Search results for: Taguchi Optimization Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20772

Search results for: Taguchi Optimization Method

19932 Construction of a Supply Chain Model Using the PREVA Method: The Case of Innovative Sargasso Recovery Projects in Ther Lesser Antilles

Authors: Maurice Bilioniere, Katie Lanneau

Abstract:

Suddenly appeared in 2011, invasions of sargasso seaweeds Fluitans and Natans are a climatic hazard which causes many problems in the Caribbean. Faced with the growth and frequency of the phenomenon of massive sargasso stranding on their coasts, the French West Indies are moving towards the path of industrial recovery. In this context of innovative projects, we will analyze the necessary requirements for the management and performance of the supply chain, taking into account the observed volatility of the sargasso input. Our prospective approach will consist in studying the theoretical framework of modeling a hybrid supply chain by coupling the discreet event simulation (DES) with a valuation of the process costs according to the "activity-based costing" method (ABC). The PREVA approach (PRocess EVAluation) chosen for our modeling has the advantage of evaluating the financial flows of the logistic process using an analytical model chained with an action model for the evaluation or optimization of physical flows.

Keywords: sargasso, PREVA modeling, supply chain, ABC method, discreet event simulation (DES)

Procedia PDF Downloads 163
19931 The Effect of Initial Sample Size and Increment in Simulation Samples on a Sequential Selection Approach

Authors: Mohammad H. Almomani

Abstract:

In this paper, we argue the effect of the initial sample size, and the increment in simulation samples on the performance of a sequential approach that used in selecting the top m designs when the number of alternative designs is very large. The sequential approach consists of two stages. In the first stage the ordinal optimization is used to select a subset that overlaps with the set of actual best k% designs with high probability. Then in the second stage the optimal computing budget is used to select the top m designs from the selected subset. We apply the selection approach on a generic example under some parameter settings, with a different choice of initial sample size and the increment in simulation samples, to explore the impacts on the performance of this approach. The results show that the choice of initial sample size and the increment in simulation samples does affect the performance of a selection approach.

Keywords: Large Scale Problems, Optimal Computing Budget Allocation, ordinal optimization, simulation optimization

Procedia PDF Downloads 340
19930 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion

Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri

Abstract:

In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.

Keywords: finite element, honeycomb FRP sandwich panel, torsion, civil engineering

Procedia PDF Downloads 404
19929 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference

Procedia PDF Downloads 219
19928 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 236
19927 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller

Procedia PDF Downloads 225
19926 Quality Fabric Optimization Using Genetic Algorithms

Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi

Abstract:

Textile industry has been an important part of many developing countries economies such as Tunisia. This industry is confronted with a challenging and increasing competitive environment. Good quality management in production process is the key factor for retaining existence especially in raw material exploitation. The present work aims to develop an intelligent system for fabric inspection. In the first step, we have studied the method used for fabric control which takes into account the default length and localization in woven. In the second step, we have used a method based on the fuzzy logic to minimize the Demerit point indicator with appropriate total rollers length, so that the quality problem becomes multi-objective. In order to optimize the total fabric quality, we have applied the genetic algorithm (GA).

Keywords: fabric control, Fuzzy logic, genetic algorithm, quality management

Procedia PDF Downloads 578
19925 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points

Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi

Abstract:

Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.

Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function

Procedia PDF Downloads 123
19924 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples

Authors: Abu Harera Nadeem, Kingsley Donkor

Abstract:

Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.

Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction

Procedia PDF Downloads 112
19923 Assisted Video Colorization Using Texture Descriptors

Authors: Andre Peres Ramos, Franklin Cesar Flores

Abstract:

Colorization is the process of add colors to a monochromatic image or video. Usually, the process involves to segment the image in regions of interest and then apply colors to each one, for videos, this process is repeated for each frame, which makes it a tedious and time-consuming job. We propose a new assisted method for video colorization; the user only has to colorize one frame, and then the colors are propagated to following frames. The user can intervene at any time to correct eventual errors in color assignment. The method consists of to extract intensity and texture descriptors from the frames and then perform a feature matching to determine the best color for each segment. To reduce computation time and give a better spatial coherence we narrow the area of search and give weights for each feature to emphasize texture descriptors. To give a more natural result, we use an optimization algorithm to make the color propagation. Experimental results in several image sequences, compared to others existing methods, demonstrates that the proposed method perform a better colorization with less time and user interference.

Keywords: colorization, feature matching, texture descriptors, video segmentation

Procedia PDF Downloads 153
19922 Research on the Development and Space Optimization of Rental-Type Public Housing in Hangzhou

Authors: Xuran Zhang, Huiru Chen

Abstract:

In recent years, China has made great efforts to cultivate and develop the housing rental market, especially the rental-type public housing, which has been paid attention to by all sectors of the society. This paper takes Hangzhou rental-type public housing as the research object, and divides it into three development stages according to the different supply modes of rental-type public housing. Through data collection and field research, the paper summarizes the spatial characteristics of rental-type public housing from the five perspectives of spatial planning, spatial layout, spatial integration, spatial organization and spatial configuration. On this basis, the paper proposes the optimization of the spatial layout. The study concludes that the spatial layout of rental-type public housing should be coordinated with the development of urban planning. When planning and constructing, it is necessary to select more mixed construction modes, to be properly centralized, and to improve the surrounding transportation service facilities.  It is hoped that the recommendations in this paper will provide a reference for the further development of rental-type public housing in Hangzhou.

Keywords: Hangzhou, rental-type public housing, spatial distribution, spatial optimization

Procedia PDF Downloads 309
19921 Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization.

Keywords: alluvial gold ore, sieve shaker, particle size, Gaudin Schumann

Procedia PDF Downloads 32
19920 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability

Authors: Yu Song, Yuefei Jin

Abstract:

Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.

Keywords: feeder bus, route optimization, link growth probability, the graph theory

Procedia PDF Downloads 62
19919 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 409
19918 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 64
19917 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm

Procedia PDF Downloads 417
19916 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference, supervised learning

Procedia PDF Downloads 46
19915 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: reliability, optimization, meta-heuristic, genetic algorithm, redundancy

Procedia PDF Downloads 327
19914 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 107
19913 Optimization of Plastic Injection Molding Parameters by Altering Gate and Runner of Feeding System

Authors: Ali Ramezani

Abstract:

Balancing feeding system of plastic injection molding has overriding importance as it minimizes the process’s product defects such as weld line, shrinkage, sink marks and warpage. This article presents the difference between optimization of feeding system in identical multi-cavity molding and family molding using Moldflow Plastic Insight software. In this work, the effect of dimension, shape, position and type of gates and runners on the products quality was studied. The optimization was carried out by analyzing plastic injection molding process parameters, including melt temperature, mold temperature, cooling time, cooling temperature packing time and packing pressure. It was found that symmetrical feeding system is the most efficient shape for diminishing defects in identical multi-cavity molding. However, the same results were not concluded for family molding due to the differences between volume, mass, thickness and shape of cavities.

Keywords: balancing feeding system, family molding, multi-cavity, Moldflow, plastic injection

Procedia PDF Downloads 122
19912 Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment

Authors: Subodh Kumar, Amit Varde

Abstract:

Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload.

Keywords: high performance computing, HPC, cloud computing, optimization, schedulers

Procedia PDF Downloads 78
19911 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 247
19910 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm

Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif

Abstract:

This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.

Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm

Procedia PDF Downloads 180
19909 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.

Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes

Procedia PDF Downloads 294
19908 Optimal Wheat Straw to Bioethanol Supply Chain Models

Authors: Abdul Halim Abdul Razik, Ali Elkamel, Leonardo Simon

Abstract:

Wheat straw is one of the alternative feedstocks that may be utilized for bioethanol production especially when sustainability criteria are the major concerns. To increase market competitiveness, optimal supply chain plays an important role since wheat straw is a seasonal agricultural residue. In designing the supply chain optimization model, economic profitability of the thermochemical and biochemical conversion routes options were considered. It was found that torrefied pelletization with gasification route to be the most profitable option to produce bioethanol from the lignocellulosic source of wheat straw.

Keywords: bio-ethanol, optimization, supply chain, wheat straw

Procedia PDF Downloads 725
19907 A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst

Authors: Dhvanidevi N. Jadeja, Daya S. Kaul, Anurag A. Kandya

Abstract:

Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes.

Keywords: collection routes, efficiency, municipal solid waste, optimization

Procedia PDF Downloads 123
19906 Formulation Development, Process Optimization and Comparative study of Poorly Compressible Drugs Ibuprofen, Acetaminophen Using Direct Compression and Top Spray Granulation Technique

Authors: Abhishek Pandey

Abstract:

Ibuprofen and Acetaminophen is widely used as prescription & non-prescription medicine. Ibuprofen mainly used in the treatment of mild to moderate pain related to headache, migraine, postoperative condition and in the management of spondylitis, osteoarthritis and rheumatoid arthritis. Acetaminophen is used as an analgesic and antipyretic drug. Ibuprofen having high tendency of sticking to punches of tablet punching machine while Acetaminophen is not ordinarily compressible to tablet formulation because Acetaminophen crystals are very hard and brittle in nature and fracture very easily when compressed producing capping and laminating tablet defects therefore wet granulation method is used to make them compressible. The aim of study was to prepare Ibuprofen and Acetaminophen tablets by direct compression and top spray granulation technique. In this Investigation tablets were prepared by using directly compressible grade excipients. Dibasic calcium phosphate, lactose anhydrous (DCL21), microcrystalline cellulose (Avicel PH 101). In order to obtain best or optimized formulation, nine different formulations were generated among them batch F7, F8, F9 shows good results and within the acceptable limit. Formulation (F7) selected as optimize product on the basis of dissolution study. Furtherly, directly compressible granules of both drugs were prepared by using top spray granulation technique in fluidized bed processor equipment and compressed .In order to obtain best product process optimization was carried out by performing four trials in which various parameters like inlet air temperature, spray rate, peristaltic pump rpm, % LOD, properties of granules, blending time and hardness were optimized. Batch T3 coined as optimized batch on the basis physical & chemical evaluation. Finally formulations prepared by both techniques were compared.

Keywords: direct compression, top spray granulation, process optimization, blending time

Procedia PDF Downloads 349
19905 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications

Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan

Abstract:

Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.

Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification

Procedia PDF Downloads 495
19904 Impact of the Electricity Market Prices during the COVID-19 Pandemic on Energy Storage Operation

Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić

Abstract:

With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.

Keywords: electrical market prices, electricity market, energy storage optimization, mixed integer linear programming (MILP) optimization

Procedia PDF Downloads 159
19903 The Importance of Optimization of Halal Tourism: A Study of the Development of Halal Tourism in Indonesia

Authors: Rizqi W. Romadhon, Nur Arifan

Abstract:

Halal Tourism is a part of tourism industry which is based on Islamic Principle and addressed to the Muslim tourist. The potency of halal tourism is very broad to be developed, because the growth of Muslim populations is rapidly increasing. Indonesia is one of the biggest countries with Majority of its population is Muslim, therefore human resources and natural resources have very good potential to be part of the Halal tourism industry. But the fact is Indonesia can not optimize the potential of human resources and natural resources as well as neighboring countries carried out. This paper will discuss the reasons of the importance of developing Halal tourism, and the factors influencing the success of developing halal tourism in Indonesia, and also the optimization strategies which can be adopted by the government so that the Halal tourism industry in Indonesia has a sustainable competitive advantage. The existence of this research is expected to government, tourism agents and others can optimize the potency of Indonesia’s Human resources and natural resources for developing Halal tourism industry in Indonesia.

Keywords: halal tourism, Islamic principle, optimization, sustainable competitive advantage

Procedia PDF Downloads 365