Search results for: top load washing machine
4796 Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams
Authors: Felix Eyben, Simon Schaffrath, Markus Feldmann
Abstract:
A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies.Keywords: damage mechanics, finite element, steel structures, web openings
Procedia PDF Downloads 1714795 Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon
Authors: Woei-Shyan Lee, Shuo-Ling Chang
Abstract:
The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased.Keywords: nanoindentation, silicon, phase transformation, amorphous, annealing
Procedia PDF Downloads 3724794 Design and Development of Compact 1KW Floating Battery Discharge Regulator
Authors: A. Sreedevi, G. Anantaramu
Abstract:
The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.Keywords: push pull converter, current doubler, converter, PWM control
Procedia PDF Downloads 1014793 Improving Sanitation and Hygiene Using a Behavioral Change Approach in Public and Private Schools in Kampala, Uganda
Authors: G. Senoga, D. Nakimuli, B. Ndagire, B. Lukwago, D. Kyamagwa
Abstract:
Background: The COVID-19 epidemic affected the education sector, with some private schools closing while other children missed schooling for fear contracting COVID-19. Post COVID-19, PSIU in collaborated with Kampala City Council Authority Directorate of Education and Social Science, Water and Sanitation department, and Directorate of Public Health and Environment to improve sanitation and hygiene among pupils and staff in 50 public and private school system in Kampala city. The “Be Clean, Stay Healthy Campaign” used a behavioral change approach in educating, reinforcing and engaging learners on proper hand washing behaviors, proper toilet usage and garbage disposal. In April 2022, 40 Washa lots were constructed, to reduce the pupil - hand wash station ratio; distributed KCCA approved printed materials; oriented 50 teachers, WASH committees to execute and implement hygiene promotion. To ensure sustainability, WASH messages were memorized and practiced through hand washing songs, Pledge, prayer, Poems, Skits, Music, dance and drama, coupled with participatory, practical demonstrations using peer to peer approach, guest speakers at assemblies and in classes. This improved hygiene and sanitation practices. Premised on this, PSI conducted an end line assessment to explore the impact of a hand washing campaign in regards to improvements in hand washing practices and hand hygiene among pupils, accessibility, functionality and usage of the constructed hygiene and sanitation facilities. Method: A cross-sectional post intervention assessment using a mixed methods approach, targeting headteachers, wash committee members and pupils less <17 years was used. Quantitative approaches with a mix of open-ended questions were used in purposively selected respondents in 50 schools. Primary three to primary seven pupils were randomly selected, data was analyzed using the Statistical Package for Social Scientists (SPSS) Outcomes and Findings: 46,989 pupils (51% female), 1,127 and 524 teaching and non-teaching staff were reached by the intervention, respectively. 96% of schools trained on sanitation, sustainable water usage and hygiene constituted 17-man school WASH committees with teacher, parents and pupils representatives. (31%) of the WASH committees developed workplans, (78%) held WASH meetings monthly. This resulted into improved sanitation, water usage, waste management, proper use of toilets, and improved pupils’ health with reduced occurrences of stomach upsets, diarrhoea initially attributed to improper use of latrines and general waste management. Teachers reported reduced number of school absenteeism due to improved hygiene and general waste management at school, especially proper management of sanitary pads. School administrations response rate in purchase of hygiene equipment’s and detergents like soap improved. Regular WASH meetings in classes, teachers and community supervision ensured WASH facilities are used appropriately. Conclusion and Recommendations: Practical behaviour change innovations improves pupil’s knowledge and understanding of hygiene messages and usage. Over 70% of pupils had clear recall of key WASH Messages. There is need for continuous water flow in the Washa lots, harvesting rain water would reduce water bills while complementing National water supply coupled with increasing on Washa lots in densely populated schools.Keywords: handwashing, hygyiene, sanitation, behaviour change
Procedia PDF Downloads 894792 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
Authors: Samina Khalid, Shamila Nasreen
Abstract:
Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA
Procedia PDF Downloads 4944791 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1334790 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities
Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh
Abstract:
The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.Keywords: axial load, cavity, clay, pile, ultimate capacity
Procedia PDF Downloads 2694789 Assess and Improve Building Energy Efficiency– a Case Study on the Office of Research and Graduate Studies at Qatar University
Authors: Mohamed Youssef
Abstract:
The proliferation of energy consumption in the built environment has made energy efficiency and savings strategies a priority objective for energy policies in most countries. Qatar is a clear example, where it has initiated several programs and institutions to mitigate the overuse of electricity consumption and control the energy load of the building by following global standards and spreading awareness campaigns. A Case study on the Office of Research and Graduate Studies at Qatar University has been investigated in this paper. The paper studied the rating load of existing buildings before and after retrofitting by using Carrier’s Hourly Analysis Program (HAP). The performance of the building has increased especially after using the LED light system instead of fluorescent light with a low payback period. GINAN paint and green roof have shown a considerable contribution to the reduction of electrical load in the building. In comparison, the double HR window had the least effect on the reduction of electricity consumption.Keywords: energy conservation in Qatar, HAP, LED light, GINAN paint, green roof, double HR window
Procedia PDF Downloads 1714788 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 3234787 Flexural Toughness of Fiber Reinforced Reactive Powder Concrete (RPC)
Authors: S. Yousefi Oderji, B. Chen
Abstract:
According to the ASTM C1018 toughness index method, the single and combined toughness effects of copper coated steel fiber and polypropylene (pp) fiber on reactive powder concrete (RPC) were investigated. Through flexural toughness test of RPC with different fiber volume dosages, the corresponding load-deflection curves were also drawn. Test results indicate that the binary combination of fibers provide the best flexural toughness, and improve the post-peak load-deflection characteristics of RPC. However, the single effect of pp fibers was not pronounced on improving the flexural toughness of RPC.Keywords: RPC, PP, flexural toughness, toughness index
Procedia PDF Downloads 3364786 Effects of Work Load and Surface Acting on Emotional Exhaustion and Work Satisfaction of Social Worker Students: Chinese Indigenous Ren-Qing Shi-Ku Trait as Moderator
Authors: Chung-Kwei Wang, Kuo-Ying Lo
Abstract:
The study is aimed to examine main and moderation effect of Chinese traditional social wisdom ‘Ren-qing Shi-kuon' the adjustment of social worker students during their practicum. Ren-qing Shi-ku as a social wisdom has been emphasized by collective-oriented Chinese society for thousand years. Based on interview and literature review, we operationalized the concept as four factors, including ‘harmonious interaction’, ‘understanding and tolerance’, ‘empathetic communication’ and ‘rule abiding’. We administer the scale to 96 social worker senior students before their summer practicums begins and collect their response on emotion labor, emotional exhaustion, work load, work satisfaction. We also ask their supervisors rated their performance on empathy, interpersonal relationships, performance on practicum and their Ren-qing Shi-ku performance. Results indicated that self-ratings of students on Ren-qing Shi-ku scale are correlated with rating from their supervisors. Students who have higher Ren-qing Shi-ku have better adjustment and higher ratings from their supervisor. Ren-qing Shi-ku also moderate effects of surface acting labor and work load on emotional exhaustion and work satisfaction. However, Ren-qing Shi-ku seems more beneficial under low work load situations. The finding of this study suggested traditional social skill training might be very effective for social service providers in a collective-oriented culture.Keywords: emotion labor, ren-qing shi-ku, emotional exhaustion, work satisfaction and performance
Procedia PDF Downloads 4894785 Effect of Zidovudine on Hematological and Virologic Parameters among Female Sex Workers Receiving Antiretroviral Therapy (ART) in North-Western Nigeria
Authors: N. M. Sani, E. D. Jatau, O. S. Olonitola, M. Y. Gwarzo, P. Moodley, N. S. Mujahid
Abstract:
Haemoglobin (HB) indicates anaemia level and by extension may reflect the nutritional level and perhaps the immunity of an individual. Some antiretroviral drugs like zidovudine are known to cause anaemia in People living with HIV/AIDS (PLWHA). A cross-sectional study using demographic data and blood specimen from 218 female commercial sex workers attending antiretroviral therapy (ART) clinics was conducted between December 2009 and July 2011 to assess the effect of zidovudine on haematologic and RNA viral load of female sex workers receiving antiretroviral treatment in north-western Nigeria. Anaemia is a common and serious complication of both HIV infection and its treatment. In the setting of HIV infection, anaemia has been associated with decreased quality of life, functional status, and survival. Antiretroviral therapy, particularly the highly active antiretroviral therapy (HAART), has been associated with a decrease in the incidence and severity of anaemia in HIV-infected patients who have received a HAART regimen for at least 1 year. In this study, result has shown that out of 218 patients, 26 with haemoglobin count between 5.1–10 g/dl were observed to have the highest viral load count of 300,000–350,000 copies/ml. It was also observed that most patients (190) with HB of 10.1–15.0 g/dl had viral load count of 200,000–250,000 copies/ml. An inverse relationship therefore exists, i.e. the lower the haemoglobin level, the higher the viral load count, even though the test statistics did not show any significance between the two (P=0.206). This shows that multivariate logistic regression analysis demonstrated that anaemia was associated with a CD4+ cell count below 50/µL in female sex workers with a viral load above 100,000 copies/mL who use zidovudine. Severe anaemia was less prevalent in this study population than in historical comparators; however, mild to moderate anaemia rates remain high. The study, therefore, recommends that hematological and virologic parameters be monitored closely in patients receiving first line ART regimen.Keywords: anaemia, female sex worker, haemoglobin, Zidovudine
Procedia PDF Downloads 3114784 Pollutant Loads of Urban Runoff from a Mixed Residential-Commercial Catchment
Authors: Carrie Ho, Tan Yee Yong
Abstract:
Urban runoff quality for a mixed residential-commercial land use catchment in Miri, Sarawak was investigated for three storm events in 2011. Samples from the three storm events were tested for five water quality parameters, Namely, TSS, COD, BOD5, TP, and Pb. Concentration of the pollutants were found to vary significantly between storms, but were generally influenced by the length of antecedent dry period and the strength of rainfall intensities. Runoff from the study site showed a significant level of pollution for all the parameters investigated. Based on the National Water Quality Standards for Malaysia (NWQS), stormwater quality from the study site was polluted and exceeded class III water for TSS and BOD5 with maximum EMCs of 177 and 24 mg/L, respectively. Design pollutant load based on a design storm of 3-month average recurrence interval (ARI) for TSS, COD, BOD5, TP, and Pb were estimated to be 40, 9.4, 5.4, 1.7, and 0.06 kg/ha, respectively. The design pollutant load for the pollutants can be used to estimate loadings from similar catchments within Miri City.Keywords: mixed land-use, urban runoff, pollutant load, national water quality
Procedia PDF Downloads 3304783 A Study on an Evacuation Test to Measure Delay Time in Using an Evacuation Elevator
Authors: Kyungsuk Cho, Seungun Chae, Jihun Choi
Abstract:
Elevators are examined as one of evacuation methods in super-tall buildings. However, data on the use of elevators for evacuation at a fire are extremely scarce. Therefore, a test to measure delay time in using an evacuation elevator was conducted. In the test, time taken to get on and get off an elevator was measured and the case in which people gave up boarding when the capacity of the elevator was exceeded was also taken into consideration. 170 men and women participated in the test, 130 of whom were young people (20 ~ 50 years old) and 40 were senior citizens (over 60 years old). The capacity of the elevator was 25 people and it travelled between the 2nd and 4th floors. A video recording device was used to analyze the test. An elevator at an ordinary building, not a super-tall building, was used in the test to measure delay time in getting on and getting off an elevator. In order to minimize interference from other elements, elevator platforms on the 2nd and 4th floors were partitioned off. The elevator travelled between the 2nd and 4th floors where people got on and off. If less than 20 people got on the elevator which was empty, the data were excluded. If the elevator carrying 10 passengers stopped and less than 10 new passengers got on the elevator, the data were excluded. Getting-on an empty elevator was observed 49 times. The average number of passengers was 23.7, it took 14.98 seconds for the passengers to get on the empty elevator and the load factor was 1.67 N/s. It took the passengers, whose average number was 23.7, 10.84 seconds to get off the elevator and the unload factor was 2.33 N/s. When an elevator’s capacity is exceeded, the excessive number of people should get off. Time taken for it and the probability of the case were measure in the test. 37% of the times of boarding experienced excessive number of people. As the number of people who gave up boarding increased, the load factor of the ride decreased. When 1 person gave up boarding, the load factor was 1.55 N/s. The case was observed 10 times, which was 12.7% of the total. When 2 people gave up boarding, the load factor was 1.15 N/s. The case was observed 7 times, which was 8.9% of the total. When 3 people gave up boarding, the load factor was 1.26 N/s. The case was observed 4 times, which was 5.1% of the total. When 4 people gave up boarding, the load factor was 1.03 N/s. The case was observed 5 times, which was 6.3% of the total. Getting-on and getting-off time data for people who can walk freely were obtained from the test. In addition, quantitative results were obtained from the relation between the number of people giving up boarding and time taken for getting on. This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CRC-16-02-KICT).Keywords: evacuation elevator, super tall buildings, evacuees, delay time
Procedia PDF Downloads 1764782 Flexural Strengthening of Steel Beams Using Fiber Reinforced Polymers
Authors: Sally Hosny, Mona G. Ibrahim, N. K. Hassan
Abstract:
Fiber reinforced polymers (FRP) is one of the most environmentally method for strengthening and retrofitting steel structure buildings. The behaviour of flexural strengthened steel I-beams using FRP was investigated. The finite element (FE) models were developed using ANSYS® as verification cases to simulate the experimental behaviour of using FRP strips to flexure strengthen steel I-beam. Two experimental studies were selected for verification; first examined the effect of different thicknesses and modulus of elasticity while the second studied the effect of applying different carbon fiber reinforced polymers (CFRP) bond lengths. The proposed FE models were in good agreement with the experimental results in terms of failure modes, load bearing capacities and strain distribution on CFRP strips. The verified FE models can be utilized to conduct a parametric study where various widths (40, 50, 60, 70 and 80 mm), thickness (1.2, 2 and 4 mm) and lengths (1500, 1700 and 1800 mm) of CFRP were analyzed. The results presented clearly revealed that the load bearing capacity was significantly increased (+7%) when the width and thickness were increased. However, load bearing capacity was slightly affected using longer CFRP strips. Moreover, applying another glass fiber reinforced polymers (GFRP) of 1500 mm in length, 50 mm in width and thicknesses of 1.2, 2 and 4 mm were investigated. Load bearing capacity of strengthened I-beams using GFRP is less than CFRP by average 8%. Statistical analysis has been conducted using Minitab®.Keywords: FRP, strengthened steel I-beams, flexural, FEM, ANSYS
Procedia PDF Downloads 2784781 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 724780 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1574779 Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review
Authors: Ashwini V. Chavan, Sukhanand S. Bhosale
Abstract:
Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil
Procedia PDF Downloads 1214778 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 4804777 Instructional Consequences of the Transiency of Spoken Words
Authors: Slava Kalyuga, Sujanya Sombatteera
Abstract:
In multimedia learning, written text is often transformed into spoken (narrated) text. This transient information may overwhelm limited processing capacity of working memory and inhibit learning instead of improving it. The paper reviews recent empirical studies in modality and verbal redundancy effects within a cognitive load framework and outlines conditions under which negative effects of transiency may occur. According to the modality effect, textual information accompanying pictures should be presented in an auditory rather than visual form in order to engage two available channels of working memory – auditory and visual - instead of only one of them. However, some studies failed to replicate the modality effect and found differences opposite to those expected. Also, according to the multimedia redundancy effect, the same information should not be presented simultaneously in different modalities to avoid unnecessary cognitive load imposed by the integration of redundant sources of information. However, a few studies failed to replicate the multimedia redundancy effect too. Transiency of information is used to explain these controversial results.Keywords: cognitive load, transient information, modality effect, verbal redundancy effect
Procedia PDF Downloads 3794776 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 604775 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 714774 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1754773 Earthquakes and Buildings: Lesson Learnt from Past Earthquakes in Turkey
Authors: Yavuz Yardım
Abstract:
The most important criteria for structural engineering is the structure’s ability to carry intended loads safely. The key element of this ability is mathematical modeling of really loadings situation into a simple loads input to use in structure analysis and design. Amongst many different types of loads, the most challenging load is earthquake load. It is possible magnitude is unclear and timing is unknown. Therefore the concept of intended loads and safety have been built on experience of previous earthquake impact on the structures. Understanding and developing these concepts is achieved by investigating performance of the structures after real earthquakes. Damage after an earthquake provide results of thousands of full-scale structure test under a real seismic load. Thus, Earthquakes reveille all the weakness, mistakes and deficiencies of analysis, design rules and practice. This study deals with lesson learnt from earthquake recoded last two decades in Turkey. Results of investigation after several earthquakes exposes many deficiencies in structural detailing, inappropriate design, wrong architecture layout, and mainly mistake in construction practice.Keywords: earthquake, seismic assessment, RC buildings, building performance
Procedia PDF Downloads 2634772 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 1994771 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 1404770 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 674769 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 794768 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove
Procedia PDF Downloads 3004767 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 248