Search results for: deep convolution networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4616

Search results for: deep convolution networks

3806 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 60
3805 Developing Environmental Engineering Alternatives for Deep Desulphurization of Transportation Fuels

Authors: Nalinee B. Suryawanshi, Vinay M. Bhandari, Laxmi Gayatri Sorokhaibam, Vivek V. Ranade

Abstract:

Deep desulphurization of transportation fuels is a major environmental concern all over the world and recently prescribed norms for the sulphur content require below 10 ppm sulphur concentrations in fuels such as diesel and gasoline. The existing technologies largely based on catalytic processes such as hydrodesulphurization, oxidation require newer catalysts and demand high cost of deep desulphurization whereas adsorption based processes have limitations due to lower capacity of sulphur removal. The present work is an attempt to provide alternatives for the existing methodologies using a newer non-catalytic process based on hydrodynamic cavitation. The developed process requires appropriate combining of organic and aqueous phases under ambient conditions and passing through a cavitating device such as orifice, venturi or vortex diode. The implosion of vapour cavities formed in the cavitating device generates (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, orifice was used as a cavitating device and deep desulphurization was demonstrated for removal of thiophene as a model sulphur compound from synthetic fuel of n-octane, toluene and n-octanol. The effect of concentration of sulphur (up to 300 ppm), nature of organic phase and effect of pressure drop (0.5 to 10 bar) was discussed. A very high removal of sulphur content of more than 90% was demonstrated. The process is easy to operate, essentially works at ambient conditions and the ratio of aqueous to organic phase can be easily adjusted to maximise sulphur removal. Experimental studies were also carried out using commercial diesel as a solvent and the results substantiate similar high sulphur removal. A comparison of the two cavitating devices- one with a linear flow and one using vortex flow for effecting pressure drop and cavitation indicates similar trends in terms of sulphur removal behaviour. The developed process is expected to provide an attractive environmental engineering alternative for deep desulphurization of transportation fuels.

Keywords: cavitation, petroleum, separation, sulphur removal

Procedia PDF Downloads 381
3804 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition

Procedia PDF Downloads 456
3803 Metal-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuels: Analysis from Molecular Dynamics Simulations

Authors: Aibek Kukpayev, Dhawal Shah

Abstract:

Combustion of sour fuels containing high amount of sulfur leads to the formation of sulfur oxides, which adversely harm the environment and has a negative impact on human health. Considering this, several legislations have been imposed to bring down the sulfur content in fuel to less than 10 ppm. In recent years, novel deep eutectic solvents (DESs) have been developed to achieve deep desulfurization, particularly to extract thiophenic compounds from liquid fuels. These novel DESs, considered as analogous to ionic liquids are green, eco-friendly, inexpensive, and sustainable. We herein, using molecular dynamic simulation, analyze the interactions of metal-based DESs with model oil consisting of thiophenic compounds. The DES used consists of polyethylene glycol (PEG-200) as a hydrogen bond donor, choline chloride (ChCl) or tetrabutyl ammonium chloride (TBAC) as a hydrogen bond acceptor, and cobalt chloride (CoCl₂) as metal salt. In particular, the combination of ChCl: PEG-200:CoCl₂ at a ratio 1:2:1 and the combination of TBAC:PEG-200:CoCl₂ at a ratio 1:2:0.25 were simulated, separately, with model oil consisting of octane and thiophenes at 25ᵒC and 1 bar. The results of molecular dynamics simulations were analyzed in terms of interaction energies between different components. The simulations revealed a stronger interaction between DESs/thiophenes as compared with octane/thiophenes, suggestive of an efficient desulfurization process. In addition, our analysis suggests that the choice of hydrogen bond acceptor strongly influences the efficiency of the desulfurization process. Taken together, the results also show the importance of the metal ion, although present in small amount, in the process, and the role of the polymer in desulfurization of the model fuel.

Keywords: deep eutectic solvents, desulfurization, molecular dynamics simulations, thiophenes

Procedia PDF Downloads 147
3802 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems

Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas

Abstract:

This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.

Keywords: transportation networks, freight delivery, data flow, monitoring, e-services

Procedia PDF Downloads 129
3801 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based on Wimax Networks

Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas

Abstract:

Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non-real time traffic in congested networks by considering channel status.

Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).

Procedia PDF Downloads 288
3800 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method

Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.

Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty

Procedia PDF Downloads 18
3799 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 76
3798 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 187
3797 Understanding Social Networks in Community's Coping Capacity with Floods: A Case Study of a Community in Cambodia

Authors: Ourn Vimoil, Kallaya Suntornvongsagul

Abstract:

Cambodia is considered as one of the most disaster prone countries in South East Asia, and most of natural disasters are related to floods. Cambodia, a developing country, faces significant impacts from floods, such as environmental, social, and economic losses. Using data accessed from focus group discussions and field surveys with villagers in Ba Baong commune, prey Veng province, Cambodia, the research would like to examine roles of social networks in raising community’s coping capacity with floods. The findings indicate that social capital play crucial roles in three stages of floods, namely preparedness, response, and recovery to overcome the crisis. People shared their information and resources, and extent their assistances to one another in order to adapt to floods. The study contribute to policy makers, national and international agencies working on this issue to pay attention on social networks as one factors to accelerate flood coping capacity at community level.

Keywords: social network, community, coping capacity, flood, Cambodia

Procedia PDF Downloads 366
3796 Design and Analysis of Deep Excavations

Authors: Barham J. Nareeman, Ilham I. Mohammed

Abstract:

Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.

Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement

Procedia PDF Downloads 257
3795 A Network-Theorical Perspective on Music Analysis

Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria

Abstract:

The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.

Keywords: computational musicology, mathematical music modelling, music analysis, style classification

Procedia PDF Downloads 104
3794 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 156
3793 Optimal Scheduling for Energy Storage System Considering Reliability Constraints

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system.

Keywords: energy storage system (ESS), optimal scheduling, dynamic programming, reliability constraints

Procedia PDF Downloads 408
3792 RF Propagation Analysis in Outdoor Environments Using RSSI Measurements Applied in ZigBee Sensor Networks

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Jeronimo Silva Rocha

Abstract:

Propagation in radio frequency is a constant concern in the application of Wireless Sensor Networks (WSN), the behavior of an environment determines how good the quality of signal reception. The objective of this paper is to analyze the behavior of a WSN in an environment for agriculture where environmental variables are present and correlate the capture of values received signal strength (RSSI) with a propagation model.

Keywords: propagation, WSN, agriculture, quality

Procedia PDF Downloads 756
3791 A Desire to be ‘Recognizable and Reformed’: Natives’ Identity in Walcott’s “Dream on Monkey Mountain”

Authors: S. Khurram, N. Mubashar

Abstract:

The paper examines, through the lens of Postcolonial Theory, how natives resist and react in Derrek Walcott’s “Dream on Monkey Mountain”. It aims at how natives, for being ‘recognized and reformed’, mimic and adapt the white’s ways of living. It also focuses how Walcott expresses natives’ reaction when they cannot construct their identity. Moreover, the paper exploits the Homi. K Bhaba’s concept of Mimicry and Berry’s concepts of Hybridity to explain Caribbean native’s plight. Furthermore, it bring forth Walcott’s deep insight into the psychology of the Caribbean natives. He digs deep into the colonial discourse to reconstruct post-colonial identity and he, as a post-colonial writer, does so by deconstructing colonial ideology of racism by resisting against it.

Keywords: postcolonial theory, mimicry, hybridity, reaction

Procedia PDF Downloads 184
3790 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
3789 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 306
3788 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: biological molecular networks, essential genes, graph theory, network subgraphs

Procedia PDF Downloads 158
3787 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs

Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii

Abstract:

Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.

Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity

Procedia PDF Downloads 524
3786 Loss Allocation in Radial Distribution Networks for Loads of Composite Types

Authors: Sumit Banerjee, Chandan Kumar Chanda

Abstract:

The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.

Keywords: composite type, deregulation, loss allocation, radial distribution networks

Procedia PDF Downloads 287
3785 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing

Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule

Abstract:

Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.

Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing

Procedia PDF Downloads 141
3784 Deep Mill Level Zone (DMLZ) of Ertsberg East Skarn System, Papua; Correlation between Structure and Mineralization to Determined Characteristic Orebody of DMLZ Mine

Authors: Bambang Antoro, Lasito Soebari, Geoffrey de Jong, Fernandy Meiriyanto, Michael Siahaan, Eko Wibowo, Pormando Silalahi, Ruswanto, Adi Budirumantyo

Abstract:

The Ertsberg East Skarn System (EESS) is located in the Ertsberg Mining District, Papua, Indonesia. EESS is a sub-vertical zone of copper-gold mineralization hosted in both diorite (vein-style mineralization) and skarn (disseminated and vein style mineralization). Deep Mill Level Zone (DMLZ) is a mining zone in the lower part of East Ertsberg Skarn System (EESS) that product copper and gold. The Deep Mill Level Zone deposit is located below the Deep Ore Zone deposit between the 3125m to 2590m elevation, measures roughly 1,200m in length and is between 350 and 500m in width. DMLZ planned start mined on Q2-2015, being mined at an ore extraction rate about 60,000 tpd by the block cave mine method (the block cave contain 516 Mt). Mineralization and associated hydrothermal alteration in the DMLZ is hosted and enclosed by a large stock (The Main Ertsberg Intrusion) that is barren on all sides and above the DMLZ. Late porphyry dikes that cut through the Main Ertsberg Intrusion are spatially associated with the center of the DMLZ hydrothermal system. DMLZ orebody hosted in diorite and skarn, both dominantly by vein style mineralization. Percentage Material Mined at DMLZ compare with current Reserves are diorite 46% (with 0.46% Cu; 0.56 ppm Au; and 0.83% EqCu); Skarn is 39% (with 1.4% Cu; 0.95 ppm Au; and 2.05% EqCu); Hornfels is 8% (with 0.84% Cu; 0.82 ppm Au; and 1.39% EqCu); and Marble 7 % possible mined waste. Correlation between Ertsberg intrusion, major structure, and vein style mineralization is important to determine characteristic orebody in DMLZ Mine. Generally Deep Mill Level Zone has 2 type of vein filling mineralization from both hosted (diorite and skarn), in diorite hosted the vein system filled by chalcopyrite-bornite-quartz and pyrite, in skarn hosted the vein filled by chalcopyrite-bornite-pyrite and magnetite without quartz. Based on orientation the stockwork vein at diorite hosted and shallow vein in skarn hosted was generally NW-SE trending and NE-SW trending with shallow-moderate dipping. Deep Mill Level Zone control by two main major faults, geologist founded and verified local structure between major structure with NW-SE trending and NE-SW trending with characteristics slickenside, shearing, gauge, water-gas channel, and some has been re-healed.

Keywords: copper-gold, DMLZ, skarn, structure

Procedia PDF Downloads 503
3783 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 87
3782 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 78
3781 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 99
3780 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed

Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot

Abstract:

Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.

Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning

Procedia PDF Downloads 373
3779 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 392
3778 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks

Authors: Mehmet Karaata

Abstract:

Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.

Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security

Procedia PDF Downloads 444
3777 Magnetic Investigation and 2½D Gravity Profile Modelling across the Beattie Magnetic Anomaly in the Southeastern Karoo Basin, South Africa

Authors: Christopher Baiyegunhi, Oswald Gwavava

Abstract:

The location/source of the Beattie magnetic anomaly (BMA) and interconnectivity of geologic structures at depth have been a topic of investigation for over 30 years. Up to now, no relationship between geological structures (interconnectivity of dolerite intrusions) at depth has been established. Therefore, the environmental impact of fracking the Karoo for shale gas could not be assessed despite the fact that dolerite dykes are groundwater localizers in the Karoo. In this paper, we shed more light to the unanswered questions concerning the possible location of the source of the BMA, the connectivity of geologic structures like dolerite dykes and sills at depth and this relationship needs to be established before the tectonic evolution of the Karoo basin can be fully understood and related to fracking of the Karoo for shale gas. The result of the magnetic investigation and modelling of four gravity profiles that crosses the BMA in the study area reveals that the anomaly, which is part of the Beattie magnetic anomaly tends to divide into two anomalies and continue to trend in an NE-SW direction, the dominant gravity signatures is of long wavelength that is due to a deep source/interface inland and shallows towards the coast, the average depth to the top of the shallow and deep magnetic sources was estimated to be approximately 0.6 km and 15 km, respectively. The BMA become stronger with depth which could be an indication that the source(s) is deep possibly a buried body in the basement. The bean-shaped anomaly also behaves in a similar manner like the BMA thus it could possibly share the same source(s) with the BMA.

Keywords: Beattie magnetic anomaly, magnetic sources, modelling, Karoo Basin

Procedia PDF Downloads 556