Search results for: reduced cost
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9446

Search results for: reduced cost

896 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil

Procedia PDF Downloads 125
895 Synergistic Sorption of Cr(VI) and Cu(II) onto Sweet Potato Vine from Binary Mixtures Cr(VI)-Cu(II)

Authors: Chang Liu, Nuria Fiol, Isabel Villaescusa, Jordi Poch

Abstract:

Over the last decades, biosorption has been an alternative to costly wastewaters treatment for metal removal. Most of the literature on metal biosorption was devoted to studying of single metal ions but nowadays studies on multi-components biosorption are booming. Hexavalent chromium is usually found in mixtures with divalent metal ions in industries wastewaters. However, studies on the simultaneous removal of Cr(VI) and divalent metals are hardly found and the cooperative or competitive mechanism governing each metal ions sorption is still unclear. In this work, simultaneous sorption of Cr(VI) and Cu(II) from their binary mixtures by using sweet potato vine (SPV) was investigated. Sweet potato is one of the four major grain crops in China. Each year about 2000 tons of SPV are generated as by-products. SPV could be a low-cost biosorbent for metal ions due to its rich in cellulose and lignin. In this work, the sorption of Cr(VI) and Cu(II) from their binary mixtures solutions was studied by using SPV sorbent. Equilibrium studies were carried out in binary mixtures in which Cr(VI) and Cu(II) concentration was both varied between 0.1 mM and 0.3 mM, Cr(VI) and Cu(II) single solutions were also prepared as comparison. All the experiments were performed at pH 3±0.05 under 30±2°C for 7 days to make sure sorption achieved equilibrium. Results showed that (i) chromium was partially (10.93%-42.04%) eliminated under studied conditions through reduction and sorption of hexavalent and trivalent forms. The presence of Cu(II) exerts a synergistic effect on the overall sorption process in all the cases of the 0.1-0.3 mM binary mixtures concentration range. (ii) Cr(VI) removal by SPV is favoured by the presence of Cu(II) in solution, because more protons needed for Cr(VI) reduction are available due to Cu(II)-proton competition; however sorption of the formed Cr(III) is unfavoured as a result of the competition between Cr(III) and Cu(II) for protons and sorbent active sites. (iii) Copper was partially (9.26%-13.91%) sorbed onto SPV under studied conditions. The presence of Cr(VI) in binary mixtures also exerts a synergistic effect on the Cu(II) removal in all the cases of the 0.1-0.3 mM binary mixtures concentration range. The results of the present work indicate that sweet potato vine can be successfully employed for the simultaneously removal of Cr(VI) and Cu(II) in binary mixtures, taking advantage of the synergistic effect provoked by one of the metal ion to each other, even though the acquisition of higher removal yields has to be further investigated. Acknowledgements—This work has been financially supported by Ministry of Human Resources and Social Security of PRC (Anhui15), Education Department of Anhui Province (KJ2016A270) and Anhui Normal University (2015rcpy33, 2014bsqdjj53).

Keywords: sweet potato vine, chromium reduction, divalent metal, synergistic sorption

Procedia PDF Downloads 159
894 Preventing the Septic Shock in an Oncological Patient with Febrile Neutropenia Submitted to Chemotherapy: The Nurse's Responsibility

Authors: Hugo Reis, Isabel Rabiais

Abstract:

The main purpose of the present study is to understand the nurse’s responsibility in preventing the septic shock in an oncological patient with febrile neutropenia submitted to chemotherapy. In order to do it, an integrative review of literature has been conducted. In the research done in many databases, it was concluded that only 7 out of 5202 articles compiled the entire inclusion standard present in the strict protocol of research, being this made up by all different methodologies. On the research done in the 7 articles it has resulted 8 text macro-units associated to different nursing interventions: ‘Health Education’; ‘Prophylactic Therapy Administration’; ‘Scales Utilization’; ‘Patient Evaluation’; ‘Environment Control’; ‘Performance of Diagnostic Auxiliary Exams’; ‘Protocol Enforcement/Procedure Guidelines’; ‘Antibiotic Therapy Administration’. Concerning the prevalence/result’s division there can be identified many conclusions: the macro-units ‘Patient Evaluation’, ‘Performance of Diagnostic Auxiliary Exams’, and ‘Antibiotic Therapy Administration’ present themselves to be the most prevalent in the research – 6 in 7 occurrences (approximately 85.7%). Next, the macro-unit ‘Protocol Enforcement/Procedure Guidelines’ presents itself as an important expression unit – being part of 5 out of the 7 analyzed studies (approximately 71.4%). The macro-unit ‘Health Education’, seems to be in the same way, an important expression unit – 4 out of the 7 (or approximately 57%). The macro-unit ‘Scales Utilization’, represents a minor part in the research done – it’s in only 2 out of the 7 cases (approximately 28.6%). On the other hand, the macro-units ‘Prophylactic Therapy Administration’ and ‘Environment Control’ are the two categories with fewer results in the research - 1 out of the 7 cases, the same as approximately 14.3% of the research results. Every research done to the macro-unit ‘Antibiotic Therapy Administration’ agreed to refer that the intervention should be strictly done, in a period of time less than one hour after diagnosing the fever, with the purpose of controlling the quick spread of infection – minimizing its seriousness. Identifying these interventions contributes, concluding that, to adopt strategies in order to prevent the phenomenon that represents a daily scenario responsible for the cost´s increase in health institutions, being at the same time responsible for the high morbidity rates and mortality increase associated with this specific group of patients.

Keywords: febrile neutropenia, oncology nursing, patient, septic shock

Procedia PDF Downloads 206
893 Evaluation of Low Temperature as Treatment Tool for Eradication of Mediterranean Fruit Fly (Ceratitis capitata) in Artificial Diet

Authors: Farhan J. M. Al-Behadili, Vineeta Bilgi, Miyuki Taniguchi, Junxi Li, Wei Xu

Abstract:

Mediterranean fruit fly (Ceratitis capitata) is one of the most destructive pests of fruits and vegetables. Medfly originated from Africa and spread in many countries, and is currently an endemic pest in Western Australia. Medfly has been recorded from over 300 plant species including fruits, vegetables, nuts and its main hosts include blueberries, citrus, stone fruit, pome fruits, peppers, tomatoes, and figs. Global trade of fruits and other farm fresh products are suffering from the damages of this pest, which prompted towards the need to develop more effective ways to control these pests. The available quarantine treatment technologies mainly include chemical treatment (e.g., fumigation) and non-chemical treatments (e.g., cold, heat and irradiation). In recent years, with the loss of several chemicals, it has become even more important to rely on non-chemical postharvest control technologies (i.e., heat, cold and irradiation) to control fruit flies. Cold treatment is one of the most potential trends of focus in postharvest treatment because it is free of chemical residues, mitigates or kills the pest population, increases the strength of the fruits, and prolongs storage time. It can also be applied to fruits after packing and ‘in transit’ during lengthy transport by sea during their exports. However, limited systematic study on cold treatment of Medfly stages in artificial diets was reported, which is critical to provide a scientific basis to compare with previous research in plant products and design an effective cold treatment suitable for exported plant products. The overall purpose of this study was to evaluate and understand Medfly responses to cold treatments. Medfly stages were tested. The long-term goal was to optimize current postharvest treatments and develop more environmentally-friendly, cost-effective, and efficient treatments for controlling Medfly. Cold treatment with different exposure times is studied to evaluate cold eradication treatment of Mediterranean fruit fly (Ceratitis capitata), that reared on carrot diet. Mortality is important aspect was studied in this study. On the other hand, study effects of exposure time on mortality means of medfly stages.

Keywords: cold treatment, fruit fly, Ceratitis capitata, carrot diet, temperature effects

Procedia PDF Downloads 218
892 Effect of Polymer Coated Urea on Nutrient Efficiency and Nitrate Leaching Using Maize and Annual Ryegrass

Authors: Amrei Voelkner, Nils Peters, Thomas Mannheim

Abstract:

The worldwide exponential growth of the population and the simultaneous increasing food production requires the strategic realization of sustainable and improved cultivation systems to ensure the fertility of arable land and to guarantee the food supply for the whole world. To fulfill this target, large quantities of fertilizers have to be applied to the field, but the long-term environmental impacts remain uncertain. Thus, a combined system would be necessary to increase the nutrient availability for plants while reducing nutrient losses (e.g. NO3- by leaching) to the environment. To enhance the nutrient efficiency, polymer coated fertilizer with a controlled release behavior have been developed. This kind of fertilizer ensures a delayed release of nutrients to synchronize the nutrient supply with the demand of different crops. In the last decades, research focused primarily on semi-permeable polyurethane coatings, which remain in the soil for a long period after the complete solvation of the fertilizer core. Within the implementation of the new European Regulation Directive the replacement of non-degradable synthetic polymers by degradable coatings is necessary. It was, therefore, the objective of this study to develop a total biodegradable polymer (to CO2 and H2O) coating according to ISO 17556 and to compare the retarding effect of the biodegradable coatings with commercially available non-degradable products. To investigate the effect of ten selected coated urea fertilizer on the yield of annual ryegrass and maize, the fresh and dry mass, the percentage of total nitrogen and main nutrients were analyzed in greenhouse experiments in sixfold replications using near-infrared spectroscopy. For the experiments, a homogenized and air-dried loamy sand (Cambic Luvisol) was equipped with a basic fertilization of P, K, Mg and S. To investigate the effect of nitrogen level increase, three levels (80%, 100%, 120%) were established, whereas the impact of CRF granules was determined using a N-level of 100%. Additionally, leaching of NO3- from pots planted with annual ryegrass was examined to evaluate the retention capacity of urea by the polymer coating. For this, leachate from Kick-Brauckmann-Pots was collected daily and analyzed for total nitrogen, NO3- and NH4+ in twofold repetition once a week using near-infrared spectroscopy. We summarize from the results that the coated fertilizer have a clear impact on the yield of annual ryegrass and maize. Compared to the control, an increase of fresh and dry mass could be recognized. Partially, the non-degradable coatings showed a retarding effect for a longer period, which was however reflected by a lower fresh and dry mass. It was ascertained that the percentage of leached-out nitrate could be reduced markedly. As a conclusion, it could be pointed out that the impact of coated fertilizer of all polymer types might contribute to a reduction of negative environmental impacts in addition to their fertilizing effect.

Keywords: biodegradable polymers, coating, enhanced efficiency fertilizers, nitrate leaching

Procedia PDF Downloads 264
891 Recommendations to Improve Classification of Grade Crossings in Urban Areas of Mexico

Authors: Javier Alfonso Bonilla-Chávez, Angélica Lozano

Abstract:

In North America, more than 2,000 people annually die in accidents related to railroad tracks. In 2020, collisions at grade crossings were the main cause of deaths related to railway accidents in Mexico. Railway networks have constant interaction with motor transport users, cyclists, and pedestrians, mainly in grade crossings, where is the greatest vulnerability and risk of accidents. Usually, accidents at grade crossings are directly related to risky behavior and non-compliance with regulations by motorists, cyclists, and pedestrians, especially in developing countries. Around the world, countries classify these crossings in different ways. In Mexico, according to their dangerousness (high, medium, or low), types A, B and C have been established, recommending for each one different type of auditive and visual signaling and gates, as well as horizontal and vertical signaling. This classification is based in a weighting, but regrettably, it is not explained how the weight values were obtained. A review of the variables and the current approach for the grade crossing classification is required, since it is inadequate for some crossings. In contrast, North America (USA and Canada) and European countries consider a broader classification so that attention to each crossing is addressed more precisely and equipment costs are adjusted. Lack of a proper classification, could lead to cost overruns in the equipment and a deficient operation. To exemplify the lack of a good classification, six crossings are studied, three located in the rural area of Mexico and three in Mexico City. These cases show the need of: improving the current regulations, improving the existing infrastructure, and implementing technological systems, including informative signals with nomenclature of the involved crossing and direct telephone line for reporting emergencies. This implementation is unaffordable for most municipal governments. Also, an inventory of the most dangerous grade crossings in urban and rural areas must be obtained. Then, an approach for improving the classification of grade crossings is suggested. This approach must be based on criteria design, characteristics of adjacent roads or intersections which can influence traffic flow through the crossing, accidents related to motorized and non-motorized vehicles, land use and land management, type of area, and services and economic activities in the zone where the grade crossings is located. An expanded classification of grade crossing in Mexico could reduce accidents and improve the efficiency of the railroad.

Keywords: accidents, grade crossing, railroad, traffic safety

Procedia PDF Downloads 100
890 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 72
889 Localization of Radioactive Sources with a Mobile Radiation Detection System using Profit Functions

Authors: Luís Miguel Cabeça Marques, Alberto Manuel Martinho Vale, José Pedro Miragaia Trancoso Vaz, Ana Sofia Baptista Fernandes, Rui Alexandre de Barros Coito, Tiago Miguel Prates da Costa

Abstract:

The detection and localization of hidden radioactive sources are of significant importance in countering the illicit traffic of Special Nuclear Materials and other radioactive sources and materials. Radiation portal monitors are commonly used at airports, seaports, and international land borders for inspecting cargo and vehicles. However, these equipment can be expensive and are not available at all checkpoints. Consequently, the localization of SNM and other radioactive sources often relies on handheld equipment, which can be time-consuming. The current study presents the advantages of real-time analysis of gamma-ray count rate data from a mobile radiation detection system based on simulated data and field tests. The incorporation of profit functions and decision criteria to optimize the detection system's path significantly enhances the radiation field information and reduces survey time during cargo inspection. For source position estimation, a maximum likelihood estimation algorithm is employed, and confidence intervals are derived using the Fisher information. The study also explores the impact of uncertainties, baselines, and thresholds on the performance of the profit function. The proposed detection system, utilizing a plastic scintillator with silicon photomultiplier sensors, boasts several benefits, including cost-effectiveness, high geometric efficiency, compactness, and lightweight design. This versatility allows for seamless integration into any mobile platform, be it air, land, maritime, or hybrid, and it can also serve as a handheld device. Furthermore, integration of the detection system into drones, particularly multirotors, and its affordability enable the automation of source search and substantial reduction in survey time, particularly when deploying a fleet of drones. While the primary focus is on inspecting maritime container cargo, the methodologies explored in this research can be applied to the inspection of other infrastructures, such as nuclear facilities or vehicles.

Keywords: plastic scintillators, profit functions, path planning, gamma-ray detection, source localization, mobile radiation detection system, security scenario

Procedia PDF Downloads 100
888 Manufacturing and Calibration of Material Standards for Optical Microscopy in Industrial Environments

Authors: Alberto Mínguez-Martínez, Jesús De Vicente Y Oliva

Abstract:

It seems that we live in a world in which the trend in industrial environments is the miniaturization of systems and materials and the fabrication of parts at the micro-and nano-scale. The problem arises when manufacturers want to study the quality of their production. This characteristic is becoming crucial due to the evolution of the industry and the development of Industry 4.0. As Industry 4.0 is based on digital models of production and processes, having accurate measurements becomes capital. At this point, the metrology field plays an important role as it is a powerful tool to ensure more stable production to reduce scrap and the cost of non-conformities. The most extended measuring instruments that allow us to carry out accurate measurements at these scales are optical microscopes, whether they are traditional, confocal, focus variation microscopes, profile projectors, or any other similar measurement system. However, the accuracy of measurements is connected to the traceability of them to the SI unit of length (the meter). The fact of providing adequate traceability to 2D and 3D dimensional measurements at micro-and nano-scale in industrial environments is a problem that is being studied, and it does not have a unique answer. In addition, if commercial material standards for micro-and nano-scale are considered, we can find that there are two main problems. On the one hand, those material standards that could be considered complete and very interesting do not give traceability of dimensional measurements and, on the other hand, their calibration is very expensive. This situation implies that these kinds of standards will not succeed in industrial environments and, as a result, they will work in the absence of traceability. To solve this problem in industrial environments, it becomes necessary to have material standards that are easy to use, agile, adaptive to different forms, cheap to manufacture and, of course, traceable to the definition of meter with simple methods. By using these ‘customized standards’, it would be possible to adapt and design measuring procedures for each application and manufacturers will work with some traceability. It is important to note that, despite the fact that this traceability is clearly incomplete, this situation is preferable to working in the absence of it. Recently, it has been demonstrated the versatility and the utility of using laser technology and other AM technologies to manufacture customized material standards. In this paper, the authors propose to manufacture a customized material standard using an ultraviolet laser system and a method to calibrate it. To conclude, the results of the calibration carried out in an accredited dimensional metrology laboratory are presented.

Keywords: industrial environment, material standards, optical measuring instrument, traceability

Procedia PDF Downloads 113
887 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency

Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee

Abstract:

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.

Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system

Procedia PDF Downloads 425
886 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows

Authors: Thomas Rowan, Mohammed Seaid

Abstract:

A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.

Keywords: erosion, finite volume method, sediment transport, shallow water equations

Procedia PDF Downloads 212
885 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 64
884 Modification of Carbon-Based Gas Sensors for Boosting Selectivity

Authors: D. Zhao, Y. Wang, G. Chen

Abstract:

Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.

Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials

Procedia PDF Downloads 116
883 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis

Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini

Abstract:

Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.

Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid

Procedia PDF Downloads 168
882 Gene Expression Profiling of Iron-Related Genes of Pasteurella multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez Jesse Firdaus Abdullah, Zunita Zakaria, Nurulfiza Mat Isa, Yung Chie Tan, Wai Yan Yee, Abdul Rahman Omar

Abstract:

Pasteurella multocida is associated with acute, as well as, chronic infections in avian and bovine such as pasteurellosis and hemorrhagic septicemia (HS) in cattle and buffaloes. Iron is one of the most important nutrients for pathogenic bacteria including Pasteurella and acts as a cofactor or prosthetic group in several essential enzymes and is needed for amino acid, pyrimidine, and DNA biosynthesis. In our recent study, we showed that 2% of Pasteurella multocida serotype A strain PMTB2.1 encode for iron regulating genes (Accession number CP007205.1). Genome sequencing of other Pasteurella multocida serotypes namely PM70 and HB01 also indicated up to 2.5% of the respective genome encode for iron regulating genes, suggesting that Pasteurella multocida genome comprises of multiple systems for iron uptake. Since P. multocida PMTB2.1 has more than 40 CDs out of 2097 CDs (approximately 2%), encode for iron-regulated. The gene expression profiling of four iron-regulating genes namely fbpb, yfea, fece and fur were characterized under iron-restricted environment. The P. multocida strain PMTB2.1 was grown in broth with and without iron chelating agent and samples were collected at different time points. Relative mRNA expression profile of these genes was determined using Taqman probe based real-time PCR assay. The data analysis, normalization with two house-keeping genes and the quantification of fold changes were carried out using Bio-Rad CFX manager software version 3.1. Results of this study reflect that iron reduced environment has significant effect on expression profile of iron regulating genes (p < 0.05) when compared to control (normal broth) and all evaluated genes act differently with response to iron reduction in media. The highest relative fold change of fece gene was observed at early stage of treatment indicating that PMTB2.1 may utilize its periplasmic protein at early stage to acquire iron. Furthermore, down-regulation expression of fece with the elevated expression of other genes at later time points suggests that PMTB2.1 control their iron requirements in response to iron availability by down-regulating the expression of iron proteins. Moreover, significantly high relative fold change (p ≤ 0.05) of fbpb gene is probably associated with the ability of P. multocida to directly use host iron complex such as hem, hemoglobin. In addition, the significant increase (p ≤ 0.05) in fbpb and yfea expressions also reflects the utilization of multiple iron systems in P. multocida strain PMTB2.1. The findings of this study are very much important as relative scarcity of free iron within hosts creates a major barrier to microbial growth inside host and utilization of outer-membrane proteins system in iron acquisition probably occurred at early stage of infection with P. multocida. In conclusion, the presence and utilization of multiple iron system in P. multocida strain PMTB2.1 revealed the importance of iron in the survival of P. multocida.

Keywords: iron-related genes, real-time PCR, gene expression profiling, fold changes

Procedia PDF Downloads 451
881 The Tourism in the Regional Development of South Caucasus

Authors: Giorgi Sulashvili, Vladimer Kekenadze, Olga Khutsishvili, Bela Khotenashvili, Tsiuri Phkhakadze, Besarion Tsikhelashvili

Abstract:

The article dealt with the South Caucasus is a complex economic policy, which consists of strands: The process of deepening economic integration in the South Caucasus region; deepening economic integration with the EU in the framework of "Neighbourhood policy with Europe" and in line with the Maastricht criteria; the development of bilateral trade and economic relations with many countries of the world community; the development of sufficient conditions for the integration of the South Caucasus region in the world to enter the market. According to the author, to determine the place of Georgia in the regional policy of the South Caucasus, it is necessary to consider two views about Georgia: The first is the view of Georgia, as a part of global economic and political processes and the second look at Georgia, as a country located in the geo-economic and geopolitical space of the South Caucasus. Such approaches reveal the place of Georgia in two dimensions; in the global and regional economies. In the countries of South Caucasus, the tourism has been developing fast and has a great social and economic importance. Tourism influences deeply on the social and economic growth of the regions of the country. Tourism development formulates thousand new jobs, fixes the positions of small and middle businesses, ensures the development of the education and culture of the population. In the countries of South Caucasus, the Tourist Industry can be specified as the intersectoral complex, which consists of travel transport and it’s technical service network, tourist enterprises which are specialized in various types, wide network services. Tourists have a chance to enjoy all of these services. At the transitional stage of shifting to the market economy, tourism is among the priorities in the development of the national economy of our country. It is true that the Georgian tourism faces a range of problems at present, but its recognition and the necessity for its development may be considered as a fact. Besides, we would underline that the revitalization of the Georgian tourism is not only the question of time. This area can bring a lot of benefits as to private firms, as to specific countries. It also has many negative effects were conducted fundamental research and studies to consider both, positive and negative impacts of tourism. In the future such decisions will be taken that will bring, the maximum benefit at minimum cost, in order for tourism to take its place in Georgia it is necessary to understand the role of the tourism sector in the economic structure.

Keywords: transitional stage, national economy, Georgian tourism, positive and negative impacts

Procedia PDF Downloads 387
880 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province

Authors: Gu Sihao

Abstract:

The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.

Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading

Procedia PDF Downloads 53
879 A Comparative Study of the Physicochemical and Structural Properties of Quinoa Protein Isolate and Yellow Squat Shrimp Byproduct Protein Isolate through pH-Shifting Modification

Authors: María José Bugueño, Natalia Jaime, Cristian Castro, Diego Naranjo, Guido Trautmann, Mario Pérez-Won, Vilbett Briones-Labarca

Abstract:

Proteins play a crucial role in various prepared foods, including dairy products, drinks, emulsions, and ready meals. These food proteins are naturally present in food waste and byproducts. The alkaline extraction and acid precipitation method is commonly used to extract proteins from plants and animals due to its product stability, cost-effectiveness, and ease of use. This study aimed to investigate the impact of pH-shifting storage at two different pH levels on the conformational changes affecting the physicochemical and functional properties of quinoa protein isolate (QPI) and yellow shrimp byproduct protein isolate (YSPI). The QPI and YSPI were extracted using the alkaline extraction-isoelectric precipitation method. The dispersions were adjusted to pH 4 or 12, stirred for 2 hours at 20°C to achieve a uniform dispersion, and then freeze-dried. Various analyses were conducted, including flexibility (F), free sulfhydryl content (Ho), emulsifying activity (EA), emulsifying capacity (EC), water holding capacity (WHC), oil holding capacity (OHC), intrinsic fluorescence, ultraviolet spectroscopy, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) to assess the properties of the protein isolates. pH-shifting at pH 11 and 12 for QPI and YSPI, respectively, significantly improved protein properties, while property modification of the samples treated under acidic conditions was less pronounced. Additionally, the pH 11 and 12 treatments significantly improved F, Ho, EA, WHC, OHC, intrinsic fluorescence, ultraviolet spectroscopy, DSC, and FTIR. The increase in Ho was due to disulfide bond disruption, which produced more protein sub-units than other treatments for both proteins. This study provides theoretical support for comprehensively elucidating the functional properties of protein isolates, promoting the application of plant proteins and marine byproducts. The pH-shifting process effectively improves the emulsifying property and stability of QPI and YSPI, which can be considered potential plant-based or marine byproduct-based emulsifiers for use in the food industry.

Keywords: quinoa protein, yellow shrimp by-product protein, physicochemical properties, structural properties

Procedia PDF Downloads 24
878 A Study on the Effect of the Work-Family Conflict on Work Engagement: A Mediated Moderation Model of Emotional Exhaustion and Positive Psychology Capital

Authors: Sungeun Hyun, Sooin Lee, Gyewan Moon

Abstract:

Work-Family Conflict has been an active research area for the past decades. Work-Family Conflict harms individuals and organizations, it is ultimately expected to bring the cost of losses to the company in the long run. WFC has mainly focused on effects of organizational effectiveness and job attitude such as Job Satisfaction, Organizational Commitment, and Turnover Intention variables. This study is different from consequence variable with previous research. For this purpose, we selected the positive job attitude 'Work Engagement' as a consequence of WFC. This research has its primary research purpose in identifying the negative effects of the Work-Family Conflict, and started out from the recognition of the problem that the research on the direct relationship on the influence of the WFC on Work Engagement is lacking. Based on the COR(Conservation of resource theory) and JD-R(Job Demand- Resource model), the empirical study model to examine the negative effects of WFC with Emotional Exhaustion as the link between WFC and Work Engagement was suggested and validated. Also, it was analyzed how much Positive Psychological Capital may buffer the negative effects arising from WFC within this relationship, and the Mediated Moderation model controlling the indirect effect influencing the Work Engagement by the Positive Psychological Capital mediated by the WFC and Emotional Exhaustion was verified. Data was collected by using questionnaires distributed to 500 employees engaged manufacturing, services, finance, IT industry, education services, and other sectors, of which 389 were used in the statistical analysis. The data are analyzed by statistical package, SPSS 21.0, SPSS macro and AMOS 21.0. The hierarchical regression analysis, SPSS PROCESS macro and Bootstrapping method for hypothesis testing were conducted. Results showed that all hypotheses are supported. First, WFC showed a negative effect on Work Engagement. Specifically, WIF appeared to be on more negative effects than FIW. Second, Emotional exhaustion found to mediate the relationship between WFC and Work Engagement. Third, Positive Psychological Capital showed to moderate the relationship between WFC and Emotional Exhaustion. Fourth, the effect of mediated moderation through the integration verification, Positive Psychological Capital demonstrated to buffer the relationship among WFC, Emotional Exhastion, and Work Engagement. Also, WIF showed a more negative effects than FIW through verification of all hypotheses. Finally, we discussed the theoretical and practical implications on research and management of the WFC, and proposed limitations and future research directions of research.

Keywords: emotional exhaustion, positive psychological capital, work engagement, work-family conflict

Procedia PDF Downloads 213
877 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: power system, stability, oscillations, power system stabilizer, model reference adaptive control

Procedia PDF Downloads 129
876 Knowledge Creation and Diffusion Dynamics under Stable and Turbulent Environment for Organizational Performance Optimization

Authors: Jessica Gu, Yu Chen

Abstract:

Knowledge Management (KM) is undoubtable crucial to organizational value creation, learning, and adaptation. Although the rapidly growing KM domain has been fueled with full-fledged methodologies and technologies, studies on KM evolution that bridge the organizational performance and adaptation to the organizational environment are still rarely attempted. In particular, creation (or generation) and diffusion (or share/exchange) of knowledge are of the organizational primary concerns on the problem-solving perspective, however, the optimized distribution of knowledge creation and diffusion endeavors are still unknown to knowledge workers. This research proposed an agent-based model of knowledge creation and diffusion in an organization, aiming at elucidating how the intertwining knowledge flows at microscopic level lead to optimized organizational performance at macroscopic level through evolution, and exploring what exogenous interventions by the policy maker and endogenous adjustments of the knowledge workers can better cope with different environmental conditions. With the developed model, a series of simulation experiments are conducted. Both long-term steady-state and time-dependent developmental results on organizational performance, network and structure, social interaction and learning among individuals, knowledge audit and stocktaking, and the likelihood of choosing knowledge creation and diffusion by the knowledge workers are obtained. One of the interesting findings reveals a non-monotonic phenomenon on organizational performance under turbulent environment while a monotonic phenomenon on organizational performance under a stable environment. Hence, whether the environmental condition is turbulence or stable, the most suitable exogenous KM policy and endogenous knowledge creation and diffusion choice adjustments can be identified for achieving the optimized organizational performance. Additional influential variables are further discussed and future work directions are finally elaborated. The proposed agent-based model generates evidence on how knowledge worker strategically allocates efforts on knowledge creation and diffusion, how the bottom-up interactions among individuals lead to emerged structure and optimized performance, and how environmental conditions bring in challenges to the organization system. Meanwhile, it serves as a roadmap and offers great macro and long-term insights to policy makers without interrupting the real organizational operation, sacrificing huge overhead cost, or introducing undesired panic to employees.

Keywords: knowledge creation, knowledge diffusion, agent-based modeling, organizational performance, decision making evolution

Procedia PDF Downloads 232
875 Solutions for Food-Safe 3D Printing

Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov

Abstract:

Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this study

Keywords: food safety, 3D printing, filaments, microbial, temperature

Procedia PDF Downloads 135
874 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds

Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet

Abstract:

Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.

Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium

Procedia PDF Downloads 272
873 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 104
872 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip

Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar

Abstract:

Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.

Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation

Procedia PDF Downloads 168
871 Climate Variations and Fishers

Authors: S. Surapa Raju

Abstract:

In Andhra Pradesh, the symptoms of climate variations in coastal villages can be observed from various studies. The Andhra Pradesh coast is known its frequent tropical cyclones and associated floods and tidal surges causing loss of life and property in the region. In the last decade alone, the state experienced 18 devastating storms causing huge loss to coastal people. The year 2007 was the fourth warmest year on record since 1901 and 2009 witnessed the heat wave conditions prevailing over the coastal Andhra Pradesh. With regarding to sea level rise (SLR), 43 percent of the coastal areas considered to be at high risk. The main objectives of the study are: to know the perceptions of fisher people on climate variations and to find out the awareness of the fisher people on climate variations and its effects at village and on fishing households. Altogether 150 households were chosen purposively for this study and collected information from the households based on semi-structured schedule. The present field-based study observed that most of the fisher people are experienced about the changes in climate variations in their villages. The first generation fisher people expressed that the at least 1/2km of sea erosion taken place from the last 20 years and most of them displaced. With regard to fishing activities, first generation fisher people revealed that 20 years back they were fishing in near-shore areas, but now availability of near shore is decreased at a large extent. The present study observed the lot of variations in growth of species in marine districts of Andhra Pradesh from the year 2005-2010. Some species like Silver pomfret, Sole (flat fish), Chriocentrus, Thrisocies, Stakes, Rays etc. are in decaling. The results of the study indicate that huge variation observed in growth rates of fish species. Small and traditional fishers have drastically effected in El NiNo years than the normal years as they have not own suitable equipment such as crafts and nets. The study discovered that many changes taken place in the fishing activities and they are: go for long distance for fishing which increases the cost of fishing operations; decrease in fish catches. Need to take up in-depth studies in the marine villages and tackle the situation by creating more awareness about the negative effects of climate variations among fishing households. Suitable fish craft technology is to be supplied and create more employment opportunities for the fishers in other than fishery.

Keywords: climate, Andhra Pradesh, El nino years, India

Procedia PDF Downloads 415
870 Processes and Application of Casting Simulation and Its Software’s

Authors: Surinder Pal, Ajay Gupta, Johny Khajuria

Abstract:

Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied.

Keywords: casting simulation software’s, simulation technique’s, casting simulation, processes

Procedia PDF Downloads 469
869 Anticancer Potentials of Aqueous Tinospora cordifolia and Its Bioactive Polysaccharide, Arabinogalactan on Benzo(a)Pyrene Induced Pulmonary Tumorigenesis: A Study with Relevance to Blood Based Biomarkers

Authors: Vandana Mohan, Ashwani Koul

Abstract:

Aim: To evaluate the potential of Aqueous Tinospora cordifolia stem extract (Aq.Tc) and Arabinogalactan (AG) on pulmonary carcinogenesis and associated tumor markers. Background: Lung cancer is one of the most frequent malignancy with high mortality rate due to limitation of early detection resulting in low cure rates. Current research effort focuses on identifying some blood-based biomarkers like CEA, ctDNA and LDH which may have potential to detect cancer at an early stage, evaluation of therapeutic response and its recurrence. Medicinal plants and their active components have been widely investigated for their anticancer potentials. Aqueous preparation of T. Cordifolia extract is enriched in the polysaccharide fraction i.e., AG when compared with other types of extract. Moreover, reports are available of polysaccharide fraction of T. Cordifolia in in vitro lung cancer models which showed profound anti-metastatic activity against these cell lines. However, not much has been explored about its effect in in vivo lung cancer models and the underlying mechanism involved. Experimental Design: Mice were randomly segregated into six groups. Group I animals served as control. Group II animals were administered with Aq. Tc extract (200 mg/kg b.w.) p.o.on the alternate days. Group III animals were fed with AG (7.5 mg/kg b.w.) p.o. on the alternate days (thrice a week). Group IV animals were installed with Benzo(a)pyrene (50 mg/kg b.w.), i.p. twice within an interval of two weeks. Group V animals received Aq. Tc extract as in group II along with it B(a)P was installed after two weeks of Aq. Tc administration following the same protocol as for group IV. Group VI animals received AG as in group III along with it B(a)P was installed after two weeks of AG administration. Results: Administration of B(a)P to mice resulted in increased tumor incidence, multiplicity and pulmonary somatic index with concomitant increase in serum/plasma markers like CEA, ctDNA, LDH and TNF-α.Aq.Tc and AG supplementation significantly attenuated these alterations at different stages of tumorigenesis thereby showing potent anti-cancer effect in lung cancer. A pronounced decrease in serum/plasma markers were observed in animals treated with Aq.Tc as compared to those fed with AG. Also, extensive hyperproliferation of alveolar epithelium was prominent in B(a)P induced lung tumors. However, treatment of Aq.Tc and AG to lung tumor bearing mice exhibited reduced alveolar damage evident from decreased number of hyperchromatic irregular nuclei. A direct correlation between the concentration of tumor markers and the intensity of lung cancer was observed in animals bearing cancer co-treated with Aq.Tc and AG. Conclusion: These findings substantiate the chemopreventive potential of Aq.Tc and AG against lung tumorigenesis. Interestingly, Aq.Tc was found to be more effective in modulating the cancer as reflected by various observations which may be attributed to the synergism offered by various components of Aq.Tc. Further studies are in progress to understand the underlined mechanism in inhibiting lung tumorigenesis by Aq.Tc and AG.

Keywords: Arabinogalactan, Benzo(a)pyrene B(a)P, carcinoembryonic antigen (CEA), circulating tumor DNA (ctDNA), lactate dehydrogenase (LDH), Tinospora cordifolia

Procedia PDF Downloads 176
868 Decision-Making in the Internationalization Process of Small and Medium Sized Companies: Experience from Managers in a Small Economy

Authors: Gunnar Oskarsson, Gudjon Helgi Egilsson

Abstract:

Due to globalization, small and medium-sized enterprises (SME) increasingly offer their products and services in foreign markets. The main reasons are either to compensate for a decreased market share in their home market or to exploit opportunities in foreign markets, which are becoming less distant and better accessible than before. International markets are particularly important for companies located in a small economy and offering specialized products. Although more accessible, entering international markets is both expensive and difficult. In order to select the most appropriate markets, it is, therefore, important to gain an insight into the factors that have an impact on success, or potential failure. Although there has been a reasonable volume of research into the theory of internationalization, there is still a need to gain further understanding of the decision-making process of SMEs in small economies and the most important characteristics that distinguish between success and failure. The main objective of this research is to enhance knowledge on the internationalization of SMEs, including the drivers for the decision to internationalize, and the most important factors contributing to success in their internationalization activities. A qualitative approach was found to be most appropriate for this kind of research, with the objective of gaining a deeper understanding and discovering factors which impact a company’s decision-making and potential success. In-depth interviews were conducted with 14 companies in different industries located in Iceland, a country extensively dependent on export revenues. The interviews revealed several factors as drivers of internationalization and, not surprisingly, the most frequently mentioned source of motivation was that the local market is inadequate to maintain a sustainable operation. Good networking relationships were seen as a particular priority for potential success, searching for new markets was mainly carried out through the internet, although sales exhibitions and sales trips were also considered important. When it comes to the final decision as to whether a market should be considered for further analysis, economy, labor cost, legal environment, and cultural barriers were the most common factors to be weighted. The ultimate answer to successful internationalization, however, is largely dependent on a coordinated and experienced management team. The main contribution of this research is offering an insight into factors affecting decision-making in the internationalization process of SMEs, based on the opinion and experience of managers of SMEs in a small economy.

Keywords: internationalization, success factors, small and medium-sized enterprises (SMEs), drivers, decision making

Procedia PDF Downloads 233
867 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 220