Search results for: intelligent tuning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1109

Search results for: intelligent tuning

269 Automatic Detection and Update of Region of Interest in Vehicular Traffic Surveillance Videos

Authors: Naydelis Brito Suárez, Deni Librado Torres Román, Fernando Hermosillo Reynoso

Abstract:

Automatic detection and generation of a dynamic ROI (Region of Interest) in vehicle traffic surveillance videos based on a static camera in Intelligent Transportation Systems is challenging for computer vision-based systems. The dynamic ROI, being a changing ROI, should capture any other moving object located outside of a static ROI. In this work, the video is represented by a Tensor model composed of a Background and a Foreground Tensor, which contains all moving vehicles or objects. The values of each pixel over a time interval are represented by time series, and some pixel rows were selected. This paper proposes a pixel entropy-based algorithm for automatic detection and generation of a dynamic ROI in traffic videos under the assumption of two types of theoretical pixel entropy behaviors: (1) a pixel located at the road shows a high entropy value due to disturbances in this zone by vehicle traffic, (2) a pixel located outside the road shows a relatively low entropy value. To study the statistical behavior of the selected pixels, detecting the entropy changes and consequently moving objects, Shannon, Tsallis, and Approximate entropies were employed. Although Tsallis entropy achieved very high results in real-time, Approximate entropy showed results slightly better but in greater time.

Keywords: convex hull, dynamic ROI detection, pixel entropy, time series, moving objects

Procedia PDF Downloads 74
268 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 224
267 Feasibility of Using Bike Lanes in Conjunctions with Sidewalks for Ground Drone Applications in Last Mile Delivery for Dense Urban Areas

Authors: N. Bazyar Shourabi, K. Nyarko, C. Scott, M. Jeihnai

Abstract:

Ground drones have the potential to reduce the cost and time of making last-mile deliveries. They also have the potential to make a huge impact on human life. Despite this potential, little work has gone into developing a suitable feasibility model for ground drone delivery in dense urban areas. Today, most of the experimental ground delivery drones utilize sidewalks only, with just a few of them starting to use bike lanes, which a significant portion of some urban areas have. This study works on the feasibility of using bike lanes in conjunction with sidewalks for ground drone applications in last-mile delivery for dense urban areas. This work begins with surveying bike lanes and sidewalks within the city of Boston using Geographic Information System (GIS) software to determine the percentage of coverage currently available within the city. Then six scenarios are examined. Based on this research, a mathematical model is developed. The daily cost of delivering packages using each scenario is calculated by the mathematical model. Comparing the drone delivery scenarios with the traditional method of package delivery using trucks will provide essential information concerning the feasibility of implementing routing protocols that combine the use of sidewalks and bike lanes. The preliminary results of the model show that ground drones that can travel via sidewalks or bike lanes have the potential to significantly reduce delivery cost.

Keywords: ground drone, intelligent transportation system, last-mile delivery, sidewalk robot

Procedia PDF Downloads 144
266 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment

Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan

Abstract:

In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.

Keywords: border security, sensors, abnormal activity detection, ontologies

Procedia PDF Downloads 481
265 Exploring Enabling Effects of Organizational Climate on Academicians’ Emotional Intelligence and Learning Outcomes: A Case from Chinese Higher Education

Authors: Zahid Shafait, Jiayu Huang

Abstract:

Purpose: This study is based on a trait-based theory of emotional intelligence. This study intends to explore the enabling effect of organizational climate, i.e., affiliation, innovation, and fairness, on the emotional intelligence of teachers in Chinese higher education institutes. This study, additionally, intends to investigate the direct impact of teachers’ emotional intelligence on their learning outcomes, i.e., cognitive, social, self-growth outcomes and satisfaction with the university experience. Design/methodology/approach: This study utilized quantitative research techniques to scrutinize the data. Moreover, partial least squares structural equation modeling, i.e., PLS-SEM, was used to assess the hypothetical relationships to conclude their statistical significance. Findings: Results confirmed the supposed associations, i.e., the organizational climate has an enabling effect on emotional intelligence. Likewise, emotional intelligence was concluded to have a direct and positive association with learning outcomes in higher education. Practical implications: This study has investigated abandoned research that is enabling the effects of organizational climate on teachers’ emotional intelligence in Chinese higher education. Organizational climate enables emotionally intelligent teachers to learn efficiently and, at the same time, augments their satisfaction and productivity within an institution. Originality/value: This study investigated the enabling effects of organizational climate on teachers’ emotional intelligence in Chinese higher education that is original in investigated country and sector.

Keywords: organizational climate, emotional intelligence, learning outcomes, higher education

Procedia PDF Downloads 74
264 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 20
263 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities

Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan

Abstract:

The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.

Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility

Procedia PDF Downloads 76
262 Flexible Coupling between Gearbox and Pump (High Speed Machine)

Authors: Naif Mohsen Alharbi

Abstract:

This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,

Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment

Procedia PDF Downloads 68
261 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades

Authors: E. Tandis, E. Assareh

Abstract:

Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed

Keywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine

Procedia PDF Downloads 316
260 Inspiring Woman: The Emotional Intelligence Leadership of Khadijah Bint Khuwaylid

Authors: Eman S. Soliman, Sana Hawamdeh, Najmus S. Mahfooz

Abstract:

Purpose: The purpose of this paper was to examine various components of applied emotional intelligence as demonstrated in the leadership style of Khadijah Bint Khuwaylid in pre and post-Islamic society. Methodology: The research used a qualitative research method, specifically historical and ethnographic techniques. Data collection included both primary and secondary sources. Data from sources were analyzed to document the use of emotional intelligent leadership behaviors throughout Khadijah Bint Khuwaylid leadership experience from 596 A.D. to 621 A.D. Findings: Demonstration of four cornerstones of emotional intelligence which are self-awareness, self-management, social awareness and relationship management. Apply them on khadejah Bint Khuwaylid leadership style reveal that she possess main behavioral competences in the form of emotionally self-aware, self-.confidence, adaptability, empathy and influence. Conclusions: Khadijah Bint Khuwaylid serves as a historical model of effective leadership that included the use of emotional intelligence in her leadership behavior. The inclusion of the effective portion of the brain created a successful leadership style that can be learned by present day and future leadership. The recommendations for future leaders are to include the use of emotionally self-aware and self-confidence, adaptability, empathy and influence as components of leadership. This will then demonstrate in a leadership a basic knowledge and understanding of feelings, the keenness to be emotionally open with others, the ability to prototype beliefs and values, and the use of emotions in future communications, vision and progress.

Keywords: emotional intelligence, leadership, Khadijah Bint Khuwaylid, women

Procedia PDF Downloads 276
259 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation

Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang

Abstract:

With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.

Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior

Procedia PDF Downloads 779
258 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 11
257 Perception of Eco-Music From the Contents the Earth’s Sound Ecosystem

Authors: Joni Asitashvili, Eka Chabashvili, Maya Virsaladze, Alexander Chokhonelidze

Abstract:

Studying the soundscape is a major challenge in many countries of the civilized world today. The sound environment and music itself are part of the Earth's ecosystem. Therefore, researching its positive or negative impact is important for a clean and healthy environment. The acoustics of nature gave people many musical ideas, and people enriched musical features and performance skills with the ability to imitate the surrounding sound. For example, a population surrounded by mountains invented the technique of antiphonal singing, which mimics the effect of an echo. Canadian composer Raymond Murray Schafer viewed the world as a kind of musical instrument with ever-renewing tuning. He coined the term "Soundscape" as a name of a natural environmental sound, including the sound field of the Earth. It can be said that from which the “music of nature” is constructed. In the 21st century, a new field–Ecomusicology–has emerged in the field of musical art to study the sound ecosystem and various issues related to it. Ecomusicology considers the interconnections between music, culture, and nature–According to the Aaron Allen. Eco-music is a field of ecomusicology concerning with the depiction and realization of practical processes using modern composition techniques. Finding an artificial sound source (instrumental or electronic) for the piece that will blend into the soundscape of Sound Oases. Creating a composition, which sounds in harmony with the vibrations of human, nature, environment, and micro- macrocosm as a whole; Currently, we are exploring the ambient sound of the Georgian urban and suburban environment to discover “Sound Oases" and compose Eco-music works. We called “Sound Oases" an environment with a specific sound of the ecosystem to use in the musical piece as an instrument. The most interesting examples of Eco-music are the round dances, which were already created in the BC era. In round dances people would feel the united energy. This urge to get united revealed itself in our age too, manifesting itself in a variety of social media. The virtual world, however, is not enough for a healthy interaction; we created plan of “contemporary round dance” in sound oasis, found during expedition in Georgian caves, where people interacted with cave's soundscape and eco-music, they feel each other sharing energy and listen to earth sound. This project could be considered a contemporary round dance, a long improvisation, particular type of art therapy, where everyone can participate in an artistic process. We would like to present research result of our eco-music experimental performance.

Keywords: eco-music, environment, sound, oasis

Procedia PDF Downloads 61
256 Work in the Industry of the Future-Investigations of Human-Machine Interactions

Authors: S. Schröder, P. Ennen, T. Langer, S. Müller, M. Shehadeh, M. Haberstroh, F. Hees

Abstract:

Since a bit over a year ago, Festo AG and Co. KG, Festo Didactic SE, robomotion GmbH, the researchers of the Cybernetics-Lab IMA/ZLW and IfU, as well as the Human-Computer Interaction Center at the RWTH Aachen University, have been working together in the focal point of assembly competences to realize different scenarios in the field of human-machine interaction (HMI). In the framework of project ARIZ, questions concerning the future of production within the fourth industrial revolution are dealt with. There are many perspectives of human-robot collaboration that consist Industry 4.0 on an individual, organization and enterprise level, and these will be addressed in ARIZ. The aim of the ARIZ projects is to link AI-Approaches to assembly problems and to implement them as prototypes in demonstrators. To do so, island and flow based production scenarios will be simulated and realized as prototypes. These prototypes will serve as applications of flexible robotics as well as AI-based planning and control of production process. Using the demonstrators, human interaction strategies will be examined with an information system on one hand, and a robotic system on the other. During the tests, prototypes of workspaces that illustrate prospective production work forms will be represented. The human being will remain a central element in future productions and will increasingly be in charge of managerial tasks. Questions thus arise within the overall perspective, primarily concerning the role of humans within these technological revolutions, as well as their ability to act and design respectively to the acceptance of such systems. Roles, such as the 'Trainer' of intelligent systems may become a possibility in such assembly scenarios.

Keywords: human-machine interaction, information technology, island based production, assembly competences

Procedia PDF Downloads 205
255 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 148
254 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems

Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu

Abstract:

Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.

Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system

Procedia PDF Downloads 297
253 The Relevance of Bioinspired Architecture and Programmable Materials for Development of 4D Printing

Authors: Daniela Ribeiro, Silvia Lenyra Meirelles Campos Titotto

Abstract:

Nature has long served as inspiration for humans, since various technologies present in society are a mirror of the natural world. This is due to the fact that nature has adapted for millions of years to possess the characteristics they have today. In this sense, man takes advantage of this situation and uses it to produce his own objects and solve his problems. This concept, which is known as biomimetics, is something relatively new, once it was only denominated in 1957. Nature, in turn, responds directly and consistently to environmental conditions. For example, plants that have touch sensitivity contract with this stimulus. Such a situation resembles a technology that has been gaining ground in the contemporary world of scientific innovation: 4D printing. 4D printing technology emerged in 2012 as a complement to 3D printing and presents numerous benefits since it provides a deficiency in the second kind of printing mentioned. This type of technology reaches several areas, since it is capable of producing materials that change over time, be it in its composition, form or properties and is such a characteristic that determines the additional dimension of the material. Precisely because of these factors, this type of impression resembles nature and is related to biomimetics. However, only certain types of ‘intelligent’ materials are generally employed in this type of impression, since only they will respond well to such stimuli, one of which is the hydrogel. The hydrogel is a biocompatible polymer that presents several applications, these in turn will be briefly mentioned in this article to exemplify its importance and the reason for choosing this material as object of study. In addition, aspects that configure 4D printing will be treated here, such as the importance of architecture, programming language and the reversibility of printed materials.

Keywords: 4D printing, biomimetic, hydrogel, materials

Procedia PDF Downloads 169
252 Critically Analyzing the Application of Big Data for Smart Transportation: A Case Study of Mumbai

Authors: Tanuj Joshi

Abstract:

Smart transportation is fast emerging as a solution to modern cities’ approach mobility issues, delayed emergency response rate and high congestion on streets. Present day scenario with Google Maps, Waze, Yelp etc. demonstrates how information and communications technologies controls the intelligent transportation system. This intangible and invisible infrastructure is largely guided by the big data analytics. On the other side, the exponential increase in Indian urban population has intensified the demand for better services and infrastructure to satisfy the transportation needs of its citizens. No doubt, India’s huge internet usage is looked as an important resource to guide to achieve this. However, with a projected number of over 40 billion objects connected to the Internet by 2025, the need for systems to handle massive volume of data (big data) also arises. This research paper attempts to identify the ways of exploiting the big data variables which will aid commuters on Indian tracks. This study explores real life inputs by conducting survey and interviews to identify which gaps need to be targeted to better satisfy the customers. Several experts at Mumbai Metropolitan Region Development Authority (MMRDA), Mumbai Metro and Brihanmumbai Electric Supply and Transport (BEST) were interviewed regarding the Information Technology (IT) systems currently in use. The interviews give relevant insights and requirements into the workings of public transportation systems whereas the survey investigates the macro situation.

Keywords: smart transportation, mobility issue, Mumbai transportation, big data, data analysis

Procedia PDF Downloads 178
251 Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia

Authors: Amanda Silva Parra, Dayra Yisel García Ramirez

Abstract:

In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources.

Keywords: climate change, carbon capture, environmental sustainability, GHG mitigation, silvopastoral systems

Procedia PDF Downloads 117
250 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism

Authors: Ferah Tesfaye Admasu

Abstract:

Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.

Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning

Procedia PDF Downloads 19
249 The Influence of Brands in E-Sports Spectators

Authors: Rene Kasper, Hyago Ribeiro, Marcelo Curth

Abstract:

Electronic sports, or just e-sports, boast an exponential growth in the interest of the public and large investors. The e-sports teams are equal to classic sports teams, like football, since in their structure they have, besides the athletes, administrators, coaches and even doctors. The concept of team games arises with a very strong social interaction, as it is perceived that users interact with real peers rather than competing with intelligent software. In this sense, electronic games are established as a sociocultural phenomenon and as multidimensional media. Thus, the research aims to identify the profile of users and the importance of brands in the Brazilian electronic sports scene, as well as the relationship of consumers (called fans) with the products and services that occupy the media spaces of the transmissions of sports championships. The research used descriptive quantitative methodology, applied in different e-sports communities, with 160 respondents. The data collection instrument was a survey containing seven questions, which addressed the profile of the participants and their perception on the proposed theme in research. Regarding the profile, the age ranged from 17 to 31 years, of which 93.3% were male and 6.7% female. It was found that 93.3% of the participants had contact with the Brazilian electronic sports scene for at least 2 years, of which 26.7% played between 6 and 12 hours a week and 46.7% played more than 12 hours a week. In addition, it was noticed that income was not a deciding factor to enjoy electronic sports games, because the percentage distribution of participants ranged from 1 to 3 minimum wages (33.3%) and greater than 6 salaries (46.7 %). Regarding the brands, 85.6% emphasized that brands should support the scenario through sponsorship and publicity and 28.6% are attracted to consume brands that advertise in e-sports championships.

Keywords: brands, consumer behavior, e-sports, virtual games

Procedia PDF Downloads 275
248 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education

Authors: Jasmin Cowin

Abstract:

Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.

Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology

Procedia PDF Downloads 277
247 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 133
246 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups

Authors: Andrei Bejan, Luminita Marin, Dalila Belei

Abstract:

Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.

Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield

Procedia PDF Downloads 329
245 Tuning the Surface Roughness of Patterned Nanocellulose Films: An Alternative to Plastic Based Substrates for Circuit Priniting in High-Performance Electronics

Authors: Kunal Bhardwaj, Christine Browne

Abstract:

With the increase in global awareness of the environmental impacts of plastic-based products, there has been a massive drive to reduce our use of these products. Use of plastic-based substrates in electronic circuits has been a matter of concern recently. Plastics provide a very smooth and cheap surface for printing high-performance electronics due to their non-permeability to ink and easy mouldability. In this research, we explore the use of nano cellulose (NC) films in electronics as they provide an advantage of being 100% recyclable and eco-friendly. The main hindrance in the mass adoption of NC film as a substitute for plastic is its higher surface roughness which leads to ink penetration, and dispersion in the channels on the film. This research was conducted to tune the RMS roughness of NC films to a range where they can replace plastics in electronics(310-470nm). We studied the dependence of the surface roughness of the NC film on the following tunable aspects: 1) composition by weight of the NC suspension that is sprayed on a silicon wafer 2) the width and the depth of the channels on the silicon wafer used as a base. Various silicon wafers with channel depths ranging from 6 to 18 um and channel widths ranging from 5 to 500um were used as a base. Spray coating method for NC film production was used and two solutions namely, 1.5wt% NC and a 50-50 NC-CNC (cellulose nanocrystal) mixture in distilled water, were sprayed through a Wagner sprayer system model 117 at an angle of 90 degrees. The silicon wafer was kept on a conveyor moving at a velocity of 1.3+-0.1 cm/sec. Once the suspension was uniformly sprayed, the mould was left to dry in an oven at 50°C overnight. The images of the films were taken with the help of an optical profilometer, Olympus OLS 5000. These images were converted into a ‘.lext’ format and analyzed using Gwyddion, a data and image analysis software. Lowest measured RMS roughness of 291nm was with a 50-50 CNC-NC mixture, sprayed on a silicon wafer with a channel width of 5 µm and a channel depth of 12 µm. Surface roughness values of 320+-17nm were achieved at lower (5 to 10 µm) channel widths on a silicon wafer. This research opened the possibility of the usage of 100% recyclable NC films with an additive (50% CNC) in high-performance electronics. Possibility of using additives like Carboxymethyl Cellulose (CMC) is also being explored due to the hypothesis that CMC would reduce friction amongst fibers, which in turn would lead to better conformations amongst the NC fibers. CMC addition would thus be able to help tune the surface roughness of the NC film to an even greater extent in future.

Keywords: nano cellulose films, electronic circuits, nanocrystals and surface roughness

Procedia PDF Downloads 124
244 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 150
243 Hash Based Block Matching for Digital Evidence Image Files from Forensic Software Tools

Authors: M. Kaya, M. Eris

Abstract:

Internet use, intelligent communication tools, and social media have all become an integral part of our daily life as a result of rapid developments in information technology. However, this widespread use increases crimes committed in the digital environment. Therefore, digital forensics, dealing with various crimes committed in digital environment, has become an important research topic. It is in the research scope of digital forensics to investigate digital evidences such as computer, cell phone, hard disk, DVD, etc. and to report whether it contains any crime related elements. There are many software and hardware tools developed for use in the digital evidence acquisition process. Today, the most widely used digital evidence investigation tools are based on the principle of finding all the data taken place in digital evidence that is matched with specified criteria and presenting it to the investigator (e.g. text files, files starting with letter A, etc.). Then, digital forensics experts carry out data analysis to figure out whether these data are related to a potential crime. Examination of a 1 TB hard disk may take hours or even days, depending on the expertise and experience of the examiner. In addition, it depends on examiner’s experience, and may change overall result involving in different cases overlooked. In this study, a hash-based matching and digital evidence evaluation method is proposed, and it is aimed to automatically classify the evidence containing criminal elements, thereby shortening the time of the digital evidence examination process and preventing human errors.

Keywords: block matching, digital evidence, hash list, evaluation of digital evidence

Procedia PDF Downloads 255
242 Enhancing Quality Management Systems through Automated Controls and Neural Networks

Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova

Abstract:

The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.

Keywords: automated control system, quality management, document structure, formal language

Procedia PDF Downloads 39
241 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 103
240 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks

Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode

Abstract:

The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.

Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control

Procedia PDF Downloads 84