Search results for: content based image retrieval (CBIR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33845

Search results for: content based image retrieval (CBIR)

33035 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 244
33034 Content Analysis of ‘Junk Food’ Content in Children’s TV Programmes: A Comparison of UK Broadcast TV and Video-On-Demand Services

Authors: Shreesh Sinha, Alexander B. Barker, Megan Parkin, Emma Wilson, Rachael L. Murray

Abstract:

Background and Objectives: Exposure to HFSS imagery is associated with the consumption of foods high in fat, sugar or salt (HFSS), and subsequently obesity, among young people. We report and compare the results of two content analyses, one of two popular terrestrial children's television channels in the UK and the other of a selection of children's programmes available on video-on-demand (VOD) streaming sites. Methods: Content analysis of three days' worth of programmes (including advertisements) on two popular children's television channels broadcast on UK television (CBeebies and Milkshake) as well as a sample of 40 highest-rated children's programmes available on the VOD platforms, Netflix and Amazon Prime, using 1-minute interval coding. Results: HFSS content was seen in 181 broadcasts (36%) and in 417 intervals (13%) on terrestrial television, 'Milkshake' had a significantly higher proportion of programmes/adverts which contained HFSS content than 'CBeebies'. In VOD platforms, HFSS content was seen in 82 episodes (72% of the total number of episodes), across 459 intervals (19% of the total number of intervals), with no significant difference in the proportion of programmes containing HFSS content between Netflix and Amazon Prime. Conclusions: This study demonstrates that HFSS content is common in both popular UK children's television channels and children's programmes on VOD services. Since previous research has shown that HFSS content in the media has an effect on HFSS consumption, children's television programmes broadcast either on TV or VOD services are likely to have an effect on HFSS consumption in children, and legislative opportunities to prevent this exposure are being missed.

Keywords: public health, junk food, children's TV, HFSS

Procedia PDF Downloads 102
33033 Forensic Analysis of Signal Messenger on Android

Authors: Ward Bakker, Shadi Alhakimi

Abstract:

The amount of people moving towards more privacy focused instant messaging applications has grown significantly. Signal is one of these instant messaging applications, which makes Signal interesting for digital investigators. In this research, we evaluate the artifacts that are generated by the Signal messenger for Android. This evaluation was done by using the features that Signal provides to create artifacts, whereafter, we made an image of the internal storage and the process memory. This image was analysed manually. The manual analysis revealed the content that Signal stores in different locations during its operation. From our research, we were able to identify the artifacts and interpret how they were used. We also examined the source code of Signal. Using our obtain knowledge from the source code, we developed a tool that decrypts some of the artifacts using the key stored in the Android Keystore. In general, we found that most artifacts are encrypted and encoded, even after decrypting some of the artifacts. During data visualization, some artifacts were found, such as that Signal does not use relationships between the data. In this research, two interesting groups of artifacts were identified, those related to the database and those stored in the process memory dump. In the database, we found plaintext private- and group chats, and in the memory dump, we were able to retrieve the plaintext access code to the application. Nevertheless, we conclude that Signal contains a wealth of artifacts that could be very valuable to a digital forensic investigation.

Keywords: forensic, signal, Android, digital

Procedia PDF Downloads 82
33032 Secure Transfer of Medical Images Using Hybrid Encryption

Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 443
33031 Social Media Retailing in the Creator Economy

Authors: Julianne Cai, Weili Xue, Yibin Wu

Abstract:

Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.

Keywords: content creation, creator economy, incentive strategy, platform retailing

Procedia PDF Downloads 114
33030 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms

Authors: Volkan Kaya, Ersin Elbasi

Abstract:

Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.

Keywords: watermarking, medical image, frequency domain, least significant bits, security

Procedia PDF Downloads 288
33029 Gender and Advertisements: A Content Analysis of Pakistani Prime Time Advertisements

Authors: Aaminah Hassan

Abstract:

Advertisements carry a great potential to influence our lives because they are crafted to meet particular ends. Stereotypical representation in advertisements is capable of forming unconscious attitudes among people towards any gender and their abilities. This study focuses on gender representation in Pakistani prime time advertisements. For this purpose, 13 advertisements were selected from three different categories of foods and beverages, cosmetics, cell phones and cellular networks from the prime time slots of one of the leading Pakistani entertainment channel, ‘Urdu 1’. Both quantitative and qualitative analyses are carried out for range of variables like gender, age, roles, activities, setting, appearance and voice overs. The results revealed that gender representation in advertisements is stereotypical. Moreover, in few instances, the portrayal of women is not only culturally inappropriate but is demeaning to the image of women as well. Their bodily charm is used to promote products. Comparing different entertainment channels for their prime time advertisements and broadening the scope of this research will yield greater implications for the researchers who want to carry out the similar research. It is hoped that the current study would help in the promotion of media literacy among the viewers and media authorities in Pakistan.

Keywords: Advertisements, Content Analysis, Gender, Prime time

Procedia PDF Downloads 214
33028 Implementation of Achterbahn-128 for Images Encryption and Decryption

Authors: Aissa Belmeguenai, Khaled Mansouri

Abstract:

In this work, an efficient implementation of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written by MATLAB.7.5. At first two different original images are used for validate the proposed design. Then our developed program was used to transform the original images data into image digits file. Finally, we used our implemented program to encrypt and decrypt images data. Several tests are done for proving the design performance including visual tests and security analysis; we discuss the security analysis of the proposed image encryption scheme including some important ones like key sensitivity analysis, key space analysis, and statistical attacks.

Keywords: Achterbahn-128, stream cipher, image encryption, security analysis

Procedia PDF Downloads 532
33027 A Study on Real-Time Fluorescence-Photoacoustic Imaging System for Mouse Thrombosis Monitoring

Authors: Sang Hun Park, Moung Young Lee, Su Min Yu, Hyun Sang Jo, Ji Hyeon Kim, Chul Gyu Song

Abstract:

A near-infrared light source used as a light source in the fluorescence imaging system is suitable for use in real-time during the operation since it has no interference in surgical vision. However, fluorescence images do not have depth information. In this paper, we configured the device with the research on molecular imaging systems for monitoring thrombus imaging using fluorescence and photoacoustic. Fluorescence imaging was performed using a phantom experiment in order to search the exact location, and the Photoacoustic image was in order to detect the depth. Fluorescence image obtained when evaluated through current phantom experiments when the concentration of the contrast agent is 25μg / ml, it was confirmed that it looked sharper. The phantom experiment is has shown the possibility with the fluorescence image and photoacoustic image using an indocyanine green contrast agent. For early diagnosis of cardiovascular diseases, more active research with the fusion of different molecular imaging devices is required.

Keywords: fluorescence, photoacoustic, indocyanine green, carotid artery

Procedia PDF Downloads 601
33026 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying

Authors: Hyeongdo Jeong, Jong Kook Lee

Abstract:

Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.

Keywords: zirconia, solid content, granulation, spray drying

Procedia PDF Downloads 216
33025 Adversarial Attacks and Defenses on Deep Neural Networks

Authors: Jonathan Sohn

Abstract:

Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.

Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning

Procedia PDF Downloads 195
33024 Collaborative and Experimental Cultures in Virtual Reality Journalism: From the Perspective of Content Creators

Authors: Radwa Mabrook

Abstract:

Virtual Reality (VR) content creation is a complex and an expensive process, which requires multi-disciplinary teams of content creators. Grant schemes from technology companies help media organisations to explore the VR potential in journalism and factual storytelling. Media organisations try to do as much as they can in-house, but they may outsource due to time constraints and skill availability. Journalists, game developers, sound designers and creative artists work together and bring in new cultures of work. This study explores the collaborative experimental nature of VR content creation, through tracing every actor involved in the process and examining their perceptions of the VR work. The study builds on Actor Network Theory (ANT), which decomposes phenomena into their basic elements and traces the interrelations among them. Therefore, the researcher conducted 22 semi-structured interviews with VR content creators between November 2017 and April 2018. Purposive and snowball sampling techniques allowed the researcher to recruit fact-based VR content creators from production studios and media organisations, as well as freelancers. Interviews lasted up to three hours, and they were a mix of Skype calls and in-person interviews. Participants consented for their interviews to be recorded, and for their names to be revealed in the study. The researcher coded interviews’ transcripts in Nvivo software, looking for key themes that correspond with the research questions. The study revealed that VR content creators must be adaptive to change, open to learn and comfortable with mistakes. The VR content creation process is very iterative because VR has no established work flow or visual grammar. Multi-disciplinary VR team members often speak different languages making it hard to communicate. However, adaptive content creators perceive VR work as a fun experience and an opportunity to learn. The traditional sense of competition and the strive for information exclusivity are now replaced by a strong drive for knowledge sharing. VR content creators are open to share their methods of work and their experiences. They target to build a collaborative network that aims to harness VR technology for journalism and factual storytelling. Indeed, VR is instilling collaborative and experimental cultures in journalism.

Keywords: collaborative culture, content creation, experimental culture, virtual reality

Procedia PDF Downloads 127
33023 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 161
33022 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 146
33021 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 392
33020 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 300
33019 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 10
33018 Development of Star Image Simulator for Star Tracker Algorithm Validation

Authors: Zoubida Mahi

Abstract:

A successful satellite mission in space requires a reliable attitude and orbit control system to command, control and position the satellite in appropriate orbits. Several sensors are used for attitude control, such as magnetic sensors, earth sensors, horizon sensors, gyroscopes, and solar sensors. The star tracker is the most accurate sensor compared to other sensors, and it is able to offer high-accuracy attitude control without the need for prior attitude information. There are mainly three approaches in star sensor research: digital simulation, hardware in the loop simulation, and field test of star observation. In the digital simulation approach, all of the processes are done in software, including star image simulation. Hence, it is necessary to develop star image simulation software that could simulate real space environments and various star sensor configurations. In this paper, we present a new stellar image simulation tool that is used to test and validate the stellar sensor algorithms; the developed tool allows to simulate of stellar images with several types of noise, such as background noise, gaussian noise, Poisson noise, multiplicative noise, and several scenarios that exist in space such as the presence of the moon, the presence of optical system problem, illumination and false objects. On the other hand, we present in this paper a new star extraction algorithm based on a new centroid calculation method. We compared our algorithm with other star extraction algorithms from the literature, and the results obtained show the star extraction capability of the proposed algorithm.

Keywords: star tracker, star simulation, star detection, centroid, noise, scenario

Procedia PDF Downloads 96
33017 A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System

Authors: Chia-Yu Lin, Yu-Hsiang Shen, Cing-Ciao Ke, Chia-Hao Chang, Fan-Pin Tseng, Yu-Ching Ni, Sheng-Pin Tseng

Abstract:

Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique.

Keywords: image reconstruction, non-coplanar imaging technique, tomosynthesis, X-ray imaging

Procedia PDF Downloads 366
33016 Formulation and Nutrition Analysis of Low-Sugar Snack Bars

Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai

Abstract:

Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.

Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation

Procedia PDF Downloads 397
33015 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data

Authors: Fanqiang Kong, Chending Bian

Abstract:

Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means

Procedia PDF Downloads 245
33014 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
33013 A Functional Analysis of a Political Leader in Terms of Marketing

Authors: Aşina Gülerarslan, M. Faik Özdengül

Abstract:

The new economic, social and political world order has led to the emergence of a wide range of persuasion strategies and practices based on an ever expanding marketing axis that involves organizations, ideas and persons as well as products and services. It is seen that since the 1990's, a wide variety of competitive marketing ideas have been offered systematically to target audiences in the field of politics as in other fields. When the components of marketing are taken into consideration, all kinds of communication efforts involving “political leaders”, who are conceptualized as products in terms of political marketing, serve a process of social persuasion, which cannot be restricted to election periods only, and a manageable “image”. In this context, image, which is concerned with how the political product is perceived, involves not only the political discourses shared with the public but also all kinds of biographical information about the leader, the leader’s specific way of living and routines and his/her attitudes and behaviors in their private lives, and all these are regarded as components of the “product image”. While on the one hand the leader’s verbal or supra-verbal references serve the way the “spirit of the product” is perceived –just as in brand positioning- they also show their self-esteem levels, in other words how they perceive themselves on the other hand. Indeed, their self-esteem levels are evaluated in three fundamental categories in the “Functional Analysis”, namely parent, child and adult, and it is revealed that the words, tone of voice and body language a person uses makes it easy to understand at what self-esteem level that person is. In this context, words, tone of voice and body language, which provide important clues as to the “self” of the person, are also an indication of how political leaders evaluate both “themselves” and “the mass/audience” in the communication they establish with their audiences. When the matter is taken from the perspective of Turkey, the levels of self-esteem in the relationships that the political leaders establish with the masses are also important in revealing how our society is seen from the perspective of a specific leader. Since the leader is a part of the marketing strategy of a political party as a product, this evaluation is significant in terms of the forms of relationships between political institutions in our country with the society. In this study, the self-esteem level in the documentary entitled “Master’s Story”, where Recep Tayyip Erdoğan’s life history is told, is analyzed in the context of words, tone of voice and body language. Within the scope of the study, at what level of self-esteem Recep Tayyip Erdoğan was in the “Master’s Story”, a documentary broadcast on Beyaz TV, was investigated using the content analysis method. First, based on the Functional Analysis Literature, a transactional approach scale was created regarding parent, adult and child self-esteem levels. On the basis of this scale, the prime minister’s self-esteem level was determined in three basic groups, namely “tone of voice”, “the words he used” and “body language”. Descriptive analyses were made to the data within the framework of these criteria and at what self-esteem level the prime minister spoke throughout the documentary was revealed.

Keywords: political marketing, leader image, level of self-esteem, transactional approach

Procedia PDF Downloads 338
33012 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis

Authors: R. Periyasamy, Deepak Joshi, Sneh Anand

Abstract:

Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.

Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis

Procedia PDF Downloads 499
33011 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 315
33010 Evaluation of Visco-Elastic Properties and Microbial Quality of Oat-Based Dietetic Food

Authors: Uchegbu Nneka Nkechi, Okoye Ogochukwu Peace

Abstract:

The evaluation of the visco-elastic properties and microbial quality of a formulated oat-based dietetic food were investigated. Oat flour, pumpkin seed flour, carrot flour and skimmed milk powder were blended in varying proportions to formulate a product with codes OCF, which contains 70% oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 10% skimmed milk powder, OCF which contains 65 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 15 % skimmed milk powder, OCF which contains 60 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 20 % skimmed milk powder, OCF which contains 55 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 25 % skimmed milk powder and OF with 95 % oat as the commercial control. All the samples were assessed for their proximate composition, microbial quality and visco-elastic properties. The moisture content was highest at sample OF (10.73%) and lowest at OCF (7.10%) (P<0.05). Crude protein ranged from 13.38%-22.86%, with OCF having the highest (P<0.05) protein content and OF having the lowest. Crude fat was 3.74% for OCF and 6.31% for OF. Crude fiber ranged from 3.58% - 17.39% with OF having the lowest (P<0.05) fiber content and OCF having the highest. Ash content was 1.30% for OCF and 2.75% for OCF. There was no mold growth in the samples. The total viable ml/wl count ranged from 1.5×10³ cfu/g - 2.6×10³ cfu/g, with OCF having the lowest and OF having the highest (P<0.05) total viable count. The peak viscosity of the sample ranged from 75.00 cP-2895.00 cP, with OCF having the lowest and OF having the highest value. The final viscosity was 130.50 cP in OCF and 3572.50 cP in OF. The setback viscosity was 58.00 cP in OCF and 1680.50 cP in OF. The peak time was 6.93 mins in OCF to 5.57 mins in OF. There was no pasting temperature for all samples except the OF, which had 86.43. Sample OF was the highest in terms of overall acceptability. This study showed that the oat-based composite flour produced had a nutritional profile that would be acceptable for the aged population.

Keywords: dietetic, pumpkin, visco-elastic, microbial

Procedia PDF Downloads 197
33009 Constructing Masculinity through Images: Content Analysis of Lifestyle Magazines in Croatia

Authors: Marija Lončar, Zorana Šuljug Vučica, Magdalena Nigoević

Abstract:

Diverse social, cultural and economic trends and changes in contemporary societies influence the ways masculinity is represented in a variety of media. Masculinity is constructed within media images as a dynamic process that changes slowly over time and is shaped by various social factors. In many societies, dominant masculinity is still associated with authority, heterosexuality, marriage, professional and financial success, ethnic dominance and physical strength. But contemporary media depict men in ways that suggest a change in the approach to media images. The number of media images of men, which promote men’s identity through their body, have increased. With the male body more scrutinized and commodified, it is necessary to highlight how the body is represented and which visual elements are crucial since the body has an important role in the construction of masculinities. The study includes content analysis of male body images in the advertisements of different men’s and women’s lifestyle magazines available in Croatia. The main aim was to explore how masculinities are currently being portrayed through body regarding age, physical appearance, fashion, touch and gaze. The findings are also discussed in relation to female images since women are central in many of the processes constructing masculinities and according to the recent conceptualization of masculinity. Although the construction of male images varies through body features, almost all of them convey the message that men’s identity could be managed through manipulation and by enhancing the appearance. Furthermore, they suggest that men should engage in “bodywork” through advertised products, activities and/or practices, in order to achieve their preferred social image.

Keywords: body images, content analysis, lifestyle magazines, masculinity

Procedia PDF Downloads 245
33008 The Mediating Effect of Destination Image on Intention to Use a Tourism App

Authors: Arej Alhemimah

Abstract:

This study investigates the influence of tourists’ perceptions of destination image on their intention to use a tourism app. It examines the roles played by tourists’ perceptions of app/website usability, information quality, and risk in shaping tourism destination image and, subsequently, their app use intention. Using an online questionnaire, the study surveyed 194 international tourists in Saudi Arabia. Results were analysed using PLS-SEM. All the proposed hypotheses were supported and significant. Perceived risk had the strongest influence, followed by the influence of tourists’ perceptions of information quality, then app usability. Additionally, perceived risk was found to have a strong effect on the application use intention. The study makes a significant contribution to the tourism website/application literature; its implications provide practical insights and recommendations for destination marketers and managers to improve their online and social media presence in terms of enhancing e-platform usability, quality of provided information, and most importantly, to create a destination strategy to manage tourists’ risk perceptions.

Keywords: destination image, perceived risk, use intention, tourism app, information quality

Procedia PDF Downloads 84
33007 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 79
33006 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil

Authors: Suwarno, M. Helmi Prakoso

Abstract:

Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.

Keywords: dielectric properties, high voltage transformer, mineral oil, water content

Procedia PDF Downloads 399