Search results for: online data collection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27481

Search results for: online data collection

26731 Understanding Student Engagement through Sentiment Analytics of Response Times to Electronically Shared Feedback

Authors: Yaxin Bi, Peter Nicholl

Abstract:

The rapid advancement of Information and communication technologies (ICT) is extremely influencing every aspect of Higher Education. It has transformed traditional teaching, learning, assessment and feedback into a new era of Digital Education. This also introduces many challenges in capturing and understanding student engagement with their studies in Higher Education. The School of Computing at Ulster University has developed a Feedback And Notification (FAN) Online tool that has been used to send students links to personalized feedback on their submitted assessments and record students’ frequency of review of the shared feedback as well as the speed of collection. The feedback that the students initially receive is via a personal email directing them through to the feedback via a URL link that maps to the feedback created by the academic marker. This feedback is typically a Word or PDF report including comments and the final mark for the work submitted approximately three weeks before. When the student clicks on the link, the student’s personal feedback is viewable in the browser and they can view the contents. The FAN tool provides the academic marker with a report that includes when and how often a student viewed the feedback via the link. This paper presents an investigation into student engagement through analyzing the interaction timestamps and frequency of review by the student. We have proposed an approach to modeling interaction timestamps and use sentiment classification techniques to analyze the data collected over the last five years for a set of modules. The data studied is across a number of final years and second-year modules in the School of Computing. The paper presents the details of quantitative analysis methods and describes further their interactions with the feedback overtime on each module studied. We have projected the students into different groups of engagement based on sentiment analysis results and then provide a suggestion of early targeted intervention for the set of students seen to be under-performing via our proposed model.

Keywords: feedback, engagement, interaction modelling, sentiment analysis

Procedia PDF Downloads 107
26730 Effect of One-Period of SEAS Exercises on Some Spinal Biomechanical and Postural Parameters in the Students with Idiopathic Scoliosis

Authors: Zandi Ahmad, Sokhanguei Yahya, Saboonchi Reza

Abstract:

Objective: The new and modern lifestyle, especially in the twenty-first century and lack of movement in spinal structure have made patients and the physicians in the field of health and also other insurance companies in the developed and developing countries worry more than before about the abnormalities of spinal column- this great healthcare problem. The high prevalence of spinal column in all age groups -from children to adults- and in all professions have led the researchers to the idea of giving an opportunity to all those who worry about the dangers threatening the spinal column. Therefore, one of the corrective methods for these patients is using SEAS exercises. Materials and Methods: This study aims at investigating the effect of one-period of SEAS exercises on some spinal biomechanical and postural parameters in the students with idiopathic scoliosis. According to the nature of the study and research objectives as well as the data collection methods, the current research is a semi-empirical survey. The research population is comprised of students with idiopathic scoliosis. A total number of 30 students were selected using available sampling and divided into two groups of control and SEAS exercises. Scoliometer was used for data collection. Descriptive statistics were used to categorize the findings. Kolmogorov-Smirnov statistical models were used to confirm that the distribution of the data is normal and T-test was used for effectiveness. Hypothesis testing was done using SPSS21. Conclusion: Results show that SEAS exercises have a significant effect in Adam’s Test. Therefore, according to the obtained results, SEAS exercises can be used to recover idiopathic scoliosis among the students. Further studies in larger samples and treatment, periods as well as more follow-up investigations appear to be essential to prove these effects.

Keywords: SEAS exercises, idiopathic scoliosis, Adam’s test, exercise

Procedia PDF Downloads 294
26729 Supply Chain Resource Optimization Model for E-Commerce Pure Players

Authors: Zair Firdaous, Fourka Mohamed, Elfelsoufi Zoubir

Abstract:

The arrival of e-commerce has changed the supply chain management on the operational level as well as on the organization and strategic and even tactical decisions of the companies. The optimization of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. Every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource in customized online shopping service mode. Then, we realized an optimization model and algorithm for the development based on the analysis of the of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: supply chain resource, e-commerce, pure-players, optimization

Procedia PDF Downloads 252
26728 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings

Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian

Abstract:

Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.

Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM

Procedia PDF Downloads 117
26727 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast

Authors: Helene Thieblemont, Fariborz Haghighat

Abstract:

Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.

Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage

Procedia PDF Downloads 275
26726 Tourism Satellite Account: Approach and Information System Development

Authors: Pappas Theodoros, Mihail Diakomihalis

Abstract:

Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors and which should be observed and measured to reveal, thus, the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article introduces a system of TSA information that encompasses all the works of the TSA, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer insights into the development and implementation of TSA.

Keywords: tourism satellite account, information system, data-based tourist account, relation database

Procedia PDF Downloads 92
26725 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 97
26724 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations

Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn

Abstract:

Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.

Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis

Procedia PDF Downloads 452
26723 Thai Student Ability on Speexx Language Training Program

Authors: Toby Gibbs, Glen Craigie, Suwaree Yordchim

Abstract:

Using the Speexx Online Language Training Program with Thai students has allowed us to evaluate their learning comprehension and track their progression through the English language program. Speexx sets the standard for excellence and innovation in web-based language training and online coaching services. The program is designed to improve the business communication skills of language learners for Thai students. Speexx consists of English lessons, exercises, tests, web boards, and supplementary lessons to help students practice English. The sample groups are 191 Thai sophomores studying Business English with the department of Humanities and Social Science. The data was received by standard deviation (S.D.) value from questionnaires and samples provided from the Speexx training program. The results found that most Thai sophomores fail the Speexx training program due to their learning comprehension of the English language is below average. With persisted efforts on new training methods, the success of the Speexx Language Training Program can break through the cultural barriers and help future students adopt English as a second language. The Speexx results revealed four main factors affecting the success as follows: 1) Future English training should be pursued in applied Speexx development. 2) Thai students didn’t see the benefit of having an Online Language Training Program. 3) There is a great need to educate the next generation of learners on the benefits of Speexx within the community. 4) A great majority of Thai Sophomores didn't know what Speexx was. A guideline for self-reliance planning consisted of four aspects: 1) Development planning: by arranging groups to further improve English abilities with the Speexx Language Training program and encourage using Speexx every day. Local communities need to develop awareness of the usefulness of Speexx and share the value of using the program among family and friends. 2) Humanities and Social Science staff should develop skills using this Online Language Training Program to expand on the benefits of Speexx within their departments. 3) Further research should be pursued on the Thai Students progression with Speexx and how it helps them improve their language skills with Business English. 4) University’s and Language centers should focus on using Speexx to encourage learning for any language, not just English.

Keywords: ability, comprehension, sophomore, speexx

Procedia PDF Downloads 371
26722 Structural Analysis of Kamaluddin Behzad's Works Based on Roland Barthes' Theory of Communication, 'Text and Image'

Authors: Mahsa Khani Oushani, Mohammad Kazem Hasanvand

Abstract:

Text and image have always been two important components in Iranian layout. The interactive connection between text and image has shaped the art of book design with multiple patterns. In this research, first the structure and visual elements in the research data were analyzed and then the position of the text element and the image element in relation to each other based on Roland Barthes theory on the three theories of text and image, were studied and analyzed and the results were compared, and interpreted. The purpose of this study is to investigate the pattern of text and image in the works of Kamaluddin Behzad based on three Roland Barthes communication theories, 1. Descriptive communication, 2. Reference communication, 3. Matched communication. The questions of this research are what is the relationship between text and image in Behzad's works? And how is it defined according to Roland Barthes theory? The method of this research has been done with a structuralist approach with a descriptive-analytical method in a library collection method. The information has been collected in the form of documents (library) and is a tool for collecting online databases. Findings show that the dominant element in Behzad's drawings is with the image and has created a reference relationship in the layout of the drawings, but in some cases it achieves a different relationship that despite the preference of the image on the page, the text is dispersed proportionally on the page and plays a more active role, played within the image. The text and the image support each other equally on the page; Roland Barthes equates this connection.

Keywords: text, image, Kamaluddin Behzad, Roland Barthes, communication theory

Procedia PDF Downloads 197
26721 Online Consortium of Independent Colleges and Universities (OCICU): Using Cluster Analysis to Grasp Student and Institutional Value of Consolidated Online Offerings in Higher Education

Authors: Alex Rodriguez, Adam Guerrero

Abstract:

Purpose: This study is designed to examine the institutions that comprise the Online Consortium of Independent Colleges and Universities (OCICU) to understand better the types of higher education institutions that comprise their membership. The literature on this topic is extensive in analyzing the current economic environment around higher education, which is largely considered to be negative for independent, tuition-driven institutions, and is forcing colleges and universities to reexamine how the college-attending population defines value and how institutions can best utilize their existing resources (and those of other institutions) to meet that value expectation. The results from this analysis are intended to give OCICU the ability to target their current customer base better, based on their most notable differences, and other institutions to see how to best approach consolidation within higher education. Design/Methodology: This study utilized k-means cluster analysis in order to explore the possibility that different segments exist within the seventy-one colleges and universities that have comprised OCICU. It analyzed fifty different variables, whose selection was based on the previous literature, collected by the Integrated Postsecondary Education Data System (IPEDS), whose data is self-reported by individual institutions. Findings: OCICU member institutions are partitioned into two clusters: "access institutions" and "conventional institutions” based largely on the student profile they target. Value: The methodology of the study is relatively unique as there are not many studies within the field of higher education marketing that have employed cluster analysis, and this type of analysis has never been conducted on OCICU members, specifically, or that of any higher education consolidated offering. OCICU can use the findings of this study to obtain a better grasp as to the specific needs of the two market segments OCICU currently serves and develop measurable marketing programs around how those segments are defined that communicate the value sought by current and potential OCICU members or those of similar institutions. Other consolidation efforts within higher education can also employ the same methodology to determine their own market segments.

Keywords: Consolidation, Colleges, Enrollment, Higher Education, Marketing, Strategy, Universities

Procedia PDF Downloads 138
26720 3D Remote Sensing Images Parallax Refining Based On HTML5

Authors: Qian Pei, Hengjian Tong, Weitao Chen, Hai Wang, Yanrong Feng

Abstract:

Horizontal parallax is the foundation of stereoscopic viewing. However, the human eye will feel uncomfortable and it will occur diplopia if horizontal parallax is larger than eye separation. Therefore, we need to do parallax refining before conducting stereoscopic observation. Although some scholars have been devoted to online remote sensing refining, the main work of image refining is completed on the server side. There will be a significant delay when multiple users access the server at the same time. The emergence of HTML5 technology in recent years makes it possible to develop rich browser web application. Authors complete the image parallax refining on the browser side based on HTML5, while server side only need to transfer image data and parallax file to browser side according to the browser’s request. In this way, we can greatly reduce the server CPU load and allow a large number of users to access server in parallel and respond the user’s request quickly.

Keywords: 3D remote sensing images, parallax, online refining, rich browser web application, HTML5

Procedia PDF Downloads 466
26719 The Rise of Darknet: A Call for Understanding Online Communication of Terrorist Groups in Indonesia

Authors: Aulia Dwi Nastiti

Abstract:

A number of studies and reports on terrorism have continuously addressed the role of internet and online activism to support terrorist and extremist groups. In particular, they stress on social media’s usage that generally serves for the terrorist’s propaganda as well as justification of their causes. While those analyses are important to understand how social media is a vital tool for global network terrorism, they are inadequate to explain the online communication patterns that enable terrorism acts. Beyond apparent online narratives, there is a deep cyber sphere where the very vein of terrorism movement lies. That is a hidden space in the internet called ‘darknet’. Recent investigations, particularly in Middle Eastern context, have shed some lights that this invisible space in the internet is fundamental to maintain the terrorist activities. Despite that, limited number of research examines darknet within the issue of terrorist movements in Indonesian context—where the country is considered quite a hotbed for extremist groups. Therefore, this paper attempts to provide an insight of darknet operation in Indonesian cases. By exploring how the darknet is used by the Indonesian-based extremist groups, this paper maps out communication patterns of terrorist groups on the internet which appear as an intermingled network. It shows the usage of internet is differentiated in different level of anonymity for distinctive purposes. This paper further argues that the emerging terrorist communication network calls for a more comprehensive counterterrorism strategy on the Internet.

Keywords: communication pattern, counterterrorism, darknet, extremist groups, terrorism

Procedia PDF Downloads 297
26718 Determinants of Customer Value in Online Retail Platforms

Authors: Mikko Hänninen

Abstract:

This paper explores the effect online retail platforms have on customer behavior and retail patronage through an inductive multi-case study. Existing research on retail platforms and ecosystems generally focus on competition between platform members and most papers maintain a managerial perspective with customers seen mainly as merely one stakeholder of the value-exchange relationship. It is proposed that retail platforms change the nature of customer relationships compared to traditional brick-and-mortar or e-commerce retailers. With online retail platforms such as Alibaba, Amazon and Rakuten gaining increasing traction with their platform based business models, the purpose of this paper is to define retail platforms and look at how leading retail platforms are able to create value for their customers, in order to foster meaningful customer’ relationships. An analysis is conducted on the major global retail platforms with a focus specifically on understanding the tools in place for creating customer value in order to show how retail platforms create and maintain customer relationships for fostering customer loyalty. The results describe the opportunities and challenges retailers face when competing against platform based businesses and outline the advantages as well as disadvantages that platforms bring to individual consumers. Based on the inductive case research approach, five theoretical propositions on consumer behavior in online retail platforms are developed that also form the basis of further research with this research making both a practical as well as theoretical contribution to platform research streams.

Keywords: retail, platform, ecosystem, e-commerce, loyalty

Procedia PDF Downloads 286
26717 Standard Languages for Creating a Database to Display Financial Statements on a Web Application

Authors: Vladimir Simovic, Matija Varga, Predrag Oreski

Abstract:

XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.

Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange

Procedia PDF Downloads 398
26716 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence

Authors: Francesca Radice

Abstract:

Domestic and sexual violence provokes, on average in Australia, one female death per week due to intimate violence behaviours. 83% of couples meet online, and intercepting domestic and sexual violence at this level would be beneficial. It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.

Keywords: sentiment analysis, data mining, predictive policing, virtual manipulation

Procedia PDF Downloads 80
26715 Optimisation of B2C Supply Chain Resource Allocation

Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka

Abstract:

The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation

Procedia PDF Downloads 278
26714 The Impact of Recurring Events in Fake News Detection

Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair

Abstract:

Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.

Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM

Procedia PDF Downloads 29
26713 The Safe Introduction of Tocilizumab for the Treatment of SARS-CoV-2 Pneumonia at an East London District General Hospital

Authors: Andrew Read, Alice Parry, Kate Woods

Abstract:

Since the advent of the SARS-CoV-2 pandemic, the search for medications that can reduce mortality and morbidity has been a global research priority. Several multi-center trials have recently demonstrated improved mortality associated with the use of Tocilizumab, an interleukin-6 receptor antagonist, in patients with severe SARS-CoV-2 pneumonia. Initial data supported the administration in patients requiring respiratory support (non-invasive or invasive ventilation), but more recent data has shown benefit in all hypoxic patients. At the height of the second wave of COVID-19 infections in London, our hospital introduced the use of Tocilizumab for patients with severe COVID-19. Tocilizumab is licensed for use in chronic inflammatory conditions and has been associated with an increased risk of severe bacterial and fungal infections, as well as reactivation of chronic viral infections (e.g., hepatitis B). It is a specialist drug that suppresses the formation of C-reactive protein (CRP) for 6 – 12 weeks. It is not widely used by the general medical community. We aimed to assess Tocilizumab use in our hospital and to implement changes to the protocol as required to ensure administration was safe and appropriate. A retrospective study design was used to assess prescriptions over an initial 3-week period in both intensive care and on the medical wards. This amounted to a total of 13 patients. The initial data collection identified four key areas of concern: adherence to national and local inclusion & exclusion criteria; a collection of appropriate screening blood prior to administration; documentation of informed consent or best interest decision and documentation of Tocilizumab administration on patient discharge information, to alert future healthcare providers that typical measures of inflammation and infection, such as CRP, are unreliable for up to 3-months. Data were collected from electronic notes, blood results and observation charts, and cross referenced with pharmacy data. Initial results showed that all four key areas were completed in approximately 50% of cases. Of particular concern was adherence to exclusion criteria, such as current evidence of bacterial infection, and ensuring the correct screening blood was sent to exclude infections such as hepatitis. To remedy this and improve patient safety, the initial data was presented to relevant healthcare professionals. Subsequently, three interventions were introduced and education on each provided to hospital staff. An electronic ‘order set’ collating the appropriate screening blood was created simplifying the screening process. Pre-formed electronic documentation which can be inserted into the notes was created to provide a framework for consent discussions and reduce the time needed for junior doctors to complete this task. Additionally, a ‘Tocilizumab’ administration card was created and administered via pharmacy. This was distributed to each patient on discharge to ensure future healthcare professionals were aware of the potential effects of Tocilizumab administration, including suppression of CRP. Following these changes, repeat data collection over two months illustrated that each of the 4 safety aspects was met with a 100% success rate in every patient. Although this demonstrates good progress and effective interventions the challenge will be to maintain this progress. The audit data collection is ongoing

Keywords: education, patient safety , SARS-CoV-2, Tocilizumab

Procedia PDF Downloads 177
26712 Right-Wing Narratives Associated with Cognitive Predictors of Radicalization: Direct User Engagement Drives Radicalization

Authors: Julius Brejohn Calvert

Abstract:

This Study Aimed to Investigate the Ecological Nature of Extremism Online. The Construction of a Far-Right Ecosystem Was Successful Using a Sample of Posts, Each With Separate Narrative Domains. Most of the Content Expressed Anti-black Racism and Pro-white Sentiments. Many Posts Expressed an Overt Disdain for the Recent Progress Made Regarding the United States and the United Kingdom’s Expansion of Civil Liberties to People of Color (Poc). Of Special Note, Several Anti-lgbt Posts Targeted the Ongoing Political Grievances Expressed by the Transgender Community. Overall, the Current Study Is Able to Demonstrate That Direct Measures of User Engagement, Such as Shares and Reactions, Can Be Used to Predict the Effect of a Post’s Radicalization Capabilities, Although Single Posts Do Not Operate on the Cognitive Processes of Radicalization Alone. In This Analysis, the Data Supports a Theoretical Framework Where Individual Posts Have a Higher Radicalization Capability Based on the Amount of User Engagement (Both Indirect and Direct) It Receives.

Keywords: cognitive psychology, cognitive radicalization, extremism online, domestic extremism, political science, political psychology

Procedia PDF Downloads 75
26711 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems

Authors: Ali Hosseini

Abstract:

Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.

Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors

Procedia PDF Downloads 314
26710 Building Atmospheric Moisture Diagnostics: Environmental Monitoring and Data Collection

Authors: Paula Lopez-Arce, Hector Altamirano, Dimitrios Rovas, James Berry, Bryan Hindle, Steven Hodgson

Abstract:

Efficient mould remediation and accurate moisture diagnostics leading to condensation and mould growth in dwellings are largely untapped. Number of factors are contributing to the rising trend of excessive moisture in homes mainly linked with modern living, increased levels of occupation and rising fuel costs, as well as making homes more energy efficient. Environmental monitoring by means of data collection though loggers sensors and survey forms has been performed in a range of buildings from different UK regions. Air and surface temperature and relative humidity values of residential areas affected by condensation and/or mould issues were recorded. Additional measurements were taken through different trials changing type, location, and position of loggers. In some instances, IR thermal images and ventilation rates have also been acquired. Results have been interpreted together with environmental key parameters by processing and connecting data from loggers and survey questionnaires, both in buildings with and without moisture issues. Monitoring exercises carried out during Winter and Spring time show the importance of developing and following accurate protocols for guidance to obtain consistent, repeatable and comparable results and to improve the performance of environmental monitoring. A model and a protocol are being developed to build a diagnostic tool with the goal of performing a simple but precise residential atmospheric moisture diagnostics to distinguish the cause entailing condensation and mould generation, i.e., ventilation, insulation or heating systems issue. This research shows the relevance of monitoring and processing environmental data to assign moisture risk levels and determine the origin of condensation or mould when dealing with a building atmospheric moisture excess.

Keywords: environmental monitoring, atmospheric moisture, protocols, mould

Procedia PDF Downloads 142
26709 The Impacts of Digital Marketing Activities on Customers' Purchase Intention via Brand Reputation and Awareness: Empirical Study

Authors: Radwan Al Dwairi, Sara Melhem

Abstract:

Today’s billions of individuals are linked together in real-time using different types of social platforms. Despite the increasing importance of social media marketing activities in enhancing customers’ intention to purchase online; still, the majority of research has concentrated on the impact of such tools on customer satisfaction or retention and neglecting its real role in enhancing brand reputation and awareness, which in turn impact customers’ intention to purchase online. In response, this study aims to close this gap by conducting an empirical study using a qualitative approach by collecting a sample of data from 216 respondents in this domain. Results of the study reveal the significant impact of word-of-mouth, interactions, and influencers on a brand reputation, where the latter positively and significantly impacted customers’ intention to purchase via social platforms. In addition, results show the significant impact of brand reputation on enhancing customers' purchase intention.

Keywords: brand awareness, brand reputation, EWOM, influencers, interaction

Procedia PDF Downloads 100
26708 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis

Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath

Abstract:

The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.

Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression

Procedia PDF Downloads 202
26707 Facilitation of Digital Culture and Creativity through an Ideation Strategy: A Case Study with an Incumbent Automotive Manufacturer

Authors: K. Ö. Kartal, L. Maul, M. Hägele

Abstract:

With the development of new technologies come additional opportunities for the founding of companies and new markets to be created. The barriers to entry are lowered and technology makes old business models obsolete. Incumbent companies have to be adaptable to this quickly changing environment. They have to start the process of digital maturation and they have to be able to adapt quickly to new and drastic changes that might arise. One of the biggest barriers for organizations in order to do so is their culture. This paper shows the core elements of a corporate culture that supports the process of digital maturation in incumbent organizations. Furthermore, it is explored how ideation and innovation can be used in a strategy in order to facilitate these core elements of culture that promote digital maturity. Focus areas are identified for the design of ideation strategies, with the aim to make the facilitation and incitation process more effective, short to long term. Therefore, one in-depth case study is conducted with data collection from interviews, observation, document review and surveys. The findings indicate that digital maturity is connected to cultural shift and 11 relevant elements of digital culture are identified which have to be considered. Based on these 11 core elements, five focus areas that need to be regarded in the design of a strategy that uses ideation and innovation to facilitate the cultural shift are identified. These are: Focus topics, rewards and communication, structure and frequency, regions and new online formats.

Keywords: digital transformation, innovation management, ideation strategy, creativity culture, change

Procedia PDF Downloads 200
26706 Reduction of Defects Using Seven Quality Control Tools for Productivity Improvement at Automobile Company

Authors: Abdul Sattar Jamali, Imdad Ali Memon, Maqsood Ahmed Memon

Abstract:

Quality of production near to zero defects is an objective of every manufacturing and service organization. In order to maintain and improve the quality by reduction in defects, Statistical tools are being used by any organizations. There are many statistical tools are available to assess the quality. Keeping in view the importance of many statistical tools, traditional 7QC tools has been used in any manufacturing and automobile Industry. Therefore, the 7QC tools have been successfully applied at one of the Automobile Company Pakistan. Preliminary survey has been done for the implementation of 7QC tool in the assembly line of Automobile Industry. During preliminary survey two inspection points were decided to collect the data, which are Chassis line and trim line. The data for defects at Chassis line and trim line were collected for reduction in defects which ultimately improve productivity. Every 7QC tools has its benefits observed from the results. The flow charts developed for better understanding about inspection point for data collection. The check sheets developed for helps for defects data collection. Histogram represents the severity level of defects. Pareto charts show the cumulative effect of defects. The Cause and Effect diagrams developed for finding the root causes of each defects. Scatter diagram developed the relation of defects increasing or decreasing. The P-Control charts developed for showing out of control points beyond the limits for corrective actions. The successful implementation of 7QC tools at the inspection points at Automobile Industry concluded that the considerable amount of reduction on defects level, as in Chassis line from 132 defects to 13 defects. The total 90% defects were reduced in Chassis Line. In Trim line defects were reduced from 157 defects to 28 defects. The total 82% defects were reduced in Trim Line. As the Automobile Company exercised only few of the 7 QC tools, not fully getting the fruits by the application of 7 QC tools. Therefore, it is suggested the company may need to manage a mechanism for the application of 7 QC tools at every section.

Keywords: check sheet, cause and effect diagram, control chart, histogram

Procedia PDF Downloads 329
26705 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 325
26704 The Trigger-DAQ System in the Mu2e Experiment

Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella

Abstract:

The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).

Keywords: trigger, daq, mu2e, Fermilab

Procedia PDF Downloads 159
26703 A Policy Strategy for Building Energy Data Management in India

Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan

Abstract:

The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.

Keywords: energy data, energy policy, energy efficiency, buildings

Procedia PDF Downloads 187
26702 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 106