Search results for: cold tomato paste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1167

Search results for: cold tomato paste

357 Metallurgical Analysis of Surface Defect in Telescopic Front Fork

Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya

Abstract:

Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.

Keywords: telescopic front fork, induction welding, hook crack, internal oxidation

Procedia PDF Downloads 131
356 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water

Authors: Zohreh Rashmei

Abstract:

Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.

Keywords: plasma, hydrogen peroxide, disinfection, E. coli

Procedia PDF Downloads 144
355 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 110
354 Analysis of Natural Convection within a Hexagonal Enclosure Full with Nanofluid (Water-Cu) Under Effect of the Position of the Inner Obstacle

Authors: Lakhdar Rahmani, Benhanifia Kada, Brahim Mebarki

Abstract:

The present paper aims to investigate the natural convection of nanofluid (water-cu) inside a hexagonal enclosure shape embedded with a square obstacle in the presence of hot and cold side walls. The governing equations were solved in a non-uniform unstructured grid by employing the Galerkin finite element method using the software COMSOL Multiphysics. The objective of this study is to analyze the influence of Rayleigh number (103 < Ra < 105), the position of the obstacle, which is located in three different positions (center, bottom, and top side ), and the effect of Nanoparticles volume concentration (0 < Ø < 0.2) on the thermal behavior inside the enclosure, The results are reported as contours of isotherms, streamlines, and average Nusselt numbers. The obtained results illustrate that the increase in the Rayleigh number (Ra) and the Nanoparticles concentration ( Ø ) leads to an increase in the Nusselt number (Nu average ) that signifies the rate of heat transfer in the studied enclosure, in addition to the best performance observed with the position of obstacle that is located at the middle of the enclosure, where has a high effect in improving the heat transfer along the enclosure comparatively with the rest different positions.

Keywords: natural convection, nanofluid (water-Cu), hexagonal enclosure, Nusselt numbers, Rayleigh number

Procedia PDF Downloads 90
353 Control of Spoilage Fungi by Lactobacilli

Authors: Laref Nora, Guessas Bettache

Abstract:

Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.

Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity

Procedia PDF Downloads 331
352 Thermal Diffusion of Photovoltaic Organic Semiconductors Determined by Scanning Photothermal Deflection Technique

Authors: K.L. Chiu, Johnny K. W. Ho, M. H. Chan, S. H. Cheung, K. H. Chan, S.K. So

Abstract:

Thermal diffusivity is an important quantity in heat conduction. It measures the rate of heat transfer from the hot side to the cold side of a material. In solid-state materials, thermal diffusivity reveals information related to morphologies and solid quality, as thermal diffusivity can be affected by microstructures. However, thermal diffusivity studies on organic semiconductors are very limited. In this study, scanning photothermal deflection (SPD) technique is used to study the thermal diffusivities of different classes of semiconducting polymers. The reliability of the technique was confirmed by crossing-checking our SPD derived experimental values of different reference materials with their known diffusivities from the literature. To show that thermal diffusivity determination is a potential tool for revealing microscopic properties of organic photovoltaic semiconductors, SPD measurements were applied to various organic semiconducting films with different crystallinities. It is observed that organic photovoltaic semiconductors possess low thermal diffusivity, with values in the range of 0.3mm²/s to 1mm²/s. It is also discovered that polymeric photovoltaic semiconductors with greater molecular planarity, stronger stacking and higher crystallinity would possess greater thermal diffusivities. Correlations between thermal, charge transport properties will be discussed.

Keywords: polymer crystallinity, photovoltaic organic semiconductors, photothermal deflection technique, thermal diffusion

Procedia PDF Downloads 143
351 An Integrated Modular Approach Based Simulation of Cold Heavy Oil Production

Authors: Hamidreza Sahaleh

Abstract:

In this paper, the authors display an incorporated secluded way to deal with quantitatively foresee volumetric sand generation and improved oil recuperation. This model is in light of blend hypothesis with erosion mechanics, in which multiphase hydrodynamics and geo-mechanics are coupled in a predictable way by means of principal unknowns, for example, saturation, pressure, porosity, and formation displacements. Foamy oil is demonstrated as a scattering of gas bubbles caught in the oil, where these gas air bubbles keep up a higher repository weight. A secluded methodology is then received to adequately exploit the current propelled standard supply and stress-strain codes. The model is actualized into three coordinated computational modules, i.e. erosion module, store module, and geo-mechanics module. The stress, stream and erosion mathematical statements are understood independently for every time addition, and the coupling terms (porosity, penetrability, plastic shear strain, and so on) are gone among them and iterated until certain union is accomplished on a period step premise. The framework is capable regarding its abilities, yet practical in terms of computer requirements and maintenance. Numerical results of field studies are displayed to show the capacities of the model. The impacts of foamy oil stream and sand generation are additionally inspected to exhibit their effect on the upgraded hydrocarbon recuperation.

Keywords: oil recuperation, erosion mechanics, foamy oil, erosion module.

Procedia PDF Downloads 268
350 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip

Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari

Abstract:

The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.

Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation

Procedia PDF Downloads 143
349 Increased Nitrogen Removal in Cold Deammonification Biofilm Reactor (9-15°C) by Smooth Temperature Decreasing

Authors: Ivar Zekker, Ergo Rikmann, Anni Mandel, Markus Raudkivi, Kristel Kroon, Liis Loorits, Andrus Seiman, Hannu Fritze, Priit Vabamäe, Toomas Tenno, Taavo Tenno

Abstract:

The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment nowadays. A deammonification moving bed biofilm reactor (MBBR) with a high maximum total nitrogen removal rate (TNRR) of 1.5 g N m-2 d-1 was started up and similarly high TNRR was sustained at low temperature of 15°C. During biofilm cultivation, temperature in MBBR was lowered by 0.5° C week-1 sustaining the high TNRR. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments performed showed sufficient TNRRs even at 9-15° C (4.3-5.4 mg N L-1 h-1, respectively). After biomass was adapted to lower temperature (15°C), the TNRR increase at lower temperature (15°C) was relatively higher (15-20%) than with biomass adapted to higher temperatures (17-18°C). Anammox qPCR showed increase of Candidatus Brocadia quantities from 5×103 to 1×107 anammox gene copies g-1 TSS despite temperature lowered to 15°C. Modeling confirmed causes of stable and unstable periods in the reactor and in batch test high Arrhenius constant of 29.7 kJ mol-1 of the process as high as at 100 mg NO2--N L-1 were determined. 

Keywords: deammonification, reject water, intermittent aeration, nitrite inhibition

Procedia PDF Downloads 416
348 Acoustic and Thermal Isolation Performance Comparison between Recycled and Ceramic Roof Tiles Using Digital Holographic Interferometry

Authors: A. Araceli Sánchez, I. Manuel H. De la Torre, S. Fernando Mendoza, R. Cesar Tavera, R. Manuel de J. Briones

Abstract:

Recycling, as part of any sustainable environment, is continuously evolving and impacting on new materials in manufacturing. One example of this is the recycled solid waste of Tetra Pak ™ packaging, which is a highly pollutant waste as it is not biodegradable since it is manufactured with different materials. The Tetra Pak ™ container consists of thermally joined layers of paper, aluminum and polyethylene. Once disposed, this packaging is recycled by completely separating the paperboard from the rest of the materials. The aluminum and the polyethylene remain together and are used to create the poly-aluminum, which is widely used to manufacture roof tiles. These recycled tiles have different thermal and acoustic properties compared with traditional manufactured ceramic and cement tiles. In this work, we compare a group of tiles using nondestructive optical testing to measure the superficial micro deformations of the tiles under well controlled experiments. The results of the acoustic and thermal tests show remarkable differences between the recycled tile and the traditional ones. These results help to determine which tile could be better suited to the specific environmental conditions in countries where extreme climates, ranging from tropical, desert-like, to very cold are experienced throughout the year.

Keywords: acoustic, digital holographic interferometry, isolation, recycled, roof tiles, sustainable, thermal

Procedia PDF Downloads 464
347 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 483
346 Tourism Potentials of Ikogosi Warm Spring in Nigeria

Authors: A.I. Adeyemo

Abstract:

Ikogosi warm spring results from a complex mechanical and chemical forces that generates internal heat in the rocks forming a warm and cold water at the same geographical location at the same time. From time immemorial, the local community had thought, it to be the work of a deity, and they were worshipping the spring. This complex phenomenon has been a source of tourist attraction to both local and international tourists over the years. 450 copies of a structured questionnaire were given out, and a total of 500 respondents were interviewed. The result showed that ikogosi warm spring impacts the community positively by providing employment to the teeming youths, and it provides income to traders. The result shows that 66% of the respondents confirmed that it increased their income and that transportation business increased more than 73%.the level of enlightenment and socialization increased greatly in the community. However, it also impacted the community negatively as it increased crime rates such as stealing, kidnapping, prostitution, and unwanted pregnancy among the secondary school girls and the other teenagers. Generally, 50% of the respondents reported that tourism in the warm spring results in insecurity in the community. IT also increased environmental problems such as noise and waste pollutions; the continuous movement on the land results in soil compartment leading to erosion, and leaching, which also results in loss of soil fertility. It was concluded that if the potentials of the spring are fully tapped, it will be a good avenue for income generation to the country.

Keywords: community, Ikogosi, revenue, warm spring

Procedia PDF Downloads 158
345 Northern Nigeria Vaccine Direct Delivery System

Authors: Evelyn Castle, Adam Thompson

Abstract:

Background: In 2013, the Kano State Primary Health Care Management Board redesigned its Routine immunization supply chain from diffused pull to direct delivery push. It addressed issues around stockouts and reduced time spent by health facility staff collecting, and reporting on vaccine usage. The health care board sought the help of a 3PL for twice-monthly deliveries from its cold store to 484 facilities across 44 local governments. eHA’s Health Delivery Systems group formed a 3PL to serve 326 of these new facilities in partnership with the State. We focused on designing and implementing a technology system throughout. Basic methodologies: GIS Mapping: - Planning the delivery of vaccines to hundreds of health facilities requires detailed route planning for delivery vehicles. Mapping the road networks across Kano and Bauchi with a custom routing tool provided information for the optimization of deliveries. Reducing the number of kilometers driven each round by 20%, - reducing cost and delivery time. Direct Delivery Information System: - Vaccine Direct Deliveries are facilitated through pre-round planning (driven by health facility database, extensive GIS, and inventory workflow rules), manager and driver control panel customizing delivery routines and reporting, progress dashboard, schedules/routes, packing lists, delivery reports, and driver data collection applications. Move: Last Mile Logistics Management System: - MOVE has improved vaccine supply information management to be timely, accurate and actionable. Provides stock management workflow support, alerts management for cold chain exceptions/stock outs, and on-device analytics for health and supply chain staff. Software was built to be offline-first with user-validated interface and experience. Deployed to hundreds of vaccine storage site the improved information tools helps facilitate the process of system redesign and change management. Findings: - Stock-outs reduced from 90% to 33% - Redesigned current health systems and managing vaccine supply for 68% of Kano’s wards. - Near real time reporting and data availability to track stock. - Paperwork burdens of health staff have been dramatically reduced. - Medicine available when the community needs it. - Consistent vaccination dates for children under one to prevent polio, yellow fever, tetanus. - Higher immunization rates = Lower infection rates. - Hundreds of millions of Naira worth of vaccines successfully transported. - Fortnightly service to 326 facilities in 326 wards across 30 Local Government areas. - 6,031 cumulative deliveries. - Over 3.44 million doses transported. - Minimum travel distance covered in a round of delivery is 2000 kms & maximum of 6297 kms. - 153,409 kms travelled by 6 drivers. - 500 facilities in 326 wards. - Data captured and synchronized for the first time. - Data driven decision making now possible. Conclusion: eHA’s Vaccine Direct delivery has met challenges in Kano and Bauchi State and provided a reliable delivery service of vaccinations that ensure t health facilities can run vaccination clinics for children under one. eHA uses innovative technology that delivers vaccines from Northern Nigerian zonal stores straight to healthcare facilities. Helped healthcare workers spend less time managing supplies and more time delivering care, and will be rolled out nationally across Nigeria.

Keywords: direct delivery information system, health delivery system, GIS mapping, Northern Nigeria, vaccines

Procedia PDF Downloads 373
344 Bio-Electro Chemical Catalysis: Redox Interactions, Storm and Waste Water Treatment

Authors: Michael Radwan Omary

Abstract:

Context: This scientific innovation demonstrate organic catalysis engineered media effective desalination of surface and groundwater. The author has developed a technology called “Storm-Water Ions Filtration Treatment” (SWIFTTM) cold reactor modules designed to retrofit typical urban street storm drains or catch basins. SWIFT triggers biochemical redox reactions with water stream-embedded toxic total dissolved solids (TDS) and electrical conductivity (EC). SWIFTTM Catalysts media unlock the sub-molecular bond energy, break down toxic chemical bonds, and neutralize toxic molecules, bacteria and pathogens. Research Aim: This research aims to develop and design lower O&M cost, zero-brine discharge, energy input-free, chemical-free water desalination and disinfection systems. The objective is to provide an effective resilient and sustainable solution to urban storm-water and groundwater decontamination and disinfection. Methodology: We focused on the development of organic, non-chemical, no-plugs, no pumping, non-polymer and non-allergenic approaches for water and waste water desalination and disinfection. SWIFT modules operate by directing the water stream to flow freely through the electrically charged media cold reactor, generating weak interactions with a water-dissolved electrically conductive molecule, resulting in the neutralization of toxic molecules. The system is powered by harvesting sub-molecular bonds embedded in energy. Findings: The SWIFTTM Technology case studies at CSU-CI and CSU-Fresno Water Institute, demonstrated consistently high reduction of all 40 detected waste-water pollutants including pathogens to levels below a state of California Department of Water Resources “Drinking Water Maximum Contaminants Levels”. The technology has proved effective in reducing pollutants such as arsenic, beryllium, mercury, selenium, glyphosate, benzene, and E. coli bacteria. The technology has also been successfully applied to the decontamination of dissolved chemicals, water pathogens, organic compounds and radiological agents. Theoretical Importance: SWIFT technology development, design, engineering, and manufacturing, offer cutting-edge advancement in achieving clean-energy source bio-catalysis media solution, an energy input free water and waste water desalination and disinfection. A significant contribution to institutions and municipalities achieving sustainable, lower cost, zero-brine and zero CO2 discharges clean energy water desalination. Data Collection and Analysis Procedures: The researchers collected data on the performance of the SWIFTTM technology in reducing the levels of various pollutants in water. The data was analyzed by comparing the reduction achieved by the SWIFTTM technology to the Drinking Water Maximum Contaminants Levels set by the state of California. The researchers also conducted live oral presentations to showcase the applications of SWIFTTM technology in storm water capture and decontamination as well as providing clean drinking water during emergencies. Conclusion: The SWIFTTM Technology has demonstrated its capability to effectively reduce pollutants in water and waste water to levels below regulatory standards. The Technology offers a sustainable solution to groundwater and storm-water treatments. Further development and implementation of the SWIFTTM Technology have the potential to treat storm water to be reused as a new source of drinking water and an ambient source of clean and healthy local water for recharge of ground water.

Keywords: catalysis, bio electro interactions, water desalination, weak-interactions

Procedia PDF Downloads 67
343 Culture as an Intervening Variable While Assessing Japanese Influence on Vietnam: 1991-2018

Authors: Teresa Mili

Abstract:

The significance of political and economic factors have barely been neglected while assessing bilateral relations, but the significance of culture as a soft power in Japan-Vietnam relations has largely been understated. While the close ties had their birth ever since the 14th century, this paper sets out with an inductive lens to analyze the role of culture as a variable in bilateral relations. Vietnam, which then had a history of war devastation had taken refuge in Japan and later sought inspiration from Japan’s economy with the simultaneous influence of culture since Japan was a developed nation, and Vietnam a third world country. Evidencing facts with illustrations, the paper shows how the twenty-first century has brought a growing bond as well as the onset of stronger ties between the two states based, primarily, on an emerging convergence of interests and culture. The cultural influence of Japan may be seen much in the Vietnamese cities, through evidences like the growing numbers of Japanese items on sale. The variety in cultural influence may be seen through the acceptance of Japanese fashion trends, mange comic, pop music, cuisine, tourism, Japanese studies and language, the translations of Japanese literature which are very much popular at Vietnam. Using secondary sources as well as assessing travel accounts and official websites, this research work will try to find out how much Japanese culture has influenced Vietnam and whether such influences will be strong enough to qualify culture as an intervening variable in the bilateral relations.

Keywords: influence, culture, language, cold war

Procedia PDF Downloads 162
342 Effect of High Pressure Treatment on the Microbial Contamination and on Some Chemical and Physical Properties of Minced Chicken

Authors: Siddig H. Hamad, Salah M. Al-Eid, Fahad M. Al-Jassas

Abstract:

Composite samples of minced chicken were vacuum-packaged and pressure treated at 300, 400, 450 and 500 MPa in a Stansted 'FOOD-LAB' model S-FL-850-9-W high hydrostatic pressure research apparatus (Stansted Fluid Power Ltd., Stansted, UK). Treated and untreated samples were then stored at 3°C, and microbial content as well as some chemical and physical properties monitored. The microbial load of the untreated samples reached the spoilage level of 107 cfu/g in about one week, resulting in bad smell and dark brown color. The pressure treatments reduced total bacterial counts by about 1.8 to 3.2 log10 cycles and reduced counts of Enterobacteriaceae and Salmonella to non-detectable levels. The color of meat was slightly affected, but pH, moisture content and the oxidation products of lipids were not substantially changed. The treatment killed mainly gram negative bacteria but also caused sub-lethal injury to part of the population resulting in prolonged lag phase. The population not killed by the 350 to 450 MPa treatments grew relatively slowly during storage, and its loads reached spoilage level in 4 to 6 weeks, while the load of the population treated at 500 MPa did not reach this level till the end of a storage period of 9 weeks.

Keywords: chicken, cold storage, microbial spoilage, high hydrostatic pressure

Procedia PDF Downloads 244
341 Kids and COVID-19: They Are Winning With Their Immunity

Authors: Husham Bayazed

Abstract:

The infant immune system has a reputation for being weak and underdeveloped when compared to the adult immune system, but the comparison isn’t quite fair. At the start, as the COVID-19 pandemic drags on and evolves, many Pediatricians and kids' parents have been left with renewed questions about the consequences and sequel of infection on children and the steps to be taken if their child, has the symptoms of COVID-19 or tests positive. Recent Findings: Literature reviews and recent studies revealed that children are better than adults at controlling SARS-CoV-2. There was conflicting evidence on age-related differences in ACE2 expression in the nose and lungs. But scientists who measured the ‘viral load’ in children's upper airways have seen no clear difference between children and adults. Moreover, the hypothesis is that kids might be more exposed to other coronaviruses common cold with a production of ready protective antibodies to lock on to the pandemic coronavirus. But the evidence suggests that adults also have this immunity too. Strikingly, these ‘cross-reactive’ antibodies don’t offer any special protection. Summary: One of the few silver linings of the Covid-19 pandemic is that children are relatively spared. The kid's Innate Immunity is hardly the whole story, the innate immune response against SARS-CoV-2 infection is early initiative calm with low immunological tone to prevent an overactive immunity and with rapidly repair damage to the lungs in contrast to stormy waves in adults. Therefore, Kids are at much lower risk of Covid-19 infection and they are still winning the battle against Covid-19 with their innate immunity.

Keywords: kids, Covid-19, immunity, ACT2

Procedia PDF Downloads 94
340 Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall

Authors: Farshid Fathinia

Abstract:

Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases.

Keywords: transient natural convection, trapezoidal cavity, three-dimensional flow, entropy generation, second law

Procedia PDF Downloads 349
339 Ethnomedicinal Studies on Pteredophytes of District Bagh Azad Jammu and Kashmir, Pakistan

Authors: Israr Ahmad, Sehrish Sabir

Abstract:

Present study deals with the taxonomic and ethno medicinal uses of some Pteridophytes species present in District Bagh AJK, Pakistan. The people of District Bagh extensively use Pteridophytes for different purposes. Ethno botanical evidence and Ornamental Potential of the taxa of wild pteridophytes was documented through field trips during 2017-2018, and data was collected through a structured questionnaire, and in-depth interviews were conducted from the natives in the hilly regions. Total of 22 Pteridophytes belonging to 13 genera 9 families were collected. Out of 22 species, one species (Cystoathyriumchinense ) newly record from Pakistan. The most leading family is Pteridaceae, having 9species, followed by Dryopteridaceae, having 4species, and Aspleniaceae having 3species. The remaining families are represented by single species of each. Inhabitants of mountainous and rural zones regularly used these taxa for different remedy, which are not discussed in the previous available literature. The novel remedies reported in this research areCystoathyriumchinense decoction used for irregular menstruation, Cyclosorusopulentus crushed leaves and stem are used for the treatment of stomach disorder.Onychiumlucidumused to treatJaundice, injury, pain dysentery, common cold, and arresting bleeding. Based on these findings, it is further recommended that phytochemical studies should be conducted to explore active chemical constituents for the cure of various diseases. Conservation efforts must be done to conserve many threatened species of the research area.

Keywords: adiantum, cancer, pakistan, pteridophytes

Procedia PDF Downloads 79
338 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.

Keywords: biodiesel, castor oil, fuel properties, thermal cracking

Procedia PDF Downloads 259
337 Redefining State Security Using Gender: Case Study of the United States of America Post-Cold War

Authors: E. K. Linsenmayer

Abstract:

Traditional international relations theorists define state security, the principal national interest, as a state’s military force. However, many political theorists argue the current definition of security is not comprehensive and therefore, problematic. This paper argues that women’s physical security is not only linked but also necessary to achieve state security. In today’s unipolar political international system, the United States continues to accredit national security to its military. However, in one of the most militarized countries, women remain insecure. Through a case study method of the United States, this paper illuminates a necessary political prescription: the empowerment of women through an inside-out, feminist theoretical approach that makes state security attainable. The research through empirical testing, drawing from several databases, shows the positive effects of women’s physical security on state security. Women’s physical security is defined in terms of equal legal practices, health, education, and female representation in the government. State security is measured by the relative peace of a state, its involvement in conflict and a state’s relations with neighboring states. This paper shows that empowering women, 50% of the world’s population, is necessary for ending the current vicious circle of militarization, war, and insecurity. Without undoing gender power dynamics at the individual and societal level, security at all levels remains unattainable.

Keywords: gender inequality, politics, state security, women's security

Procedia PDF Downloads 207
336 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 179
335 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji

Abstract:

In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.

Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed

Procedia PDF Downloads 382
334 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 66
333 Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash

Authors: H. Al-Baghli, F. Al-Asfour

Abstract:

The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.

Keywords: warm-mix asphalt, water-bearing additives, foaming-based process, chemical additives, organic additives

Procedia PDF Downloads 124
332 Valorization of Lignocellulosic Wastes– Evaluation of Its Toxicity When Used in Adsorption Systems

Authors: Isabel Brás, Artur Figueirinha, Bruno Esteves, Luísa P. Cruz-Lopes

Abstract:

The agriculture lignocellulosic by-products are receiving increased attention, namely in the search for filter materials that retain contaminants from water. These by-products, specifically almond and hazelnut shells are abundant in Portugal once almond and hazelnuts production is a local important activity. Hazelnut and almond shells have as main constituents lignin, cellulose and hemicelluloses, water soluble extractives and tannins. Along the adsorption of heavy metals from contaminated waters, water soluble compounds can leach from shells and have a negative impact in the environment. Usually, the chemical characterization of treated water by itself may not show environmental impact caused by the discharges when parameters obey to legal quality standards for water. Only biological systems can detect the toxic effects of the water constituents. Therefore, the evaluation of toxicity by biological tests is very important when deciding the suitability for safe water discharge or for irrigation applications. The main purpose of the present work was to assess the potential impacts of waters after been treated for heavy metal removal by hazelnut and almond shells adsorption systems, with short term acute toxicity tests. To conduct the study, water at pH 6 with 25 mg.L-1 of lead, was treated with 10 g of shell per litre of wastewater, for 24 hours. This procedure was followed for each bark. Afterwards the water was collected for toxicological assays; namely bacterial resistance, seed germination, Lemna minor L. test and plant grow. The effect in isolated bacteria strains was determined by disc diffusion method and the germination index of seed was evaluated using lettuce, with temperature and humidity germination control for 7 days. For aquatic higher organism, Lemnas were used with 4 days contact time with shell solutions, in controlled light and temperature. For terrestrial higher plants, biomass production was evaluated after 14 days of tomato germination had occurred in soil, with controlled humidity, light and temperature. Toxicity tests of water treated with shells revealed in some extent effects in the tested organisms, with the test assays showing a close behaviour as the control, leading to the conclusion that its further utilization may not be considered to create a serious risk to the environment.

Keywords: lignocellulosic wastes, adsorption, acute toxicity tests, risk assessment

Procedia PDF Downloads 366
331 The Third World Debt Burden and the Implication for Economic Development

Authors: Odeh Ibn Iganga

Abstract:

The issue of foreign debt, debt crisis or the concept of Third World debt burden generally gained prominence after the end of the cold war which pitched the United States and the former Soviet Union against each other in an ideological supremacy tussle. Before then however, Third World Countries (TWCs) enjoyed a relative economic resilience and stability and ostensibly friendly relations with the leaders of the polarized blocks in a way to garner supports for, and as an instrument of strengthening and expanding influence and power of the leaders of the two blocs, and achieve their goals. Consequently, the Third World concept lost its political relevance and usage perhaps, too, its economic comportment, and eventually became phraseology synonymous with developing countries bedeviled with debt crisis and struggling to emerge from debt burden, economic underdevelopment and poverty. Since then, also, particularly during the last two decades, the issue of Third World debt burden, which is currently posing significant problems, has a considerable attracted public policy and academic scrutiny. Third World debt burden thus is not a recent phenomenon but is a result of, and due to, pursuance of foreign aid from countries of the North which had, from the start, created the condition of economic subservience and master-servant relationship that could generate persistent seeking and lobbing for foreign aids through borrowing, thus tying down in a perpetual manner, most of the Third World Countries to underdevelopment, dependency and poverty. The interest of this paper, therefore, is to examine the causes, costs and or the implications of the debt burden on the economies of the Third World Countries, review some general solutions to the debt burden as well as offering suggestions as a way out of the doldrums.

Keywords: third world, debt burden, debt crisis, economic development and underdevelopment

Procedia PDF Downloads 357
330 Comparing Groundwater Fluoride Level with WHO Guidelines and Classifying At-Risk Age Groups; Based on Health Risk Assessment

Authors: Samaneh Abolli, Kamyar Yaghmaeian, Ali Arab Aradani, Mahmood Alimohammadi

Abstract:

The main route of fluoride uptake is drinking water. Fluoride absorption in the acceptable range (0.5-1.5 mg L-¹) is suitable for the body, but it's too much consumption can have irreversible health effects. To compare fluoride concentration with the WHO guidelines, 112 water samples were taken from groundwater aquifers in 22 villages of Garmsar County, the central part of Iran, during 2018 to 2019.Fluoride concentration was measured by the SPANDS method, and its non-carcinogenic impacts were calculated using EDI and HQ. The statistical population was divided into four categories of infant, children, teenagers, and adults. Linear regression and Spearman rank correlation coefficient tests were used to investigate the relationships between the well's depth and fluoride concentration in the water samples. The annual mean concentrations of fluoride in 2018 and2019 were 0.75 and 0.64 mg -¹ and, the fluoride mean concentration in the samples classifying the cold and hot seasons of the studied years was 0.709 and 0.689 mg L-¹, respectively. The amount of fluoride in 27% of the samples in both years was less than the acceptable minimum (0.5 mg L-¹). Also, 11% of the samples in2018 (6 samples) had fluoride levels higher than 1.5 mg L-¹. The HQ showed that the children were vulnerable; teenagers and adults were in the next ranks, respectively. Statistical tests showed a reverse and significant correlation (R2 = 0.02, < 0.0001) between well depth and fluoride content. The border between the usefulness/harmfulness of fluoride is very narrow and requires extensive studies.

Keywords: fluoride, groundwater, health risk assessment, hazard quotient, Garmsar

Procedia PDF Downloads 70
329 Rheological Study of Wheat-Chickpea Flour Blend Bread for People with Type-2 Diabetes

Authors: Tasleem Zafar, Jiwan Sidhu

Abstract:

Introduction: Chickpea flour is known to offer many benefits to diabetic persons, especially in maintaining their blood sugar levels in the acceptable range. Under this project we have studied the chemical composition and antioxidant capacity of white flour (WF), whole wheat flour (WWF) and chickpea flour (BF), in addition to the effect of replacement of WF and WWF with BF on the rheological characteristics of these flour blends, with the ultimate objective of producing acceptable quality flat as well as pan-bread for the diabetic consumers. Methods: WF and WWF were replaced with BF ranging from 0 to 40%, to investigate its effect on the rheological properties and functionality of blended flour dough using farinograph, viscoamylograph, mixograph and falling number apparatus as per the AACC standard methods. Texture Profile Analysis (TPA) was carried on the WF, WWF, and their blends with BF using Stable Micro System Texture Analyzer. Effect of certain additives, such as freeze-dried amla fruit powder (Phyllanthus emblica L.), guar gum, and xanthan gum on the dough rheological properties were also studied. Results: Freeze-dried amla fruit powder was found to be very rich in ascorbic acid and other phenolics having higher antioxidant activity. A decreased farinograph water absorption, increased dough development time, higher mixing tolerance index (i.e., weakening of dough), decreased resistance to extension, lower ratio numbers were obtained when the replacement with BF was increased from 0 to 40%. The BF gave lower peak viscosity, lower paste breakdown, and lower setback values when compared with WF. The falling number values were significantly lower in WWF (meaning higher α-amylase activity) than both the WF and BF. Texture Profile Analysis (TPA) carried on the WF, WWF, and their blends with BF showed significant variations in hardness and compressibility values, dough becoming less hard and less compressible when the replacement of WF and WWF with BF was increased from 0 to 40%. Conclusions: To overcome the deleterious effects of adding BF to WF and WWF on the rheological properties will be an interesting challenge when good quality pan bread and Arabic flatbread have to be commercially produced in a bakery. Use of freeze-dried amla fruit powder, guar gum, and xanthan gum did show some promise to improve the mixing characteristics of WF, WWF, and their blends with BF, and these additives are expected to be useful in producing an acceptable quality flat as well as pan-bread on a commercial scale.

Keywords: wheat flour, chickpea flour, amla fruit, rheology

Procedia PDF Downloads 158
328 Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China

Authors: Ruobing Liang, Jili Zhang, Chao Zhou

Abstract:

A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively.

Keywords: absorption chiller, solar PVT collector, solar heating and cooling, solar air-conditioning, parametric study, cost analysis

Procedia PDF Downloads 422