with an inherently slow data acquisition process. The use of CS to MRI has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the objective is to combine super-resolution image enhancement algorithm with CS framework benefits to achieve high resolution MR output image. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The presented algorithm considers the cardiac and respiratory movements.

Keywords: super-resolution, MRI, compressed sensing, sparse-sense, image enhancement

Procedia PDF Downloads 430
2923 Burnishing of Aluminum-Magnesium-Graphite Composites

Authors: Mohammed T. Hayajneh, Adel Mahmood Hassan, Moath AL-Qudah

Abstract:

Burnishing is increasingly used as a finishing operation to improve surface roughness and surface hardness. This can be achieved by applying a hard ball or roller onto metallic surfaces under pressure, in order to achieve many advantages in the metallic surface. In the present work, the feed rate, speed and force have been considered as the basic burnishing parameters to study the surface roughness and surface hardness of metallic matrix composites. The considered metal matrix composites were made from Aluminum-Magnesium-Graphite with five different weight percentage of graphite. Both effects of burnishing parameters mentioned above and the graphite percentage on the surface hardness and surface roughness of the metallic matrix composites were studied. The results of this investigation showed that the surface hardness of the metallic composites increases with the increase of the burnishing force and decreases with the increase in the burnishing feed rate and burnishing speed. The surface roughness of the metallic composites decreases with the increasing of the burnishing force, feed rate, and speed to certain values, then it starts to increase. On the other hand, the increase in the weight percentage of the graphite in the considered composites causes a decrease in the surface hardness and an increase in the surface roughness.

Keywords: burnishing process, Al-Mg-Graphite composites, surface hardness, surface roughness

Procedia PDF Downloads 485
2922 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 258
2921 Using Contingency Valuation Approaches to Assess Community Benefits through the Use of Great Zimbabwe World Heritage Site as a Tourism Attraction

Authors: Nyasha Agnes Gurira, Patrick Ngulube

Abstract:

Heritage as an asset can be used to achieve cultural and socio-economic development through its careful use as a tourist attraction. Cultural heritage sites, especially those listed as World Heritage sites generate a lot of revenue through their use as tourist attractions. According to article 5(a) of the World Heritage Convention, World Heritage Sites (WHS) must serve a function in the life of the communities. This is further stressed by the International Council on Monuments and Sites (ICOMOS) charter on cultural heritage tourism which recognizes the positive effects of tourism on cultural heritage and underlines that domestic and international tourism is among the foremost vehicles for cultural exchange, conservation should thus provide for responsible and well-managed opportunities for local communities. The inclusion of communities in the world heritage agenda identifies them as the owners of the heritage and partners in the management planning process. This reiterates the need to empower communities and enable them to participate in the decisions which relate to the use of their heritage divorcing from the ideals of viewing communities as beneficiaries from the heritage resource. It recognizes community ownership rights to cultural heritage an element enshrined in Zimbabwe’ national constitution. Through the use of contingency valuation approaches, by assessing the Willingness to pay for visitors at the site the research determined the tourism use value of Great Zimbabwe (WHS). It assessed the extent to which the communities at Great Zimbabwe (WHS) have been developed through the tourism use of the WHS. Findings show that the current management mechanism in place regards communities as stakeholders in the management of the WHS, their ownership and property rights are not fully recognized. They receive indirect benefits from the tourism use of the WHS. This paper calls for a shift in management approach where community ownership rights are fully recognized and more inclusive approaches are adopted to ensure that the goal of sustainable development is achieved. Pro-poor benefits of tourism are key to enhancing the livelihoods of communities and can only be achieved if their rights are recognized and respected.

Keywords: communities, cultural heritage tourism, development, property ownership rights, pro-poor benefits, sustainability, world heritage site

Procedia PDF Downloads 258
2920 Mixed Number Algebra and Its Application

Authors: Md. Shah Alam

Abstract:

Mushfiq Ahmad has defined a Mixed Number, which is the sum of a scalar and a Cartesian vector. He has also defined the elementary group operations of Mixed numbers i.e. the norm of Mixed numbers, the product of two Mixed numbers, the identity element and the inverse. It has been observed that Mixed Number is consistent with Pauli matrix algebra and a handy tool to work with Dirac electron theory. Its use as a mathematical method in Physics has been studied. (1) We have applied Mixed number in Quantum Mechanics: Mixed Number version of Displacement operator, Vector differential operator, and Angular momentum operator has been developed. Mixed Number method has also been applied to Klein-Gordon equation. (2) We have applied Mixed number in Electrodynamics: Mixed Number version of Maxwell’s equation, the Electric and Magnetic field quantities and Lorentz Force has been found. (3) An associative transformation of Mixed Number numbers fulfilling Lorentz invariance requirement is developed. (4) We have applied Mixed number algebra as an extension of Complex number. Mixed numbers and the Quaternions have isomorphic correspondence, but they are different in algebraic details. The multiplication of unit Mixed number and the multiplication of unit Quaternions are different. Since Mixed Number has properties similar to those of Pauli matrix algebra, Mixed Number algebra is a more convenient tool to deal with Dirac equation.

Keywords: mixed number, special relativity, quantum mechanics, electrodynamics, pauli matrix

Procedia PDF Downloads 364
2919 A Hazard Rate Function for the Time of Ruin

Authors: Sule Sahin, Basak Bulut Karageyik

Abstract:

This paper introduces a hazard rate function for the time of ruin to calculate the conditional probability of ruin for very small intervals. We call this function the force of ruin (FoR). We obtain the expected time of ruin and conditional expected time of ruin from the exact finite time ruin probability with exponential claim amounts. Then we introduce the FoR which gives the conditional probability of ruin and the condition is that ruin has not occurred at time t. We analyse the behavior of the FoR function for different initial surpluses over a specific time interval. We also obtain FoR under the excess of loss reinsurance arrangement and examine the effect of reinsurance on the FoR.

Keywords: conditional time of ruin, finite time ruin probability, force of ruin, reinsurance

Procedia PDF Downloads 406
2918 Permanent Magnet Synchronous Generator: Unsymmetrical Point Operation

Authors: P. Pistelok

Abstract:

The article presents the concept of an electromagnetic circuit generator with permanent magnets mounted on the surface rotor core designed for single phase work. Computation field-circuit model was shown. The spectrum of time course of voltages in the idle work was presented. The cross section with graphically presentation of magnetic induction in particular parts of electromagnetic circuits was presented. Distribution of magnetic induction at the rated load point for each phase were shown. The time course of voltages and currents for each phases for rated power were displayed. An analysis of laboratory results and measurement of load characteristics of the generator was discussed. The work deals with three electromagnetic circuits of generators with permanent magnet where output voltage characteristics versus rated power were expressed.

Keywords: permanent magnet generator, permanent magnets, vibration, course of torque, single phase work, asymmetrical three phase work

Procedia PDF Downloads 288
2917 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design

Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad

Abstract:

In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.

Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method

Procedia PDF Downloads 243
2916 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation

Authors: R. Mellah, R. Toumi

Abstract:

This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation

Procedia PDF Downloads 324
2915 Women Unemployment in India: Comparative Analysis of Indian States Having Low and High Women Participation in Labour Force

Authors: Anesha Atul Shende

Abstract:

When we are aiming at high goals for economic development, such as sustainable growth and development of the economy, poverty reduction, reduction in inequality, etc., we must not forget to include each and everyone in the society in the process of achieving these goals. This study particularly talks about women participation in economic activities. The analysis is primarily done with a special focus on Indian states. The study analyses the female labour force participation rate in all many states in India. It makes a comparison between the states having low female Labour force participation with the states that have comparatively high female Labour population. In the beginning, data has been provided to know the current state of gender biases in employment. It has been found that the male workforce is dominant all across India. Further, the study highlights the major reasons for low women participation in economic activities in some of the backward states in India like Bihar, etc. These reasons basically talk about economic, cultural, and social factors that are responsible for women unemployment. Afterward, it analyses the reasons behind comparatively higher women participation in all other states in India. The case of the north-eastern state of Telangana and Tamil Nadu have been analysed in brief. These states show the improvements in female Labour participation over a few decades. This is because of government policies that have been adopted, women-friendly workplaces, availability of quality jobs for women, etc. Organization like women UN has recognized the social and economic benefits of having active women Labour force in the country. If women unemployment declines, it will improve the growth rate of the nation as well as the welfare of the society. The study discusses the reasons why an economy must try to increase women workforce participation. It further provides suggestions to improve the conditions in backward states in India, where the female unemployment rate is high. One must understand that policy interventions and government schemes are a few of the ways to recognize this issue and work on it. However, the conditions will improve only when the changes would happen from the ground level with social and moral support to the women.

Keywords: women unemployment, labour force participation, women empowerment, economic growth and development, gender disparity

Procedia PDF Downloads 83
2914 Structure and Magnetic Properties of Low-Temperature Synthesized M-W Hexaferrite Composites

Authors: Young-Min Kang

Abstract:

M-type Sr-hexaferrites (SrFe12O19) is one of the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. For a M-type Sr-hexaferrite with a saturation magnetization (MS) of ~74.0 emu/g the practical limits of remanent flux density (Br) and maximum energy product (BH) max are ~4.6 kG and ~5.3 MGOe. Meanwhile, W-type hexaferrite (SrFe18O27) with higher MS ~81emu/g can be a good candidate for the development of enhanced ferrite magnet. However the W-type hexaferrite is stable at the temperature over 1350 ºC in air, and thus it is hard to control grain size and the coercivity. We report here high-MS M-W composite hexaferrites synthesized at 1250 ºC in air by doping Ca, Co, Mn, and Zn into the hexaferrite structures. The hexaferrites samples of stoichiometric SrFe12O19 (SrM) and Ca-Co-Mn-Zn doped hexaferrite (Sr0.7Ca0.3Fen-0.6Co0.2Mn0.2Zn0.2Oa) were prepared by conventional solid state reaction process with varying Fe content (10 ≤ n ≤ 17). Analysis by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were performed for phase identification and microstructural observation respectively. Magnetic hysteresis curves were measured using vibrating sample magnetometer (VSM) at room temperature (300 K). Single M-type phase could be obtained in the non-doped SrM sample after calcinations at the range of 1200 ºC ~ 1300 ºC, showing MS in the range of 72 ~ 72.6 emu/g. The Ca-Co-Mn-Zn doped SrM with Fe content, 10 ≤ n ≤ 13, showed both M and W-phases peaks in the XRD after respective calcinations at 1250 ºC. The sample with n=13 showed the MS of 70.7, 75.3, 78.0 emu/g, respectively, after calcination at 1200, 1250, 1300 ºC. The high MS over that of non-doped SrM (~72 emu/g) is attributed to the volume portion of W-phase. It is also revealed that the high MS W-phase could not formed if only one of the Ca, Co, Zn is missed in the substitution. These elements are critical to form the W-phase at the calcinations temperature of 1250 ºC, which is 100 ºC lower than the calcinations temperature for non-doped Sr-hexaferrites.

Keywords: M-type hexaferrite, W-type hexaferrite, saturation magnetization, low-temperature synthesis

Procedia PDF Downloads 166
2913 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor

Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh

Abstract:

Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.

Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging

Procedia PDF Downloads 260
2912 Advanced Palliative Aquatics Care Multi-Device AuBento for Symptom and Pain Management by Sensorial Integration and Electromagnetic Fields: A Preliminary Design Study

Authors: J. F. Pollo Gaspary, F. Peron Gaspary, E. M. Simão, R. Concatto Beltrame, G. Orengo de Oliveira, M. S. Ristow Ferreira, J.C. Mairesse Siluk, I. F. Minello, F. dos Santos de Oliveira

Abstract:

Background: Although palliative care policies and services have been developed, research in this area continues to lag. An integrated model of palliative care is suggested, which includes complementary and alternative services aimed at improving the well-being of patients and their families. The palliative aquatics care multi-device (AuBento) uses several electromagnetic techniques to decrease pain and promote well-being through relaxation and interaction among patients, specialists, and family members. Aim: The scope of this paper is to present a preliminary design study of a device capable of exploring the various existing theories on the biomedical application of magnetic fields. This will be achieved by standardizing clinical data collection with sensory integration, and adding new therapeutic options to develop an advanced palliative aquatics care, innovating in symptom and pain management. Methods: The research methodology was based on the Work Package Methodology for the development of projects, separating the activities into seven different Work Packages. The theoretical basis was carried out through an integrative literature review according to the specific objectives of each Work Package and provided a broad analysis, which, together with the multiplicity of proposals and the interdisciplinarity of the research team involved, generated consistent and understandable complex concepts in the biomedical application of magnetic fields for palliative care. Results: Aubento ambience was idealized with restricted electromagnetic exposure (avoiding data collection bias) and sensory integration (allowing relaxation associated with hydrotherapy, music therapy, and chromotherapy or like floating tank). This device has a multipurpose configuration enabling classic or exploratory options on the use of the biomedical application of magnetic fields at the researcher's discretion. Conclusions: Several patients in diverse therapeutic contexts may benefit from the use of magnetic fields or fluids, thus validating the stimuli to clinical research in this area. A device in controlled and multipurpose environments may contribute to standardizing research and exploring new theories. Future research may demonstrate the possible benefits of the aquatics care multi-device AuBento to improve the well-being and symptom control in palliative care patients and their families.

Keywords: advanced palliative aquatics care, magnetic field therapy, medical device, research design

Procedia PDF Downloads 128
2911 An Efficient Approach for Shear Behavior Definition of Plant Stalk

Authors: M. R. Kamandar, J. Massah

Abstract:

The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.

Keywords: Buxus, Privet, impact cutting, shear energy

Procedia PDF Downloads 125
2910 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 326
2909 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 183
2908 The Plasma Additional Heating Systems by Electron Cyclotron Waves

Authors: Ghoutia Naima Sabri, Tayeb Benouaz

Abstract:

The interaction between wave and electron cyclotron movement when the electron passes through a layer of resonance at a fixed frequency results an Electron Cyclotron (EC) absorption in Tokamak plasma and dependent magnetic field. This technique is the principle of additional heating (ECRH) and the generation of non-inductive current drive (ECCD) in modern fusion devices. In this paper we are interested by the problem of EC absorption which used a microscopic description of kinetic theory treatment versus the propagation which used the cold plasma description. The power absorbed depends on the optical depth which in turn depends on coefficient of absorption and the order of the excited harmonic for O-mode or X-mode. There is another possibility of heating by dissipation of Alfven waves, based on resonance of cold plasma waves, the shear Alfven wave (SW) and the compressional Alfven wave (FW). Once the (FW) power is coupled to (SW), it stays on the magnetic surface and dissipates there, which cause the heating of bulk plasmas.

Keywords: electron cyclotron, heating, plasma, tokamak

Procedia PDF Downloads 513
2907 Computational Fluid Dynamics Analysis of Sit-Ski Aerodynamics in Crosswind Conditions

Authors: Lev Chernyshev, Ekaterina Lieshout, Natalia Kabaliuk

Abstract:

Sit-skis enable individuals with limited lower limb or core movement to ski unassisted confidently. The rise in popularity of the Winter Paralympics has seen an influx of engineering innovation, especially for the Downhill and Super-Giant Slalom events, where the athletes achieve speeds as high as 160km/h. The growth in the sport has inspired recent research into sit-ski aerodynamics. Crosswinds are expected in mountain climates and, therefore, can greatly impact a skier's maneuverability and aerodynamics. This research investigates the impact of crosswinds on the drag force of a Paralympic sit-ski using Computational Fluid Dynamics (CFD). A Paralympic sit-ski with a model of a skier, a leg cover, a bucket seat, and a simplified suspension system was used for CFD analysis in ANSYS Fluent. The hybrid initialisation tool and the SST k–ω turbulence model were used with two tetrahedral mesh bodies of influence. The crosswinds (10, 30, and 50 km/h) acting perpendicular to the sit-ski's direction of travel were simulated, corresponding to the straight-line skiing speeds of 60, 80, and 100km/h. Following the initialisation, 150 iterations for both first and second order steady-state solvers were used, before switching to a transient solver with a computational time of 1.5s and a time step of 0.02s, to allow the solution to converge. CFD results were validated against wind tunnel data. The results suggested that for all crosswind and sit-ski speeds, on average, 64% of the total drag on the ski was due to the athlete's torso. The suspension was associated with the second largest overall sit-ski drag force contribution, averaging at 27%, followed by the leg cover at 10%. While the seat contributed a negligible 0.5% of the total drag force, averaging at 1.2N across the conditions studied. The effect of the crosswind increased the total drag force across all skiing speed studies, with the drag on the athlete's torso and suspension being the most sensitive to the changes in the crosswind magnitude. The effect of the crosswind on the ski drag reduced as the simulated skiing speed increased: for skiing at 60km/h, the drag force on the torso increased by 154% with the increase of the crosswind from 10km/h to 50km/h; whereas, at 100km/h the corresponding drag force increase was halved (75%). The analysis of the flow and pressure field characteristics for a sit-ski in crosswind conditions indicated the flow separation localisation and wake size correlated with the magnitude and directionality of the crosswind relative to straight-line skiing. The findings can inform aerodynamic improvements in sit-ski design and increase skiers' medalling chances.

Keywords: sit-ski, aerodynamics, CFD, crosswind effects

Procedia PDF Downloads 66
2906 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics

Authors: Mohammad Shariq, Davinder Kaur

Abstract:

A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.

Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties

Procedia PDF Downloads 346
2905 The Effects of Stoke's Drag, Electrostatic Force and Charge on Penetration of Nanoparticles through N95 Respirators

Authors: Jacob Schwartz, Maxim Durach, Aniruddha Mitra, Abbas Rashidi, Glen Sage, Atin Adhikari

Abstract:

NIOSH (National Institute for Occupational Safety and Health) approved N95 respirators are commonly used by workers in construction sites where there is a large amount of dust being produced from sawing, grinding, blasting, welding, etc., both electrostatically charged and not. A significant portion of airborne particles in construction sites could be nanoparticles created beside coarse particles. The penetration of the particles through the masks may differ depending on the size and charge of the individual particle. In field experiments relevant to this current study, we found that nanoparticles of medium size ranges are penetrating more frequently than nanoparticles of smaller and larger sizes. For example, penetration percentages of nanoparticles of 11.5 – 27.4 nm into a sealed N95 respirator on a manikin head ranged from 0.59 to 6.59%, whereas nanoparticles of 36.5 – 86.6 nm ranged from 7.34 to 16.04%. The possible causes behind this increased penetration of mid-size nanoparticles through mask filters are not yet explored. The objective of this study is to identify causes behind this unusual behavior of mid-size nanoparticles. We have considered such physical factors as Boltzmann distribution of the particles in thermal equilibrium with the air, kinetic energy of the particles at impact on the mask, Stoke’s drag force, and electrostatic forces in the mask stopping the particles. When the particles collide with the mask, only the particles that have enough kinetic energy to overcome the energy loss due to the electrostatic forces and the Stokes’ drag in the mask can pass through the mask. To understand this process, the following assumptions were made: (1) the effect of Stoke’s drag depends on the particles’ velocity at entry into the mask; (2) the electrostatic force is proportional to the charge on the particles, which in turn is proportional to the surface area of the particles; (3) the general dependence on electrostatic charge and thickness means that for stronger electrostatic resistance in the masks and thicker the masks’ fiber layers the penetration of particles is reduced, which is a sensible conclusion. In sampling situations where one mask was soaked in alcohol eliminating electrostatic interaction the penetration was much larger in the mid-range than the same mask with electrostatic interaction. The smaller nanoparticles showed almost zero penetration most likely because of the small kinetic energy, while the larger sized nanoparticles showed almost negligible penetration most likely due to the interaction of the particle with its own drag force. If there is no electrostatic force the fraction for larger particles grows. But if the electrostatic force is added the fraction for larger particles goes down, so diminished penetration for larger particles should be due to increased electrostatic repulsion, may be due to increased surface area and therefore larger charge on average. We have also explored the effect of ambient temperature on nanoparticle penetrations and determined that the dependence of the penetration of particles on the temperature is weak in the range of temperatures in the measurements 37-42°C, since the factor changes in the range from 3.17 10-3K-1 to 3.22 10-3K-1.

Keywords: respiratory protection, industrial hygiene, aerosol, electrostatic force

Procedia PDF Downloads 194
2904 Development of Electrochemical Biosensor Based on Dendrimer-Magnetic Nanoparticles for Detection of Alpha-Fetoprotein

Authors: Priyal Chikhaliwala, Sudeshna Chandra

Abstract:

Liver cancer is one of the most common malignant tumors with poor prognosis. This is because liver cancer does not exhibit any symptoms in early stage of disease. Increased serum level of AFP is clinically considered as a diagnostic marker for liver malignancy. The present diagnostic modalities include various types of immunoassays, radiological studies, and biopsy. However, these tests undergo slow response times, require significant sample volumes, achieve limited sensitivity and ultimately become expensive and burdensome to patients. Considering all these aspects, electrochemical biosensors based on dendrimer-magnetic nanoparticles (MNPs) was designed. Dendrimers are novel nano-sized, three-dimensional molecules with monodispersed structures. Poly-amidoamine (PAMAM) dendrimers with eight –NH₂ groups using ethylenediamine as a core molecule were synthesized using Michael addition reaction. Dendrimers provide added the advantage of not only stabilizing Fe₃O₄ NPs but also displays capability of performing multiple electron redox events and binding multiple biological ligands to its dendritic end-surface. Fe₃O₄ NPs due to its superparamagnetic behavior can be exploited for magneto-separation process. Fe₃O₄ NPs were stabilized with PAMAM dendrimer by in situ co-precipitation method. The surface coating was examined by FT-IR, XRD, VSM, and TGA analysis. Electrochemical behavior and kinetic studies were evaluated using CV which revealed that the dendrimer-Fe₃O₄ NPs can be looked upon as electrochemically active materials. Electrochemical immunosensor was designed by immobilizing anti-AFP onto dendrimer-MNPs by gluteraldehyde conjugation reaction. The bioconjugates were then incubated with AFP antigen. The immunosensor was characterized electrochemically indicating successful immuno-binding events. The binding events were also further studied using magnetic particle imaging (MPI) which is a novel imaging modality in which Fe₃O₄ NPs are used as tracer molecules with positive contrast. Multicolor MPI was able to clearly localize AFP antigen and antibody and its binding successfully. Results demonstrate immense potential in terms of biosensing and enabling MPI of AFP in clinical diagnosis.

Keywords: alpha-fetoprotein, dendrimers, electrochemical biosensors, magnetic nanoparticles

Procedia PDF Downloads 136
2903 Light-Entropy Continuum Theory

Authors: Christopher Restall

Abstract:

field causing attraction between mixed charges of matter during charge exchanges with antimatter. This asymmetry is caused from none-trinary quark amount variation in matter and anti-matter during entropy progression. This document explains how a circularity critique exercise assessed scientific knowledge and develop a unified theory from the information collected. The circularity critique, creates greater intuition leaps than an individual would naturally, the information collected can be integrated and assessed thoroughly for correctness.

Keywords: unified theory of everything, gravity, quantum gravity, standard model

Procedia PDF Downloads 41
2902 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.

Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion

Procedia PDF Downloads 383
2901 A New Instrumented Drop-Weight Test Machine for Studying the Impact Behaviour of Reinforced Concrete Beams

Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams

Abstract:

Structures can be subjected to impact loading from various sources like earthquake, tsunami, missiles and explosions. The impact loading can cause different degrees of damage to concrete structures. The demand for strengthening and rehabilitation of damaged structures is increasing. In recent years, Car0bon Fibre Reinforced Polymer (CFRP) matrix composites has gain more attention for strengthening and repairing these structures. To study the impact behaviour of the reinforced concrete (RC) beams strengthened or repaired using CFRP, a heavy impact test machine was designed and manufactured .The machine included a newly designed support system for beams together with various instrumentation. This paper describes the support design configuration of the impact test machine, instrumentation and dynamic analysis of the concrete beams. To evaluate the efficiency of the new impact test machine, experimental impact tests were conducted on simple supported reinforced concrete beam. Different methods were used to determine the impact force and impact response of the RC beams in terms of inertia force, maximum deflection, reaction force and fracture energy. The manufactured impact test machine was successfully used in testing RC beams under impact loading and used successfully to test the reinforced concrete beams strengthened or repaired using CFRP under impact loading.

Keywords: beam, concrete, impact, machine

Procedia PDF Downloads 423
2900 Atomic Hydrogen Storage in Hexagonal GdNi5 and GdNi4Cu Rare Earth Compounds: A Comparative Density Functional Theory Study

Authors: A. Kellou, L. Rouaiguia, L. Rabahi

Abstract:

In the present work, the atomic hydrogen absorption trend in the GdNi5 and GdNi4Cu rare earth compounds within the hexagonal CaCu5 type of crystal structure (space group P6/mmm) is investigated. The density functional theory (DFT) combined with the generalized gradient approximation (GGA) is used to study the site preference of atomic hydrogen at 0K. The octahedral and tetrahedral interstitial sites are considered. The formation energies and structural properties are determined in order to evaluate hydrogen effects on the stability of the studied compounds. The energetic diagram of hydrogen storage is established and compared in GdNi5 and GdNi4Cu. The magnetic properties of the selected compounds are determined using spin polarized calculations. The obtained results are discussed with and without hydrogen addition taking into account available theoretical and experimental results.

Keywords: density functional theory, hydrogen storage, rare earth compounds, structural and magnetic properties

Procedia PDF Downloads 113
2899 Optimization of High Flux Density Design for Permanent Magnet Motor

Authors: Dong-Woo Kang

Abstract:

This paper presents an optimal magnet shape of a spoke-shaped interior permanent magnet synchronous motor by using ferrite magnets. Generally, the permanent magnet motor used the ferrite magnets has lower output power and efficiency than a rare-earth magnet motor, because the ferrite magnet has lower magnetic energy than the rare-earth magnet. Nevertheless, the ferrite magnet motor is used to many industrial products owing to cost effectiveness. In this paper, the authors propose a high power density design of the ferrite permanent magnet synchronous motor. Furthermore, because the motor design has to be taken a manufacturing process into account, the design is simulated by using the finite element method for analyzing the demagnetization, the magnetizing, and the structure stiffness. Especially, the magnet shape and dimensions are decided for satisfying these properties. Finally, the authors design an optimal motor for applying our system. That final design is manufactured and evaluated from experimentations.

Keywords: demagnetization, design optimization, magnetic analysis, permanent magnet motors

Procedia PDF Downloads 377
2898 Comparison of Mechanical Properties of Three Different Orthodontic Latex Elastic Bands Leached with NaOH Solution

Authors: Thipsupar Pureprasert, Niwat Anuwongnukroh, Surachai Dechkunakorn, Surapich Loykulanant, Chaveewan Kongkaew, Wassana Wichai

Abstract:

Objective: Orthodontic elastic bands made from natural rubber continue to be commonly used due to their favorable characteristics. However, there are concerns associated cytotoxicity due to harmful components released during conventional vulcanization (sulfur-based method). With the co-operation of The National Metal and Materials Technology Center (MTEC) and Faculty of Dentistry Mahidol University, a method was introduced to reduce toxic components by leaching the orthodontic elastic bands with NaOH solution. Objectives: To evaluate the mechanical properties of Thai and commercial orthodontic elastic brands (Ormco and W&H) leached with NaOH solution. Material and methods: Three elastic brands (N =30, size ¼ inch, 4.5 oz.) were tested for mechanical properties in terms of initial extension force, residual force, force loss, breaking strength and maximum displacement using a Universal Testing Machine. Results : Force loss significantly decreased in Thai-LEACH and W&H-LEACH, whereas the values increased in Ormco-LEACH (P < 0.05). The data exhibited a significantly decrease in breaking strength with Thai-LEACH and Ormco-LEACH, whereas all 3 brands revealed a significantly decrease in maximum displacement with the leaching process (P < 0.05). Conclusion: Leaching with NaOH solution is a new method, which can remove toxic components from orthodontic latex elastic bands. However, this process can affect their mechanical properties. Leached elastic bands from Thai had comparable properties with Ormco and have potential to be developed as a promising product.

Keywords: leaching, orthodontic elastics, natural rubber latex, orthodontic

Procedia PDF Downloads 271
2897 Manufacturing of Twist-Free Surfaces by Magnetism Aided Machining Technologies

Authors: Zs. Kovács, Zs. J. Viharos, J. Kodácsy

Abstract:

As a well-known conventional finishing process, the grinding is commonly used to manufacture seal mating surfaces and bearing surfaces, but is also creates twisted surfaces. The machined surfaces by turning or grinding usually have twist structure on the surfaces, which can convey lubricants such as conveyor screw. To avoid this phenomenon, have to use special techniques or machines, for example start-stop turning, tangential turning, ultrasonic protection or special toll geometries. All of these solutions have high cost and difficult usability. In this paper, we describe a system and summarize the results of the experimental research carried out mainly in the field of Magnetic Abrasive Polishing (MAP) and Magnetic Roller Burnishing (MRB). These technologies are simple and also green while able to produce twist-free surfaces. During the tests, C45 normalized steel was used as workpiece material which was machined by simple and Wiper geometrical turning inserts in a CNC turning lathe. After the turning, the MAP and MRB technologies can be used directly to reduce the twist of surfaces. The evaluation was completed by advanced measuring and IT equipment.

Keywords: magnetism, finishing, polishing, roller burnishing, twist-free

Procedia PDF Downloads 576