Search results for: ultra-high performance concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14212

Search results for: ultra-high performance concrete

6262 Population Size Estimation Based on the GPD

Authors: O. Anan, D. Böhning, A. Maruotti

Abstract:

The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators.

Keywords: capture, recapture methods, ratio plot, heterogeneous population, zero-truncated count

Procedia PDF Downloads 435
6261 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 413
6260 Inorganic Anion Removal from Water Using Natural Adsorbents

Authors: A. Ortuzar, I. Escondrillas, F. Mijangos

Abstract:

There is a need for new systems that can be attached to drinking water treatment plants and have the required treatment capacity as well as the selectivity regarding components derived from anthropogenic activities. In a context of high volumes of water and low concentration of contaminants, adsorption/interchange processes are appealing since they meet the required features. Iron oxides such as siderite and molysite, which are respectively based on FeCO3 and FeCl3, can be found in nature. In this work, their observed performance, raw or roasted at different temperatures, as adsorbents of some inorganic anions is discussed. Roasted 1:1 FeCO3: FeCl3 mixture was very selective for arsenic and allowed a 100% removal of As from a 10 mg L-1 As solution. Besides, the 1:1 FeCO3 and FeCl3 mixture roasted at 500 ºC showed good selectivity for, in order of preference, arsenate, bromate, phosphate, fluoride and nitrate anions with distribution coefficients of, respectively, 4200, 2800, 2500 0.4 and 0.03 L g-1.

Keywords: drinking water, natural adsorbent materials, removal, selectivity

Procedia PDF Downloads 187
6259 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study

Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming

Abstract:

Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.

Keywords: binary outcomes, statistical methods, clinical trials, simulation study

Procedia PDF Downloads 114
6258 Propellant Less Propulsion System Using Microwave Thrusters

Authors: D. Pradeep Mitra, Prafulla

Abstract:

Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system.

Keywords: propellant less, microwaves, parabolic wave guide, propulsion system

Procedia PDF Downloads 381
6257 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids

Authors: Ayalew Yimam Ali

Abstract:

The Y-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the Y-junction microchannel can be a difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the Y-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the Y-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement

Procedia PDF Downloads 21
6256 Person Re-Identification using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese

Procedia PDF Downloads 72
6255 Waste-based Porous Geopolymers to Regulate the Temperature and Humidity Fluctuations Inside Buildings

Authors: Joao A. Labrincha, Rui M. Novais, L. Senff, J. Carvalheiras

Abstract:

The development of multifunctional materials to tackle the energy consumption and improve the hygrothermal performance of buildings is very relevant. This work reports the development of porous geopolymers or bi-layered composites, composed by a highly porous top-layer and a dense bottom-layer, showing high ability to reduce the temperature swings inside buildings and simultaneously buffer the humidity levels. The use of phase change materials (PCM) strongly reduces the indoor thermal fluctuation (up to 5 °C). The potential to modulate indoor humidity is demonstrated by the very high practical MBV (2.71 g/m2 Δ%HR). Since geopolymer matrixes are produced from wastes (biomass fly ash, red mud) the developed solutions contribute to sustainable and energy efficient and healthy building.

Keywords: waste-based geopolymers, thermal insulation, temperature regulation, moisture buffer

Procedia PDF Downloads 61
6254 Fast Detection of Local Fiber Shifts by X-Ray Scattering

Authors: Peter Modregger, Özgül Öztürk

Abstract:

Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.

Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination

Procedia PDF Downloads 63
6253 Application of Nanoparticles in Biomedical and MRI

Authors: Raziyeh Mohammadi

Abstract:

At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible.

Keywords: nanoparticles, MRI, biomedical, iron oxide, spions

Procedia PDF Downloads 215
6252 Experimental Study on Dehumidification Performance of Supersonic Nozzle

Authors: Esam Jassim

Abstract:

Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.

Keywords: supersonic nozzle, dehumidification, particle separation, nozzle geometry

Procedia PDF Downloads 338
6251 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, decoupled model, load flow, control parameters

Procedia PDF Downloads 555
6250 Experimental Analysis of Laminar Nanofluid Flow Convection

Authors: Mohammad R. Salimpour

Abstract:

In this study, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. Ee check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enhancement than conduit with circular cross section.

Keywords: nanofluid, cross-sectional shape, TiO2, convection

Procedia PDF Downloads 391
6249 Role of MGNREGA(s) in Seasonal Labour Migration: Micro Evidence from Telangana State, India

Authors: Vijay Korra

Abstract:

The main focus of this paper is to examine the performance, outcomes and impacts of MGNREGA Scheme in particular on migrant beneficiary households. This article is based on a field survey carried out in 2010 in three randomly selected villages in Mahabubnagar district of Telangana State, India. It was found that majority of the job card holders are only able to get employment/work between 30-60 days and receive wages maximum between Rs.60 to 70 per day wherein wage discrimination was prevalent in line with gender. It concludes by saying that the government sponsored employment programme has indeed given rural poor a sense of hope about livelihood security through guaranteed employment. On the other hand, the scheme is defected in providing full employment days, wages, and thus unable to prevent the working class from migrating to cities/towns in search of employment mainly due to malpractices involved in the implementation of the scheme.

Keywords: MGNREGA(s), labour, employment, wages, livelihood, seasonal migration

Procedia PDF Downloads 368
6248 Transcription Skills and Written Composition in Chinese

Authors: Pui-sze Yeung, Connie Suk-han Ho, David Wai-ock Chan, Kevin Kien-hoa Chung

Abstract:

Background: Recent findings have shown that transcription skills play a unique and significant role in Chinese word reading and spelling (i.e. word dictation), and written composition development. The interrelationships among component skills of transcription, word reading, word spelling, and written composition in Chinese have rarely been examined in the literature. Is the contribution of component skills of transcription to Chinese written composition mediated by word level skills (i.e., word reading and spelling)? Methods: The participants in the study were 249 Chinese children in Grade 1, Grade 3, and Grade 5 in Hong Kong. They were administered measures of general reasoning ability, orthographic knowledge, stroke sequence knowledge, word spelling, handwriting fluency, word reading, and Chinese narrative writing. Orthographic knowledge- orthographic knowledge was assessed by a task modeled after the lexical decision subtest of the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD). Stroke sequence knowledge: The participants’ performance in producing legitimate stroke sequences was measured by a stroke sequence knowledge task. Handwriting fluency- Handwriting fluency was assessed by a task modeled after the Chinese Handwriting Speed Test. Word spelling: The stimuli of the word spelling task consist of fourteen two-character Chinese words. Word reading: The stimuli of the word reading task consist of 120 two-character Chinese words. Written composition: A narrative writing task was used to assess the participants’ text writing skills. Results: Analysis of covariance results showed that there were significant between-grade differences in the performance of word reading, word spelling, handwriting fluency, and written composition. Preliminary hierarchical multiple regression analysis results showed that orthographic knowledge, word spelling, and handwriting fluency were unique predictors of Chinese written composition even after controlling for age, IQ, and word reading. The interaction effects between grade and each of these three skills (orthographic knowledge, word spelling, and handwriting fluency) were not significant. Path analysis results showed that orthographic knowledge contributed to written composition both directly and indirectly through word spelling, while handwriting fluency contributed to written composition directly and indirectly through both word reading and spelling. Stroke sequence knowledge only contributed to written composition indirectly through word spelling. Conclusions: Preliminary hierarchical regression results were consistent with previous findings about the significant role of transcription skills in Chinese word reading, spelling and written composition development. The fact that orthographic knowledge contributed both directly and indirectly to written composition through word reading and spelling may reflect the impact of the script-sound-meaning convergence of Chinese characters on the composing process. The significant contribution of word spelling and handwriting fluency to Chinese written composition across elementary grades highlighted the difficulty in attaining automaticity of transcription skills in Chinese, which limits the working memory resources available for other composing processes.

Keywords: orthographic knowledge, transcription skills, word reading, writing

Procedia PDF Downloads 424
6247 Human Capital and the Innovation System: A Case Study of the Mpumalanga Province, South Africa

Authors: Maria E. Eggink

Abstract:

Human capital is one of the essential factors in an innovation system and innovation is the driving force of economic growth and development. Schumpeter focused on the entrepreneur as innovator, but the evolutionary economists shifted the focus to all participants in the innovation system. Education and training institutions are important participants in an innovation system, but there is a gap in literature on competence building as part of the analysis of innovation systems. In this paper the education and training institutions’ competence building role in the innovation system is examined. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.

Keywords: education institutions, human capital, innovation systems, Mpumalanga Province

Procedia PDF Downloads 380
6246 Evaluation of Durability Performance for Bio-Energy Co-Product

Authors: Bo Yang, Hali̇l Ceylan, Ali Ulvi̇ Uzer

Abstract:

This experimental study was performed to investigate the effect of biofuel co-products (BCPs) with sulfur-free lignin addition on the unconsolidated on strength and durability behavior in pavement soil stabilization subjected to freezing–thawing cycles. For strength behavior, a series of unconfined compression tests were conducted. Mass losses were also calculated after freezing–thawing cycles as criteria for durability behavior. To investigate the effect of the biofuel co-products on the durability behavior of the four type’s soils, mass losses were calculated after 12 freezing–thawing cycles. The co-products tested are promising additives for improving durability under freeze-thaw conditions, and each type has specific advantages.

Keywords: durability, mass lose, freezing–thawing test, bio-energy co-product, soil stabilization

Procedia PDF Downloads 375
6245 Application of Matrix Converter for the Power Control of a DFIG-Based Wind Turbine

Authors: E. Bounadja, M. O. Mahmoudi, A. Djahbar, Z. Boudjema

Abstract:

This paper presents a control approach of the doubly fed induction generator (DFIG) in conjunction with a direct AC-AC matrix converter used in generating mode. This device is intended to be implemented in a variable speed wind energy conversion system connected to the grid. Firstly, we developed a model of matrix converter, controlled by the Venturini modulation technique. In order to control the power exchanged between the stator of the DFIG and the grid, a control law is synthesized using a high order sliding mode controller. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 2-MW wind turbine driven a DFIG using the Matlab/Simulink.

Keywords: doubly fed induction generator (DFIG), matrix converter, high-order sliding mode controller, wind energy

Procedia PDF Downloads 523
6244 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 123
6243 Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm

Authors: K. Roushanger, A. Soleymanzadeh

Abstract:

Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs.

Keywords: discharge coefficient, genetic expression programming, trapezoidal weir

Procedia PDF Downloads 387
6242 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate

Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki

Abstract:

Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.

Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion

Procedia PDF Downloads 310
6241 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets

Authors: Mohammad Ghavami, Reza S. Dilmaghani

Abstract:

This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.

Keywords: adaptive methods, LSE, MSE, prediction of financial Markets

Procedia PDF Downloads 336
6240 Enhancement of MIMO H₂S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Authors: Muhammad M. A. S. Mahmoud

Abstract:

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H₂S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. The new design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Keywords: gas separator, gas sweetening, intelligent controller, fuzzy control

Procedia PDF Downloads 471
6239 Community That Supports Agriculture: A Strategy to Help Family Farmers by Brazil

Authors: Feguens Pierre

Abstract:

For a long time, Latin American countries have been introduced to numerous programs and public policies focused on improving the agricultural sector in terms of sustainability, as well as in terms of the relationship between producers and consumers, aimed at improve farmers' income and allow consumers to have access to quality products, encouraging alternative agriculture. Therefore, in Brazil, among the programs, that is, the public policies that have encompassed alternative agriculture, in other words organic, we have the Community that Supports Agriculture (CSA) which ensures a relationship between producers and consumers focused on a solidarity economy, also protecting the environment. This work aims to understand the importance of the Community Supporting Agriculture (CSA), as well as the challenges it has faced over time. Particularly in the case of Brazil. A bibliographic methodology was used to theoretically analyze through several books and articles the performance of (CSA) in Brazil.

Keywords: community supporting agriculture, importance, challenges, producer, consumer

Procedia PDF Downloads 66
6238 Derivation of Neutrino Mass Parameters from the Study of Neutrinoless Double Beta Decay

Authors: Sabin Stoica

Abstract:

In this paper the theoretical challenges in the study of neutrinoless double beta decay are reviewed. Then, new upper limits of the neutrino mass parameters in the case of three isotopes are derived; 48Ca, 76Ge, and 82Se, assuming two possible mechanisms of occurrence of this nuclear process, namely the exchange of i) light left-handed neutrinos and ii) heavy right-handed neutrinos, between two nucleons inside the nucleus. The derivation is based on accurate calculations of the phase space factors and nuclear matrix elements performed with new high-performance computer codes, which are described in more detail in recent publications. These results are useful both for a better understanding of the scale of neutrino absolute mass and for the planning of future double beta decay experiments.

Keywords: double beta decay, neutrino properties, nuclear matrix elements, phase space factors

Procedia PDF Downloads 600
6237 A Cloud-Based Federated Identity Management in Europe

Authors: Jesus Carretero, Mario Vasile, Guillermo Izquierdo, Javier Garcia-Blas

Abstract:

Currently, there is a so called ‘identity crisis’ in cybersecurity caused by the substantial security, privacy and usability shortcomings encountered in existing systems for identity management. Federated Identity Management (FIM) could be solution for this crisis, as it is a method that facilitates management of identity processes and policies among collaborating entities without enforcing a global consistency, that is difficult to achieve when there are ID legacy systems. To cope with this problem, the Connecting Europe Facility (CEF) initiative proposed in 2014 a federated solution in anticipation of the adoption of the Regulation (EU) N°910/2014, the so-called eIDAS Regulation. At present, a network of eIDAS Nodes is being deployed at European level to allow that every citizen recognized by a member state is to be recognized within the trust network at European level, enabling the consumption of services in other member states that, until now were not allowed, or whose concession was tedious. This is a very ambitious approach, since it tends to enable cross-border authentication of Member States citizens without the need to unify the authentication method (eID Scheme) of the member state in question. However, this federation is currently managed by member states and it is initially applied only to citizens and public organizations. The goal of this paper is to present the results of a European Project, named eID@Cloud, that focuses on the integration of eID in 5 cloud platforms belonging to authentication service providers of different EU Member States to act as Service Providers (SP) for private entities. We propose an initiative based on a private eID Scheme both for natural and legal persons. The methodology followed in the eID@Cloud project is that each Identity Provider (IdP) is subscribed to an eIDAS Node Connector, requesting for authentication, that is subscribed to an eIDAS Node Proxy Service, issuing authentication assertions. To cope with high loads, load balancing is supported in the eIDAS Node. The eID@Cloud project is still going on, but we already have some important outcomes. First, we have deployed the federation identity nodes and tested it from the security and performance point of view. The pilot prototype has shown the feasibility of deploying this kind of systems, ensuring good performance due to the replication of the eIDAS nodes and the load balance mechanism. Second, our solution avoids the propagation of identity data out of the native domain of the user or entity being identified, which avoids problems well known in cybersecurity due to network interception, man in the middle attack, etc. Last, but not least, this system allows to connect any country or collectivity easily, providing incremental development of the network and avoiding difficult political negotiations to agree on a single authentication format (which would be a major stopper).

Keywords: cybersecurity, identity federation, trust, user authentication

Procedia PDF Downloads 166
6236 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 221
6235 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs

Authors: Varun Goel

Abstract:

Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4-16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.

Keywords: artificial roughness, solar air heater, triangular duct, V-shaped ribs

Procedia PDF Downloads 452
6234 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.

Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD

Procedia PDF Downloads 105
6233 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: low density, optical flow, upward smoke motion, video based smoke detection

Procedia PDF Downloads 355