Search results for: intentional bias
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 810

Search results for: intentional bias

60 What Is At Stake When Developing and Using a Rubric to Judge Chemistry Honours Dissertations for Entry into a PhD?

Authors: Moira Cordiner

Abstract:

As a result of an Australian university approving a policy to improve the quality of assessment practices, as an academic developer (AD) with expertise in criterion-referenced assessment commenced in 2008. The four-year appointment was to support 40 'champions' in their Schools. This presentation is based on the experiences of a group of Chemistry academics who worked with the AD to develop and implement an honours dissertation rubric. Honours is a research year following a three-year undergraduate year. If the standard of the student's work is high enough (mainly the dissertation) then the student can commence a PhD. What became clear during the process was that much more was at stake than just the successful development and trial of the rubric, including academics' reputations, university rankings and research outputs. Working with the champion-Head of School(HOS) and the honours coordinator, the AD helped them adapt an honours rubric that she had helped create and trial successfully for another Science discipline. A year of many meetings and complex power plays between the two academics finally resulted in a version that was critiqued by the Chemistry teaching and learning committee. Accompanying the rubric was an explanation of grading rules plus a list of supervisor expectations to explain to students how the rubric was used for grading. Further refinements were made until all staff were satisfied. It was trialled successfully in 2011, then small changes made. It was adapted and implemented for Medicine honours with her help in 2012. Despite coming to consensus about statements of quality in the rubric, a few academics found it challenging matching these to the dissertations and allocating a grade. They had had no time to undertake training to do this, or make overt their implicit criteria and standards, which some admitted they were using - 'I know what a first class is'. Other factors affecting grading included: the small School where all supervisors knew each other and the students, meant that friendships and collegiality were at stake if low grades were given; no external examiners were appointed-all were internal with the potential for bias; supervisors’ reputations were at stake if their students did not receive a good grade; the School's reputation was also at risk if insufficient honours students qualified for PhD entry; and research output was jeopardised without enough honours students to work on supervisors’ projects. A further complication during the study was a restructure of the university and retrenchments, with pressure to increase research output as world rankings assumed greater importance to senior management. In conclusion, much more was at stake than developing a usable rubric. The HOS had to be seen to champion the 'new' assessment practice while balancing institutional demands for increased research output and ensuring as many honours dissertations as possible met high standards, so that eventually the percentage of PhD completions and research output rose. It is therefore in the institution's best interest for this cycle to be maintained as it affects rankings and reputations. In this context, are rubrics redundant?

Keywords: explicit and implicit standards, judging quality, university rankings, research reputations

Procedia PDF Downloads 336
59 The Relationship between Wasting and Stunting in Young Children: A Systematic Review

Authors: Susan Thurstans, Natalie Sessions, Carmel Dolan, Kate Sadler, Bernardette Cichon, Shelia Isanaka, Dominique Roberfroid, Heather Stobagh, Patrick Webb, Tanya Khara

Abstract:

For many years, wasting and stunting have been viewed as separate conditions without clear evidence supporting this distinction. In 2014, the Emergency Nutrition Network (ENN) examined the relationship between wasting and stunting and published a report highlighting the evidence for linkages between the two forms of undernutrition. This systematic review aimed to update the evidence generated since this 2014 report to better understand the implications for improving child nutrition, health and survival. Following PRISMA guidelines, this review was conducted using search terms to describe the relationship between wasting and stunting. Studies related to children under five from low- and middle-income countries that assessed both ponderal growth/wasting and linear growth/stunting, as well as the association between the two, were included. Risk of bias was assessed in all included studies using SIGN checklists. 45 studies met the inclusion criteria- 39 peer reviewed studies, 1 manual chapter, 3 pre-print publications and 2 published reports. The review found that there is a strong association between the two conditions whereby episodes of wasting contribute to stunting and, to a lesser extent, stunting leads to wasting. Possible interconnected physiological processes and common risk factors drive an accumulation of vulnerabilities. Peak incidence of both wasting and stunting was found to be between birth and three months. A significant proportion of children experience concurrent wasting and stunting- Country level data suggests that up to 8% of children under 5 may be both wasted and stunted at the same time, global estimates translate to around 16 million children. Children with concurrent wasting and stunting have an elevated risk of mortality when compared to children with one deficit alone. These children should therefore be considered a high-risk group in the targeting of treatment. Wasting, stunting and concurrent wasting and stunting appear to be more prevalent in boys than girls and it appears that concurrent wasting and stunting peaks between 12- 30 months of age with younger children being the most affected. Seasonal patterns in prevalence of both wasting and stunting are seen in longitudinal and cross sectional data and in particular season of birth has been shown to have an impact on a child’s subsequent experience of wasting and stunting. Evidence suggests that the use of mid-upper-arm circumference combined with weight-for-age Z-score might effectively identify children most at risk of near-term mortality, including those concurrently wasted and stunted. Wasting and stunting frequently occur in the same child, either simultaneously or at different moments through their life course. Evidence suggests there is a process of accumulation of nutritional deficits and therefore risk over the life course of a child demonstrates the need for a more integrated approach to prevention and treatment strategies to interrupt this process. To achieve this, undernutrition policies, programmes, financing and research must become more unified.

Keywords: Concurrent wasting and stunting, Review, Risk factors, Undernutrition

Procedia PDF Downloads 127
58 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 330
57 Telogen Effluvium: A Modern Hair Loss Concern and the Interventional Strategies

Authors: Chettyparambil Lalchand Thejalakshmi, Sonal Sabu Edattukaran

Abstract:

Hair loss is one of the main issues that contemporary society is dealing with. It can be attributable to a wide range of factors, listing from one's genetic composition and the anxiety we experience on a daily basis. Telogen effluvium [TE] is a condition that causes temporary hair loss after a stressor that might shock the body and cause the hair follicles to temporarily rest, leading to hair loss. Most frequently, women are the ones who bring up these difficulties. Extreme illness or trauma, an emotional or important life event, rapid weight loss and crash dieting, a severe scalp skin problem, a new medication, or ceasing hormone therapy are examples of potential causes. Men frequently do not notice hair thinning with time, but women with long hair may be easily identified when shedding, which can occasionally result in bias because women tend to be more concerned with aesthetics and beauty standards of the society, and approach frequently with the concerns .The woman, who formerly possessed a full head of hair, is worried about the hair loss from her scalp . There are several cases of hair loss reported every day, and Telogen effluvium is said to be the most prevalent one of them all without any hereditary risk factors. While the patient has loss in hair volume, baldness is not the result of this problem . The exponentially growing Dermatology and Aesthetic medical division has discovered that this problem is the most common and also the easiest to cure since it is feasible for these people to regrow their hair, unlike those who have scarring alopecia, in which the follicle itself is damaged and non-viable. Telogen effluvium comes in two different forms: acute and chronic. Acute TE occurs in all the age groups with a hair loss of less than three months, while chronic TE is more common in those between the ages of 30 and 60 with a hair loss of more than six months . Both kinds are prevalent throughout all age groups, regardless of the predominance. It takes between three and six months for the lost hair to come back, although this condition is readily reversed by eliminating stresses. After shedding their hair, patients frequently describe having noticeable fringes on their forehead. The current medical treatments for this condition include topical corticosteroids, systemic corticosteroids, minoxidil and finasteride, CNDPA (caffeine, niacinamide, panthenol, dimethicone, and an acrylate polymer) .Individual terminal hair growth was increased by 10% as a result of the innovative intervention CNDPA. Botulinum Toxin A, Scalp Micro Needling, Platelet Rich Plasma Therapy [PRP], and sessions with Multivitamin Mesotherapy Injections are some recently enhanced techniques with partially or completely reversible hair loss. Also, it has been shown that supplements like Nutrafol and Biotin are producing effective outcomes. There is virtually little evidence to support the claim that applying sulfur-rich ingredients to the scalp, such as onion juice, can help TE patients' hair regenerate.

Keywords: dermatology, telogen effluvium, hair loss, modern hair loass treatments

Procedia PDF Downloads 90
56 Prevalence and Risk Factors of Musculoskeletal Disorders among School Teachers in Mangalore: A Cross Sectional Study

Authors: Junaid Hamid Bhat

Abstract:

Background: Musculoskeletal disorders are one of the main causes of occupational illness. Mechanisms and the factors like repetitive work, physical effort and posture, endangering the risk of musculoskeletal disorders would now appear to have been properly identified. Teacher’s exposure to work-related musculoskeletal disorders appears to be insufficiently described in the literature. Little research has investigated the prevalence and risk factors of musculoskeletal disorders in teaching profession. Very few studies are available in this regard and there are no studies evident in India. Purpose: To determine the prevalence of musculoskeletal disorders and to identify and measure the association of such risk factors responsible for developing musculoskeletal disorders among school teachers. Methodology: An observational cross sectional study was carried out. 500 school teachers from primary, middle, high and secondary schools were selected, based on eligibility criteria. A signed consent was obtained and a self-administered, validated questionnaire was used. Descriptive statistics was used to compute the statistical mean and standard deviation, frequency and percentage to estimate the prevalence of musculoskeletal disorders among school teachers. The data analysis was done by using SPSS version 16.0. Results: Results indicated higher pain prevalence (99.6%) among school teachers during the past 12 months. Neck pain (66.1%), low back pain (61.8%) and knee pain (32.0%) were the most prevalent musculoskeletal complaints of the subjects. Prevalence of shoulder pain was also found to be high among school teachers (25.9%). 52.0% subjects reported pain as disabling in nature, causing sleep disturbance (44.8%) and pain was found to be associated with work (87.5%). A significant association was found between musculoskeletal disorders and sick leaves/absenteeism. Conclusion: Work-related musculoskeletal disorders particularly neck pain, low back pain, and knee pain, is highly prevalent and risk factors are responsible for the development of same in school teachers. There is little awareness of musculoskeletal disorders among school teachers, due to work load and prolonged/static postures. Further research should concentrate on specific risk factors like repetitive movements, psychological stress, and ergonomic factors and should be carried out all over the country and the school teachers should be studied carefully over a period of time. Also, an ergonomic investigation is needed to decrease the work-related musculoskeletal disorder problems. Implication: Recall bias and self-reporting can be considered as limitations. Also, cause and effect inferences cannot be ascertained. Based on these results, it is important to disseminate general recommendations for prevention of work-related musculoskeletal disorders with regards to the suitability of furniture, equipment and work tools, environmental conditions, work organization and rest time to school teachers. School teachers in the early stage of their careers should try to adapt the ergonomically favorable position whilst performing their work for a safe and healthy life later. Employers should be educated on practical aspects of prevention to reduce musculoskeletal disorders, since changes in workplace and work organization and physical/recreational activities are required.

Keywords: work related musculoskeletal disorders, school teachers, risk factors funding, medical and health sciences

Procedia PDF Downloads 277
55 Intermodal Strategies for Redistribution of Agrifood Products in the EU: The Case of Vegetable Supply Chain from Southeast of Spain

Authors: Juan C. Pérez-Mesa, Emilio Galdeano-Gómez, Jerónimo De Burgos-Jiménez, José F. Bienvenido-Bárcena, José F. Jiménez-Guerrero

Abstract:

Environmental cost and transport congestion on roads resulting from product distribution in Europe have to lead to the creation of various programs and studies seeking to reduce these negative impacts. In this regard, apart from other institutions, the European Commission (EC) has designed plans in recent years promoting a more sustainable transportation model in an attempt to ultimately shift traffic from the road to the sea by using intermodality to achieve a model rebalancing. This issue proves especially relevant in supply chains from peripheral areas of the continent, where the supply of certain agrifood products is high. In such cases, the most difficult challenge is managing perishable goods. This study focuses on new approaches that strengthen the modal shift, as well as the reduction of externalities. This problem is analyzed by attempting to promote intermodal system (truck and short sea shipping) for transport, taking as point of reference highly perishable products (vegetables) exported from southeast Spain, which is the leading supplier to Europe. Methodologically, this paper seeks to contribute to the literature by proposing a different and complementary approach to establish a comparison between intermodal and the “only road” alternative. For this purpose, the multicriteria decision is utilized in a p-median model (P-M) adapted to the transport of perishables and to a means of shipping selection problem, which must consider different variables: transit cost, including externalities, time, and frequency (including agile response time). This scheme avoids bias in decision-making processes. By observing the results, it can be seen that the influence of the externalities as drivers of the modal shift is reduced when transit time is introduced as a decision variable. These findings confirm that the general strategies, those of the EC, based on environmental benefits lose their capacity for implementation when they are applied to complex circumstances. In general, the different estimations reveal that, in the case of perishables, intermodality would be a secondary and viable option only for very specific destinations (for example, Hamburg and nearby locations, the area of influence of London, Paris, and the Netherlands). Based on this framework, the general outlook on this subject should be modified. Perhaps the government should promote specific business strategies based on new trends in the supply chain, not only on the reduction of externalities, and find new approaches that strengthen the modal shift. A possible option is to redefine ports, conceptualizing them as digitalized redistribution and coordination centers and not only as areas of cargo exchange.

Keywords: environmental externalities, intermodal transport, perishable food, transit time

Procedia PDF Downloads 98
54 Cinema Reception in a Digital World: A Study of Cinema Audiences in India

Authors: Sanjay Ranade

Abstract:

Traditional film theory assumes the cinema audience in a darkened room where cinema is projected on to a white screen, and the audience suspends their sense of reality. Shifts in audiences due to changes in cultural tastes or trends have been studied for decades. In the past two decades, however, the audience, especially the youth, has shifted to digital media for the consumption of cinema. As a result, not only are audiences watching cinema on different devices, they are also consuming cinema in places and ways never imagined before. Public transport often crowded to the brim with a lot of ambient content, and a variety of workplaces have become sites for cinema viewing. Cinema is watched piecemeal and at different times of the day. Audiences use devices such as mobile phones and tablets to watch cinema. The cinema viewing experience is getting redesigned by the user. The emerging design allows the spectator to not only consume images and narratives but also produce, reproduce, and manipulate existing images and narratives, thereby participating in the process and influencing it. Spectatorship studies stress on the importance of subjectivity when dealing with the structure of the film text and the cultural and psychological implications in the engagement between the spectator and the film text. Indian cinema has been booming and contributing to global movie production significantly. In 2005 film production was 1000 films a year and doubled to 2000 by 2016. Digital technology helped push this growth in 2012. Film studies in India have had a decided Euro-American bias. The studies have chiefly analysed the content for ideological leanings or myth or as reflections of society, societal changes, or articulation of identity or presented retrospectives of directors, actors, music directors, etc. The one factor relegated to the background has been the spectator. If they have been addressed, they are treated as a collective of class or gender. India has a performative tradition going back several centuries. How Indians receive cinema is an important aspect to study with respect to film studies. This exploratory and descriptive study looked at 162 young media students studying cinema at the undergraduate and postgraduate levels. The students, speaking as many as 20 languages amongst them, were drawn from across the country’s media schools. The study looked at nine film societies registered with the Federation of Film Societies of India. A structured questionnaire was made and distributed online through media teachers for the students. The film societies were approached through the regional office of the FFSI in Mumbai. Lastly, group discussions were held in Mumbai with students and teachers of media. A group consisted of between five and twelve student participants, along with one or two teachers. All the respondents looked at themselves as spectators and shared their experiences of spectators of cinema, providing a very rich insight into Indian conditions of viewing cinema and challenges for cinema ahead.

Keywords: audience, digital, film studies, reception, reception spectatorship

Procedia PDF Downloads 130
53 An Integrative Review on Effects of Educational Interventions for Children with Eczema

Authors: Nam Sze Cheng, P. C. Janita Chau

Abstract:

Background: Eczema is a chronic inflammatory disease with high global prevalence rates in many childhood populations. It is also the most common paediatric skin problem. Although eczema education and proper skin care were effective in controlling eczema symptoms, the lack of both sufficient time for patient consultation and structured eczema education programme hindered the transferability of knowledge to patients and their parents. As a result, these young patients and their families suffer from a significant physical disability and psychological distress, which can substantially impair their quality of life. Objectives: This integrative review is to examine the effects of educational interventions for children with eczema and identify the core elements associated with an effective intervention. Methods: This integrative review targeted all articles published in 10 databases between May 2016 and February 2017 that reported the outcomes of disease interventions of any format for children and adolescents with the clinical diagnosis of eczema who were under 18 years of age. Five randomized controlled trials (RCT) and one systematic review of 10 RCTs were identified for review. All these publications had high methodological quality, except one study of web-based eczema education that was limited by selection bias and poor subject blinding. Findings: This review found that most studies adopted nurse-led or multi-disciplinary parental eczema education programme at the outpatient clinic setting. The format of these programmes included individual lectures, demonstration and group sharing, and the educational materials covered basic eczema knowledge and management as well as methods to interrupt itch-scratch cycle. The main outcome measures of these studies included severity of eczema symptoms, treatment adherence and quality of life of both patients and their families. Nine included studies reported statistically significant improvement in the primary outcome of symptom severity of these eczematous children. On the other hand, all these reviews failed to identify an effective dosage of intervention under these educational programmes that was attributed to the heterogeneity of the interventions. One study that was designed based on the social cognitive theory to guide the interventional content yielded statistically significant results. The systematic review recommended the importance of measuring parental self-efficacy. Implication: This integrative review concludes that structured educational programme can help nurses understand the theories behind different health interventions. They can then deliver eczema education to their patients in a consistent manner. These interventions also result in behavioral changes through patient education. Due to the lack of validated educational programmes in Chinese, it is imperative to conduct an RCT of eczema educational programme to investigate its effects on eczema severity, quality of life and treatment adherence in Hong Kong children as well as to promote the importance of parental self-efficacy.

Keywords: children, eczema, education, intervention

Procedia PDF Downloads 116
52 Accounting and Prudential Standards of Banks and Insurance Companies in EU: What Stakes for Long Term Investment?

Authors: Sandra Rigot, Samira Demaria, Frederic Lemaire

Abstract:

The starting point of this research is the contemporary capitalist paradox: there is a real scarcity of long term investment despite the boom of potential long term investors. This gap represents a major challenge: there are important needs for long term financing in developed and emerging countries in strategic sectors such as energy, transport infrastructure, information and communication networks. Moreover, the recent financial and sovereign debt crises, which have respectively reduced the ability of financial banking intermediaries and governments to provide long term financing, questions the identity of the actors able to provide long term financing, their methods of financing and the most appropriate forms of intermediation. The issue of long term financing is deemed to be very important by the EU Commission, as it issued a 2013 Green Paper (GP) on long-term financing of the EU economy. Among other topics, the paper discusses the impact of the recent regulatory reforms on long-term investment, both in terms of accounting (in particular fair value) and prudential standards for banks. For banks, prudential and accounting standards are also crucial. Fair value is indeed well adapted to the trading book in a short term view, but this method hardly suits for a medium and long term portfolio. Banks’ ability to finance the economy and long term projects depends on their ability to distribute credit and the way credit is valued (fair value or amortised cost) leads to different banking strategies. Furthermore, in the banking industry, accounting standards are directly connected to the prudential standards, as the regulatory requirements of Basel III use accounting figures with prudential filter to define the needs for capital and to compute regulatory ratios. The objective of these regulatory requirements is to prevent insolvency and financial instability. In the same time, they can represent regulatory constraints to long term investing. The balance between financial stability and the need to stimulate long term financing is a key question raised by the EU GP. Does fair value accounting contributes to short-termism in the investment behaviour? Should prudential rules be “appropriately calibrated” and “progressively implemented” not to prevent banks from providing long-term financing? These issues raised by the EU GP lead us to question to what extent the main regulatory requirements incite or constrain banks to finance long term projects. To that purpose, we study the 292 responses received by the EU Commission during the public consultation. We analyze these contributions focusing on particular questions related to fair value accounting and prudential norms. We conduct a two stage content analysis of the responses. First, we proceed to a qualitative coding to identify arguments of respondents and subsequently we run a quantitative coding in order to conduct statistical analyses. This paper provides a better understanding of the position that a large panel of European stakeholders have on these issues. Moreover, it adds to the debate on fair value accounting and its effects on prudential requirements for banks. This analysis allows us to identify some short term bias in banking regulation.

Keywords: basel 3, fair value, securitization, long term investment, banks, insurers

Procedia PDF Downloads 291
51 The Artificial Intelligence Driven Social Work

Authors: Avi Shrivastava

Abstract:

Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.

Keywords: social work, artificial intelligence, AI based social work, machine learning, technology

Procedia PDF Downloads 102
50 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: land use, spatial resolution, WRF-Chem, air quality assessment

Procedia PDF Downloads 156
49 Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test

Authors: Raj Chandran, Saul Datwyler, Jaime Marino, Daniel West, Karla Grasso, Adam Buss, Hina Syed, Zina Al Sahouri, Jennifer Yen, Krista Caudle, Beth McQuiston

Abstract:

The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury.

Keywords: biomarker, diagnostic, neurology, TBI

Procedia PDF Downloads 66
48 Exploring the Carer Gender Support Gap: Results from Freedom of Information Requests to Adult Social Services in England

Authors: Stephen Bahooshy

Abstract:

Our understanding of gender inequality has advanced in recent years. Differences in pay and societal gendered behaviour expectations have been emphasized. It is acknowledged globally that gender shapes everyone’s experiences of health and social care, including access to care, use of services and products, and the interaction with care providers. NHS Digital in England collects data from local authorities on the number of carers and people with support needs and the services they access. This data does not provide a gender breakdown. Caring can have many positive and negative impacts on carers’ health and wellbeing. For example, caring can improve physical health, provide a sense of pride and purpose, and reduced stress levels for those who undertake a caring role by choice. Negatives of caring include financial concerns, social isolation, a reduction in earnings, and not being recognized as a carer or involved and consulted by health and social care professionals. Treating male and female carers differently is by definition unequitable and precludes one gender from receiving the benefits of caring whilst potentially overburdening the other with the negatives of caring. In order to explore the issue on a preliminary basis, five local authorities who provide statutory adult social care services in England were sent Freedom of Information requests in 2019. The authorities were selected to include county councils and London boroughs. The authorities were asked to provide data on the amount of money spent on care at home packages to people over 65 years, broken down by gender and carer gender for each financial year between 2013 and 2019. Results indicated that in each financial year, female carers supporting someone over 65 years received less financial support for care at home support packages than male carers. Over the six-year period, this difference equated to a £9.5k deficit in financial support received on average per female carer when compared to male carers. An example of a London borough with the highest disparity presented an average weekly spend on care at home for people over 65 with a carer of £261.35 for male carers and £165.46 for female carers. Consequently, female carers in this borough received on average £95.89 less per week in care at home support than male carers. This highlights a real and potentially detrimental disparity in the care support received to female carers in order to support them to continue to care in parts of England. More research should be undertaken in this area to better explore this issue and to understand if these findings are unique to these social care providers or part of a wider phenomenon. NHS Digital should request local authorities collect data on gender in the same way that large employers in the United Kingdom are required by law to provide data on staff salaries by gender. People who allocate social care packages of support should consider the impact of gender when allocating support packages to people with support needs and who have carers to reduce any potential impact of gender bias on their decision-making.

Keywords: caregivers, carers, gender equality, social care

Procedia PDF Downloads 165
47 The Efficacy of Video Education to Improve Treatment or Illness-Related Knowledge in Patients with a Long-Term Physical Health Condition: A Systematic Review

Authors: Megan Glyde, Louise Dye, David Keane, Ed Sutherland

Abstract:

Background: Typically patient education is provided either verbally, in the form of written material, or with a multimedia-based tool such as videos, CD-ROMs, DVDs, or via the internet. By providing patients with effective educational tools, this can help to meet their information needs and subsequently empower these patients and allow them to participate within medical-decision making. Video education may have some distinct advantages compared to other modalities. For instance, whilst eHealth is emerging as a promising modality of patient education, an individual’s ability to access, read, and navigate through websites or online modules varies dramatically in relation to health literacy levels. Literacy levels may also limit patients’ ability to understand written education, whereas video education can be watched passively by patients and does not require high literacy skills. Other benefits of video education include that the same information is provided consistently to each patient, it can be a cost-effective method after the initial cost of producing the video, patients can choose to watch the videos by themselves or in the presence of others, and they can pause and re-watch videos to suit their needs. Health information videos are not only viewed by patients in formal educational sessions, but are increasingly being viewed on websites such as YouTube. Whilst there is a lot of anecdotal and sometimes misleading information on YouTube, videos from government organisations and professional associations contain trustworthy and high-quality information and could enable YouTube to become a powerful information dissemination platform for patients and carers. This systematic review will examine the efficacy of video education to improve treatment or illness-related knowledge in patients with various long-term conditions, in comparison to other modalities of education. Methods: Only studies which match the following criteria will be included: participants will have a long-term physical health condition, video education will aim to improve treatment or illness related knowledge and will be tested in isolation, and the study must be a randomised controlled trial. Knowledge will be the primary outcome measure, with modality preference, anxiety, and behaviour change as secondary measures. The searches have been conducted in the following databases: OVID Medline, OVID PsycInfo, OVID Embase, CENTRAL and ProQuest, and hand searching for relevant published and unpublished studies has also been carried out. Screening and data extraction will be conducted independently by 2 researchers. Included studies will be assessed for their risk of bias in accordance with Cochrane guidelines, and heterogeneity will also be assessed before deciding whether a meta-analysis is appropriate or not. Results and Conclusions: Appropriate synthesis of the studies in relation to each outcome measure will be reported, along with the conclusions and implications.

Keywords: long-term condition, patient education, systematic review, video

Procedia PDF Downloads 113
46 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 151
45 Middle School as a Developmental Context for Emergent Citizenship

Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake

Abstract:

Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.

Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche

Procedia PDF Downloads 370
44 Effect of Climate Change on the Genomics of Invasiveness of the Whitefly Bemisia tabaci Species Complex by Estimating the Effective Population Size via a Coalescent Method

Authors: Samia Elfekih, Wee Tek Tay, Karl Gordon, Paul De Barro

Abstract:

Invasive species represent an increasing threat to food biosecurity, causing significant economic losses in agricultural systems. An example is the sweet potato whitefly, Bemisia tabaci, which is a complex of morphologically indistinguishable species causing average annual global damage estimated at US$2.4 billion. The Bemisia complex represents an interesting model for evolutionary studies because of their extensive distribution and potential for invasiveness and population expansion. Within this complex, two species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) have invaded well beyond their home ranges whereas others, such as Indian Ocean (IO) and Australia (AUS), have not. In order to understand why some Bemisia species have become invasive, genome-wide sequence scans were used to estimate population dynamics over time and relate these to climate. The Bayesian Skyline Plot (BSP) method as implemented in BEAST was used to infer the historical effective population size. In order to overcome sampling bias, the populations were combined based on geographical origin. The datasets used for this particular analysis are genome-wide SNPs (single nucleotide polymorphisms) called separately in each of the following groups: Sub-Saharan Africa (Burkina Faso), Europe (Spain, France, Greece and Croatia), USA (Arizona), Mediterranean-Middle East (Israel, Italy), Middle East-Central Asia (Turkmenistan, Iran) and Reunion Island. The non-invasive ‘AUS’ species endemic to Australia was used as an outgroup. The main findings of this study show that the BSP for the Sub-Saharan African MED population is different from that observed in MED populations from the Mediterranean Basin, suggesting evolution under a different set of environmental conditions. For MED, the effective size of the African (Burkina Faso) population showed a rapid expansion ≈250,000-310,000 years ago (YA), preceded by a period of slower growth. The European MED populations (i.e., Spain, France, Croatia, and Greece) showed a single burst of expansion at ≈160,000-200,000 YA. The MEAM1 populations from Israel and Italy and the ones from Iran and Turkmenistan are similar as they both show the earlier expansion at ≈250,000-300,000 YA. The single IO population lacked the latter expansion but had the earlier one. This pattern is shared with the Sub-Saharan African (Burkina Faso) MED, suggesting IO also faced a similar history of environmental change, which seems plausible given their relatively close geographical distributions. In conclusion, populations within the invasive species MED and MEAM1 exhibited signatures of population expansion lacking in non-invasive species (IO and AUS) during the Pleistocene, a geological epoch marked by repeated climatic oscillations with cycles of glacial and interglacial periods. These expansions strongly suggested the potential of some Bemisia species’ genomes to affect their adaptability and invasiveness.

Keywords: whitefly, RADseq, invasive species, SNP, climate change

Procedia PDF Downloads 126
43 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 108
42 The Bidirectional Effect between Parental Burnout and the Child’s Internalized and/or Externalized Behaviors

Authors: Aline Woine, Moïra Mikolajczak, Virginie Dardier, Isabelle Roskam

Abstract:

Background information: Becoming a parent is said to be the happiest event one can ever experience in one’s life. This popular (and almost absolute) truth–which no reasonable and decent human being would ever dare question on pain of being singled out as a bad parent–contrasts with the nuances that reality offers. Indeed, while many parents do thrive in their parenting role, some others falter and become progressively overwhelmed by their parenting role, ineluctably caught in a spiral of exhaustion. Parental burnout (henceforth PB) sets in when parental demands (stressors) exceed parental resources. While it is now generally acknowledged that PB affects the parent’s behavior in terms of neglect and violence toward their offspring, little is known about the impact that the syndrome might have on the children’s internalized (anxious and depressive symptoms, somatic complaints, etc.) and/or externalized (irritability, violence, aggressiveness, conduct disorder, oppositional disorder, etc.) behaviors. Furthermore, at the time of writing, to our best knowledge, no research has yet tested the reverse effect, namely, that of the child's internalized and/or externalized behaviors on the onset and/or maintenance of parental burnout symptoms. Goals and hypotheses: The present pioneering research proposes to fill an important gap in the existing literature related to PB by investigating the bidirectional effect between PB and the child’s internalized and/or externalized behaviors. Relying on a cross-lagged longitudinal study with three waves of data collection (4 months apart), our study tests a transactional model with bidirectional and recursive relations between observed variables and at the three waves, as well as autoregressive paths and cross-sectional correlations. Methods: As we write this, wave-two data are being collected via Qualtrics, and we expect a final sample of about 600 participants composed of French-speaking (snowball sample) and English-speaking (Prolific sample) parents. Structural equation modeling is employed using Stata version 17. In order to retain as much statistical power as possible, we use all available data and therefore apply the maximum likelihood with a missing value (mlmv) as the method of estimation to compute the parameter estimates. To limit (in so far is possible) the shared method variance bias in the evaluation of the child’s behavior, the study relies on a multi-informant evaluation approach. Expected results: We expect our three-wave longitudinal study to show that PB symptoms (measured at T1) raise the occurrence/intensity of the child’s externalized and/or internalized behaviors (measured at T2 and T3). We further expect the child’s occurrence/intensity of externalized and/or internalized behaviors (measured at T1) to augment the risk for PB (measured at T2 and T3). Conclusion: Should our hypotheses be confirmed, our results will make an important contribution to the understanding of both PB and children’s behavioral issues, thereby opening interesting theoretical and clinical avenues.

Keywords: exhaustion, structural equation modeling, cross-lagged longitudinal study, violence and neglect, child-parent relationship

Procedia PDF Downloads 73
41 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 73
40 The Role and Challenges of Media in the Transformation of Contemporary Nigeria Democracies

Authors: Henry Okechukwu Onyeiwu

Abstract:

The role of media in the transformation of contemporary Nigeria's democracies is multifaceted and profoundly impactful. As Nigeria navigates its complex socio-political landscape, media serves as both a catalyst for democratic engagement and a platform for public discourse. This paper explores the various dimensions through which media influences democracy in Nigeria, including its role in informing citizens, shaping public opinion, and providing a forum for diverse voices. The increasing penetration of social media has revolutionized the political sphere, empowering citizens to participate in governance and hold leaders accountable. However, challenges such as misinformation, censorship, and media bias continue to pose significant threats to democratic integrity. This study critically analyzes the interplay between traditional and new media, highlighting their contributions to electoral processes, civic education, and advocacy for human rights. Ultimately, the findings illustrate that while media is a crucial agent for democratic transformation, its potential can only be realized through a commitment to journalistic integrity and the promotion of media literacy among the Nigerian populace. The media plays a critical role in shaping public democracies in Nigeria, yet it faces a myriad of challenges that hinder its effectiveness. This paper examines the various obstacles confronting media broadcasting in Nigeria, which range from political interference and censorship to issues of professionalism and the proliferation of fake news. Political interference is particularly pronounced, as government entities and political actors often attempt to control narratives, compromising the independence of media outlets. This control often manifests in the form of censorship, where journalists face threats and harassment for reporting on sensitive topics related to governance, corruption, and human rights abuses. Moreover, the rapid rise of social media has introduced a dual challenge; while it offers a platform for citizen engagement and diverse viewpoints, it also facilitates the spread of misinformation and propaganda. The lack of media literacy among the populace exacerbates this issue, as citizens often struggle to discern credible information from false narratives. Additionally, economic constraints deeply affect the sustainability and independence of many broadcasting organizations. Advertisers may unduly influence content, leading to sensationalism over substantive reporting. This paper argues that for media to effectively contribute to Nigerian public democracies, there needs to be a concerted effort to address these challenges. Strengthening journalistic ethics, enhancing regulatory frameworks, and promoting media literacy among citizens are essential steps in fostering a more vibrant and accountable media landscape. Ultimately, this research underscores the necessity of a resilient media ecosystem that can truly support democratic processes, empower citizens, and hold power to account in contemporary Nigeria.

Keywords: media, democracy, socio-political, governance

Procedia PDF Downloads 20
39 Effectiveness of Dry Needling with and without Ultrasound Guidance in Patients with Knee Osteoarthritis and Patellofemoral Pain Syndrome: A Systematic Review and Meta-Analysis

Authors: Johnson C. Y. Pang, Amy S. N. Fu, Ryan K. L. Lee, Allan C. L. Fu

Abstract:

Dry needling (DN) is one of the puncturing methods that involves the insertion of needles into the tender spots of the human body without the injection of any substance. DN has long been used to treat the patient with knee pain caused by knee osteoarthritis (KOA) and patellofemoral pain syndrome (PFPS), but the effectiveness is still inconsistent. This study aimed to conduct a systematic review and meta-analysis to assess the intervention methods and effects of DN with and without ultrasound guidance for treating pain and dysfunctions in people with KOA and PFPS. Design: This systematic review adhered to the PRISMA reporting guidelines. The registration number of the study protocol published in the PROSPERO database was CRD42021221419. Six electronic databases were searched manually through CINAHL Complete (1976-2020), Cochrane Library (1996-2020), EMBASE (1947-2020), Medline (1946-2020), PubMed (1966-2020), and Psychinfo (1806-2020) in November 2020. Randomized controlled trials (RCTs) and controlled clinical trials were included to examine the effects of DN on knee pain, including KOA and PFPS. The key concepts included were: DN, acupuncture, ultrasound guidance, KOA, and PFPS. Risk of bias assessment and qualitative analysis were conducted by two independent reviewers using the PEDro score. Results: Fourteen articles met the inclusion criteria, and eight of them were high-quality papers in accordance with the PEDro score. There were variations in the techniques of DN. These included the direction, depth of insertion, number of needles, duration of stay, needle manipulation, and the number of treatment sessions. Meta-analysis was conducted on eight articles. DN group showed positive short-term effects (from immediate after DN to less than 3 months) on pain reduction for both KOA and PFPS with the overall standardized mean difference (SMD) of -1.549 (95% CI=-0.588 to -2.511); with great heterogeneity (P=0.002, I²=96.3%). In subgroup analysis, DN demonstrated significant effects in pain reduction on PFPS (p < 0.001) that could not be found in subjects with KOA (P=0.302). At 3-month post-intervention, DN also induced significant pain reduction in both subjects with KOA and PFPS with an overall SMD of -0.916 (95% CI=-0.133 to -1.699, and great heterogeneity (P=0.022, I²=95.63%). Besides, DN induced significant short-term improvement in function with the overall SMD=6.069; 95% CI=8.595 to 3.544; with great heterogeneity (P<0.001, I²=98.56%) when analyzed was conducted on both KOA and PFPS groups. In subgroup analysis, only PFPS showed a positive result with SMD=6.089, P<0.001; while KOA showed statistically insignificant with P=0.198 in short-term effect. Similarly, at 3-month post-intervention, significant improvement in function after DN was found when the analysis was conducted in both groups with the overall SMD=5.840; 95% CI=9.252 to 2.428; with great heterogeneity (P<0.001, I²=99.1%), but only PFPS showed significant improvement in sub-group analysis (P=0.002, I²=99.1%). Conclusions: The application of DN in KOA and PFPS patients varies among practitioners. DN is effective in reducing pain and dysfunction at short-term and 3-month post-intervention in individuals with PFPS. To our best knowledge, no study has reported the effects of DN with ultrasound guidance on KOA and PFPS. The longer-term effects of DN on KOA and PFPS are waiting for further study.

Keywords: dry needling, knee osteoarthritis, patellofemoral pain syndrome, ultrasound guidance

Procedia PDF Downloads 134
38 Covariate-Adjusted Response-Adaptive Designs for Semi-Parametric Survival Responses

Authors: Ayon Mukherjee

Abstract:

Covariate-adjusted response-adaptive (CARA) designs use the available responses to skew the treatment allocation in a clinical trial in towards treatment found at an interim stage to be best for a given patient's covariate profile. Extensive research has been done on various aspects of CARA designs with the patient responses assumed to follow a parametric model. However, ranges of application for such designs are limited in real-life clinical trials where the responses infrequently fit a certain parametric form. On the other hand, robust estimates for the covariate-adjusted treatment effects are obtained from the parametric assumption. To balance these two requirements, designs are developed which are free from distributional assumptions about the survival responses, relying only on the assumption of proportional hazards for the two treatment arms. The proposed designs are developed by deriving two types of optimum allocation designs, and also by using a distribution function to link the past allocation, covariate and response histories to the present allocation. The optimal designs are based on biased coin procedures, with a bias towards the better treatment arm. These are the doubly-adaptive biased coin design (DBCD) and the efficient randomized adaptive design (ERADE). The treatment allocation proportions for these designs converge to the expected target values, which are functions of the Cox regression coefficients that are estimated sequentially. These expected target values are derived based on constrained optimization problems and are updated as information accrues with sequential arrival of patients. The design based on the link function is derived using the distribution function of a probit model whose parameters are adjusted based on the covariate profile of the incoming patient. To apply such designs, the treatment allocation probabilities are sequentially modified based on the treatment allocation history, response history, previous patients’ covariates and also the covariates of the incoming patient. Given these information, an expression is obtained for the conditional probability of a patient allocation to a treatment arm. Based on simulation studies, it is found that the ERADE is preferable to the DBCD when the main aim is to minimize the variance of the observed allocation proportion and to maximize the power of the Wald test for a treatment difference. However, the former procedure being discrete tends to be slower in converging towards the expected target allocation proportion. The link function based design achieves the highest skewness of patient allocation to the best treatment arm and thus ethically is the best design. Other comparative merits of the proposed designs have been highlighted and their preferred areas of application are discussed. It is concluded that the proposed CARA designs can be considered as suitable alternatives to the traditional balanced randomization designs in survival trials in terms of the power of the Wald test, provided that response data are available during the recruitment phase of the trial to enable adaptations to the designs. Moreover, the proposed designs enable more patients to get treated with the better treatment during the trial thus making the designs more ethically attractive to the patients. An existing clinical trial has been redesigned using these methods.

Keywords: censored response, Cox regression, efficiency, ethics, optimal allocation, power, variability

Procedia PDF Downloads 165
37 Exploring the Influence of Maternal Self-Discrepancy on Psychological Well-Being: A Study of Middle-Aged Japanese Mothers

Authors: Chooi Fong Lee

Abstract:

Maternal psychological well-being has been investigated from various aspects, such as social support, employment status. However, a perspective from self-discrepancy theory has not been employed. Moreover, most were focused on young mothers. Less is understanding the middle-aged mother’s psychological well-being. This research examined the influence of maternal self-discrepancy between actual and ideal self on maternal role achievement, state anxiety, trait anxiety, and subjective well-being among Japanese middle-aged mothers across their employment status. A pilot study with 20 Japanese mother participants (aged 40-55, 9 regular-employed, 8 non-regular-employed, and 3 homemakers) was conducted to assess the viability of survey questionnaires (Maternal Role Achievement Scale, State-Trait Anxiety Inventory, Subjective Well-being Scale, and Self-report questionnaire). The self-report questionnaire prompted participants to list up to 3 ideal selves they aspired to be and rate the extent to which their actual selves deviated from their ideal selves on a 7-point scale (1= not at all; 4 = medium; 7 = extremely). Self-discrepancy scores were calculated by subtracting participants’ degree ratings from a 7-point scale, summing them up, and then dividing the total by 3. The final sample consisted of 241 participants, 97 regular-employed, 87 non-regular employed, and 57 homemaker mothers. We ensured participants were randomly selected to mitigate bias. The results show that regular-employed mothers tend to exhibit lower self-discrepancy scores compared to non-regular employed and homemaker mothers. Moreover, the discrepancy between actual and ideal self negatively correlated with maternal role achievement, state anxiety, and subjective well-being, while positively correlated with trait anxiety. Trait anxiety arises when one feels they did not meet their ideal self, as evidenced by higher levels in homemaker mothers, who experience lower state anxiety. Conversely, regular-employed mothers exhibit higher state anxiety but lower trait anxiety, suggesting satisfaction in their professional pursuits despite balancing work and family responsibilities. Full-time maternal roles contribute to lower state anxiety but higher trait anxiety among homemaker mothers due to a lack of personal identity achievement. Non-regular employed mothers show similarities to homemaker mothers. In self-reports, regular-employed mothers highlight support and devotion to their children’s development, while non-regular-employed mothers seek life fulfillment through part-time work alongside child-rearing duties. Homemaker mothers emphasize qualities like sociability, and communication skills, potentially influencing their self-discrepancy scores. Furthermore, the hierarchical multiple regression analysis revealed that the discrepancy between actual and ideal self significantly predicts subjective well-being. In conclusion, the findings offer valuable insights into the impact of maternal self-discrepancy on psychological well-being among middle-aged Japanese mothers across different employment statuses. Understanding these dynamics becomes crucial as contemporary women increasingly pursue higher education and depart from traditional motherhood norms. Working toward one ideal self might contribute to a mother psychological well-being. Acknowledgment: This project was made possible with funding support from the Japan ICU Foundation.

Keywords: maternal employment, maternal role, self-discrepancy, state-trait anxiety, subjective well-being

Procedia PDF Downloads 62
36 Polarization as a Proxy of Misinformation Spreading

Authors: Michela Del Vicario, Walter Quattrociocchi, Antonio Scala, Ana Lucía Schmidt, Fabiana Zollo

Abstract:

Information, rumors, and debates may shape and impact public opinion heavily. In the latest years, several concerns have been expressed about social influence on the Internet and the outcome that online debates might have on real-world processes. Indeed, on online social networks users tend to select information that is coherent to their system of beliefs and to form groups of like-minded people –i.e., echo chambers– where they reinforce and polarize their opinions. In this way, the potential benefits coming from the exposure to different points of view may be reduced dramatically, and individuals' views may become more and more extreme. Such a context fosters misinformation spreading, which has always represented a socio-political and economic risk. The persistence of unsubstantiated rumors –e.g., the hypothetical and hazardous link between vaccines and autism– suggests that social media do have the power to misinform, manipulate, or control public opinion. As an example, current approaches such as debunking efforts or algorithmic-driven solutions based on the reputation of the source seem to prove ineffective against collective superstition. Indeed, experimental evidence shows that confirmatory information gets accepted even when containing deliberately false claims while dissenting information is mainly ignored, influences users’ emotions negatively and may even increase group polarization. Moreover, confirmation bias has been shown to play a pivotal role in information cascades, posing serious warnings about the efficacy of current debunking efforts. Nevertheless, mitigation strategies have to be adopted. To generalize the problem and to better understand social dynamics behind information spreading, in this work we rely on a tight quantitative analysis to investigate the behavior of more than 300M users w.r.t. news consumption on Facebook over a time span of six years (2010-2015). Through a massive analysis on 920 news outlets pages, we are able to characterize the anatomy of news consumption on a global and international scale. We show that users tend to focus on a limited set of pages (selective exposure) eliciting a sharp and polarized community structure among news outlets. Moreover, we find similar patterns around the Brexit –the British referendum to leave the European Union– debate, where we observe the spontaneous emergence of two well segregated and polarized groups of users around news outlets. Our findings provide interesting insights into the determinants of polarization and the evolution of core narratives on online debating. Our main aim is to understand and map the information space on online social media by identifying non-trivial proxies for the early detection of massive informational cascades. Furthermore, by combining users traces, we are finally able to draft the main concepts and beliefs of the core narrative of an echo chamber and its related perceptions.

Keywords: information spreading, misinformation, narratives, online social networks, polarization

Procedia PDF Downloads 288
35 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.

Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership

Procedia PDF Downloads 177
34 Using Structural Equation Modeling to Measure the Impact of Young Adult-Dog Personality Characteristics on Dog Walking Behaviours during the COVID-19 Pandemic

Authors: Renata Roma, Christine Tardif-Williams

Abstract:

Engaging in daily walks with a dog (f.e. Canis lupus familiaris) during the COVID-19 pandemic may be linked to feelings of greater social-connectedness and global self-worth, and lower stress after controlling for mental health issues, lack of physical contact with others, and other stressors associated with the current pandemic. Therefore, maintaining a routine of dog walking might mitigate the effects of stressors experienced during the pandemic and promote well-being. However, many dog owners do not walk their dogs for many reasons, which are related to the owner’s and the dog’s personalities. Note that the consistency of certain personality characteristics among dogs demonstrates that it is possible to accurately measure different dimensions of personality in both dogs and their human counterparts. In addition, behavioural ratings (e.g., the dog personality questionnaire - DPQ) are reliable tools to assess the dog’s personality. Clarifying the relevance of personality factors in the context of young adult-dog relationships can shed light on interactional aspects that can potentially foster protective behaviours and promote well-being among young adults during the pandemic. This study examines if and how nine combinations of dog- and young adult-related personality characteristics (e.g., neuroticism-fearfulness) can amplify the influence of personality factors in the context of dog walking during the COVID-19 pandemic. Responses to an online large-scale survey among 440 (389 females; 47 males; 4 nonbinaries, Mage=20.7, SD= 2.13 range=17-25) young adults living with a dog in Canada were analyzed using structural equation modeling (SEM). As extraversion, conscientiousness, and neuroticism, measured through the five-factor model (FFM) inventory, are related to maintaining a routine of physical activities, these dimensions were selected for this analysis. Following an approach successfully adopted in the field of dog-human interactions, the FFM was used as the organizing framework to measure and compare the human’s and the dog’s personality in the context of dog walking. The dog-related personality dimensions activity/excitability, responsiveness to training, and fearful were correlated dimensions captured through DPQ and were added to the analysis. Two questions were used to assess dog walking. The actor-partner interdependence model (APIM) was used to check if the young adult’s responses about the dog were biased; no significant bias was observed. Activity/excitability and responsiveness to training in dogs were greatly associated with dog walking. For young adults, high scores in conscientiousness and extraversion predicted more walks with the dog. Conversely, higher scores in neuroticism predicted less engagement in dog walking. For participants high in conscientiousness, the dog’s responsiveness to training (standardized=0.14, p=0.02) and the dog’s activity/excitability (standardized=0.15, p=0.00) levels moderated dog walking behaviours by promoting more daily walks. These results suggest that some combinations in young adult and dog personality characteristics are associated with greater synergy in the young adult-dog dyad that might amplify the impact of personality factors on young adults’ dog-walking routines. These results can inform programs designed to promote the mental and physical health of young adults during the Covid-19 pandemic by highlighting the impact of synergy and reciprocity in personality characteristics between young adults and dogs.

Keywords: Covid-19 pandemic, dog walking, personality, structural equation modeling, well-being

Procedia PDF Downloads 115
33 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference

Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev

Abstract:

Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.

Keywords: compartmental model, climate, dengue, machine learning, social-economic

Procedia PDF Downloads 84
32 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 94
31 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.

Keywords: cross-validation, importance sampling, information criteria, predictive accuracy

Procedia PDF Downloads 392