Search results for: thin-layer chromatography (TLC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 821

Search results for: thin-layer chromatography (TLC)

101 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards

Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah

Abstract:

Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.

Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation

Procedia PDF Downloads 376
100 L. rhamnosus GG Lysate Can Inhibit Cytotoxic Effects of S. aureus on Keratinocytes in vitro

Authors: W. Mohammed Saeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill

Abstract:

In the gut, probiotics have been shown to protect epithelial cells from pathogenic bacteria through a number of mechanisms: 1-Increasing epithelial barrier function, 2-Modulation of the immune response especially innate immune response, 3-Inhibition of pathogen adherence and down regulation of virulence factors. Since probiotics have positive impacts on the gut, their potential effects on other body tissues, such as skin have begun to be investigated. The purpose of this project is to characterize the potential of probiotic bacteria lysate as therapeutic agent for preventing or reducing the S. aureus infection. Normal human primary keratinocytes (KCs) were exposed to S. aureus (106/ml) in the presence or absence of L. rhamnosus GG lysate (extracted from 108cfu/ml). The viability of the KCs was measured after 24 hours using a trypan blue exclusion assay. When KCs were treated with S aureus alone, only 25% of the KCs remained viable at 24 hours post infection. However, in the presence of L. rhamnosus GG lysate the viability of pathogen infected KCs increased to 58% (p=0.008, n=3). Furthermore, when KCs co-exposed, pre- exposed or post-exposed to L. rhamnosus GG lysate, the viability of the KCs increased to ≈60%, the L. rhamnosus GG lysate was afforded equal protection in different conditions. These data suggests that two possible separate mechanisms are involved in the protective effects of L. rhamnosus GG such as reducing S. aureus growth, or inhibiting of pathogenic adhesion. Interestingly, a lysate of L rhamnosus GG provided significant reduction in S. aureus growth and adhesion of S. aureus that being viable following 24 hours incubation with S aureus. Therefore, a series of Liquid Chromatography (RP-LC) methods were adopted to partially purify the lysate in combination with functional assays to elucidate in which fractions the efficacious molecules were contained. In addition, the Mass Spectrometry-based protein sequencing was used to identify putative proteins in the fractions. The data presented from purification process demonstrated that L. rhamnosus GG lysate has the potential to protect keratinocytes from the toxic effects of the skin pathogen, S. aureus. Three potential mechanisms were identified: inhibition of pathogen growth; competitive exclusion; and displacement of the pathogen from keratinocyte binding sites. In this study, ‘moonlight’ proteins were identified in the current study’s MS/MS data for L. rhamnosus GG lysate, which could elucidate the ability of lysate in the competitive exclusion and displacement of S. aureus from keratinocyte binding sites. Taken together, it can be speculated that L. rhamnosus GG lysate utilizes different mechanisms to protect keratinocytes from S. aureus toxicity. The present study indicates that the proteinaceous substances are involved in anti-adhesion activity. This is achieved by displacing the pathogen and preventing the severity of pathogen infection and the moonlight proteins might be involved in inhibiting the adhesion of pathogens.

Keywords: lysate, fractions, adhesion, L. rhamnosus GG, S. aureus toxicity

Procedia PDF Downloads 292
99 Eucalyptus camaldulensis Leaves Attacked by the Gall Wasp Leptocybe invasa: A Phyto-Volatile Constituents Study

Authors: Maged El-Sayed Mohamed

Abstract:

Eucalyptus camaldulensis is one on the most well-known species of the genus Eucalyptus in the Middle east, its importance relay on the high production of its unique volatile constituents which exhibits many medicinal and pharmacological activities. The gall-forming wasp (Leptocybe invasa) has recently come into sight as the main pest attacking E. camaldulensis and causing severe injury. The wasp lays its eggs in the petiole and midrib of leaves and stems of young shoots of E. camaldulensis, which leads to gall formation. Gall formation by L. invasa damages growing shoot and leaves of Eucalyptus, resulting in abscission of leaves and drying. AIM: This study is an attempt to investigate the effect of the gall wasp (Leptocybe invasa) attack on the volatile constitutes of E. camaldulensis. This could help in the control of this wasp through stimulating plant defenses or production of a new allelochemicals or insecticide. The study of volatile constitutes of Eucalyptus before and after attack by the wasp can help the re-use and recycle of the infected Eucalyptus trees for new pharmacological and medicinal activities. Methodology: The fresh gall wasp-attacked and healthy leaves (100 g each) were cut and immediately subjected to hydrodistillation using Clevenger-type apparatus for 3 hours. The volatile fractions isolated were analyzed using Gas chromatography/mass spectrometry (GC/MS). Kovat’s retention indices (RI) were calculated with respect to a set of co-injected standard hydrocarbons (C10-C28). Compounds were identified by comparing their spectral data and retention indices with Wiley Registry of Mass Spectral Data 10th edition (April 2013), NIST 11 Mass Spectral Library (NIST11/2011/EPA/NIH) and literature data. Results: Fifty-nine components representing 89.13 and 88.60% of the total volatile fraction content respectively were quantitatively analyzed. Twenty-six major compounds at an average concentration greater than 0.1 ± 0.02% have been used for the statistical comparison. From those major components, twenty-one were found in both the attacked and healthy Eucalyptus leaves’ fractions in different concentration and five components, mono terpene p-Mentha-2-4(8) diene and the sesquiterpenes δ-elemene, β-elemene, E-caryophyllene and Bicyclogermacrene, were unique and only produced in the attacked-leaves’ fraction. CONCLUSION: Newly produced components or those commonly found in the volatile fraction and changed in concentration could represent a part of the plant defense mechanisms or might be an element of the plant allelopathic and communication mechanisms. Identification of the components of the gall wasp-damaged leaves can help in their recycling for different physiological, pharmacological and medicinal uses.

Keywords: Eucalyptus camaldulensis, eucalyptus recycling, gall wasp, Leptocybe invasa, plant defense mechanisms, Terpene fraction

Procedia PDF Downloads 358
98 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption

Authors: M. François, L. Sigot, C. Vallières

Abstract:

Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.

Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence

Procedia PDF Downloads 237
97 Combained Cultivation of Endemic Strains of Lactic Acid Bacteria and Yeast with Antimicrobial Properties

Authors: A. M. Isakhanyan, F. N. Tkhruni, N. N. Yakimovich, Z. I. Kuvaeva, T. V. Khachatryan

Abstract:

Introduction: At present, the simbiotics based on different genera and species of lactic acid bacteria (LAB) and yeasts are used. One of the basic properties of probiotics is presence of antimicrobial activity and therefore selection of LAB and yeast strains for their co-cultivation with the aim of increasing of the activity is topical. Since probiotic yeast and bacteria have different mechanisms of action, natural synergies between species, higher viability and increasing of antimicrobial activity might be expected from mixing both types of probiotics. Endemic strains of LAB Enterococcus faecium БТK-64, Lactobaccilus plantarum БТK-66, Pediococcus pentosus БТK-28, Lactobacillus rhamnosus БТK-109 and Kluyveromyces lactis БТX-412, Saccharomycopsis sp. БТX- 151 strains of yeast, with probiotic properties and hight antimicrobial activity, were selected. Strains are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB and yeast strains were isolated from different dairy products from rural households of Armenia. The genotyping by 16S rRNA sequencing for LAB and 26S RNA sequencing for yeast were used. Combined cultivation of LAB and yeast strains was carried out in the nutrient media on the basis of milk whey, in anaerobic conditions (without shaker, in a thermostat at 37oC, 48 hours). The complex preparations were obtained by purification of cell free culture broth (CFC) broth by the combination of ion-exchange chromatography and gel filtration methods. The spot-on-lawn method was applied for determination of antimicrobial activity and expressed in arbitrary units (AU/ml). Results. The obtained data showed that at the combined growth of bacteria and yeasts, the cultivation conditions (medium composition, time of growth, genera of LAB and yeasts) affected the display of antimicrobial activity. Purification of CFC broth allowed obtaining partially purified antimicrobial complex preparation which contains metabiotics from both bacteria and yeast. The complex preparation inhibited the growth of pathogenic and conditionally pathogenic bacteria, isolated from various internal organs from diseased animals and poultry with greater efficiency than the preparations derived individually alone from yeast and LAB strains. Discussion. Thus, our data shown perspectives of creation of a new class of antimicrobial preparations on the basis of combined cultivation of endemic strains of LAB and yeast. Obtained results suggest the prospect of use of the partially purified complex preparations instead antibiotics in the agriculture and for food safety. Acknowledgments: This work was supported by the RA MES State Committee of Science and Belarus National Foundation for Basic Research in the frames of the joint Armenian - Belarusian joint research project 13РБ-064.

Keywords: co-cultivation, antimicrobial activity, biosafety, metabiotics, lactic acid bacteria, yeast

Procedia PDF Downloads 339
96 Association of Brain Derived Neurotrophic Factor with Iron as well as Vitamin D, Folate and Cobalamin in Pediatric Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The impact of metabolic syndrome (MetS) on cognition and functions of the brain is being investigated. Iron deficiency and deficiencies of B9 (folate) as well as B12 (cobalamin) vitamins are best-known nutritional anemias. They are associated with cognitive disorders and learning difficulties. The antidepressant effects of vitamin D are known and the deficiency state affects mental functions negatively. The aim of this study is to investigate possible correlations of MetS with serum brain-derived neurotrophic factor (BDNF), iron, folate, cobalamin and vitamin D in pediatric patients. 30 children, whose age- and sex-dependent body mass index (BMI) percentiles vary between 85 and 15, 60 morbid obese children with above 99th percentiles constituted the study population. Anthropometric measurements were taken. BMI values were calculated. Age- and sex-dependent BMI percentile values were obtained using the appropriate tables prepared by the World Health Organization (WHO). Obesity classification was performed according to WHO criteria. Those with MetS were evaluated according to MetS criteria. Serum BDNF was determined by enzyme-linked immunosorbent assay. Serum folate was analyzed by an immunoassay analyzer. Serum cobalamin concentrations were measured using electrochemiluminescence immunoassay. Vitamin D status was determined by the measurement of 25-hydroxycholecalciferol [25-hydroxy vitamin D3, 25(OH)D] using high performance liquid chromatography. Statistical evaluations were performed using SPSS for Windows, version 16. The p values less than 0.05 were accepted as statistically significant. Although statistically insignificant, lower folate and cobalamin values were found in MO children compared to those observed for children with normal BMI. For iron and BDNF values, no alterations were detected among the groups. Significantly decreased vitamin D concentrations were noted in MO children with MetS in comparison with those in children with normal BMI (p ≤ 0.05). The positive correlation observed between iron and BDNF in normal-BMI group was not found in two MO groups. In THE MetS group, the partial correlation among iron, BDNF, folate, cobalamin, vitamin D controlling for waist circumference and BMI was r = -0.501; p ≤ 0.05. None was calculated in MO and normal BMI groups. In conclusion, vitamin D should also be considered during the assessment of pediatric MetS. Waist circumference and BMI should collectively be evaluated during the evaluation of MetS in children. Within this context, BDNF appears to be a key biochemical parameter during the examination of obesity degree in terms of mental functions, cognition and learning capacity. The association observed between iron and BDNF in children with normal BMI was not detected in MO groups possibly due to development of inflammation and other obesity-related pathologies. It was suggested that this finding may contribute to mental function impairments commonly observed among obese children.

Keywords: brain-derived neurotrophic factor, iron, vitamin B9, vitamin B12, vitamin D

Procedia PDF Downloads 120
95 Effect of Antimony on Microorganisms in Aerobic and Anaerobic Environments

Authors: Barrera C. Monserrat, Sierra-Alvarez Reyes, Pat-Espadas Aurora, Moreno Andrade Ivan

Abstract:

Antimony is a toxic and carcinogenic metalloid considered a pollutant of priority interest by the United States Environmental Protection Agency. It is present in the environment in two oxidation states: antimonite (Sb (III)) and antimony (Sb (V)). Sb (III) is toxic to several aquatic organisms, but the potential inhibitory effect of Sb species for microorganisms has not been extensively evaluated. The fate and possible toxic impact of antimony on aerobic and anaerobic wastewater treatment systems are unknown. For this reason, the objective of this study was to evaluate the microbial toxicity of Sb (V) and Sb (III) in aerobic and anaerobic environments. Sb(V) and Sb(III) were used as potassium hexahydroxoantimonate (V) and potassium antimony tartrate, respectively (Sigma-Aldrich). The toxic effect of both Sb species in anaerobic environments was evaluated on methanogenic activity and the inhibition of hydrogen production of microorganisms from a wastewater treatment bioreactor. For the methanogenic activity, batch experiments were carried out in 160 mL serological bottles; each bottle contained basal mineral medium (100 mL), inoculum (1.5 g of VSS/L), acetate (2.56 g/L) as substrate, and variable concentrations of Sb (V) or Sb (III). Duplicate bioassays were incubated at 30 ± 2°C on an orbital shaker (105 rpm) in the dark. Methane production was monitored by gas chromatography. The hydrogen production inhibition tests were carried out in glass bottles with a working volume of 0.36 L. Glucose (50 g/L) was used as a substrate, pretreated inoculum (5 g VSS/L), mineral medium and varying concentrations of the two species of antimony. The bottles were kept under stirring and at a temperature of 35°C in an AMPTSII device that recorded hydrogen production. The toxicity of Sb on aerobic microorganisms (from a wastewater activated sludge treatment plant) was tested with a Microtox standardized toxicity test and respirometry. Results showed that Sb (III) is more toxic than Sb (V) for methanogenic microorganisms. Sb (V) caused a 50% decrease in methanogenic activity at 250 mg/L. In contrast, exposure to Sb (III) resulted in a 50% inhibition at a concentration of only 11 mg/L, and an almost complete inhibition (95%) at 25 mg/L. For hydrogen-producing microorganisms, Sb (III) and Sb (V) inhibited 50% of this production with 12.6 mg/L and 87.7 mg/L, respectively. The results for aerobic environments showed that 500 mg/L of Sb (V) do not inhibit the Allivibrio fischeri (Microtox) activity or specific oxygen uptake rate of activated sludge. In the case of Sb (III), this caused a loss of 50% of the respiration of the microorganisms at concentrations below 40 mg/L. The results obtained indicate that the toxicity of the antimony will depend on the speciation of this metalloid and that Sb (III) has a significantly higher inhibitory potential compared to Sb (V). It was shown that anaerobic microorganisms can reduce Sb (V) to Sb (III). Acknowledgments: This work was funded in part by grants from the UA-CONACYT Binational Consortium for the Regional Scientific Development and Innovation (CAZMEX), the National Institute of Health (NIH ES- 04940), and PAPIIT-DGAPA-UNAM (IN105220).

Keywords: aerobic inhibition, antimony reduction, hydrogen inhibition, methanogenic toxicity

Procedia PDF Downloads 167
94 Gold Nano Particle as a Colorimetric Sensor of HbA0 Glycation Products

Authors: Ranjita Ghoshmoulick, Aswathi Madhavan, Subhavna Juneja, Prasenjit Sen, Jaydeep Bhattacharya

Abstract:

Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease where the blood sugar level goes up. One of the major consequence of this elevated blood sugar is the formation of AGE (Advance Glycation Endproducts), from a series of chemical or biochemical reactions. AGE are detrimental because it leads to severe pathogenic complications. They are a group of structurally diverse chemical compounds formed from nonenzymatic reactions between the free amino groups (-NH2) of proteins and carbonyl groups (>C=O) of reducing sugars. The reaction is known as Maillard Reaction. It starts with the formation of reversible schiff’s base linkage which after sometime rearranges itself to form Amadori Product along with dicarbonyl compounds. Amadori products are very unstable hence rearrangement goes on until stable products are formed. During the course of the reaction a lot of chemically unknown intermediates and reactive byproducts are formed that can be termed as Early Glycation Products. And when the reaction completes, structurally stable chemical compounds are formed which is termed as Advanced Glycation Endproducts. Though all glycation products have not been characterized well, some fluorescence compounds e.g pentosidine, Malondialdehyde (MDA) or carboxymethyllysine (CML) etc as AGE and α-dicarbonyls or oxoaldehydes such as 3-deoxyglucosone (3-DG) etc as the intermediates have been identified. In this work Gold NanoParticle (GNP) was used as an optical indicator of glycation products. To achieve faster glycation kinetics and high AGE accumulation, fructose was used instead of glucose. Hemoglobin A0 (HbA0) was fructosylated by in-vitro method. AGE formation was measured fluorimetrically by recording emission at 450nm upon excitation at 350nm. Thereafter this fructosylated HbA0 was fractionated by column chromatography. Fractionation separated the proteinaceous substance from the AGEs. Presence of protein part in the fractions was confirmed by measuring the intrinsic protein fluorescence and Bradford reaction. GNPs were synthesized using the templates of chromatographically separated fractions of fructosylated HbA0. Each fractions gave rise to GNPs of varying color, indicating the presence of distinct set of glycation products differing structurally and chemically. Clear solution appeared due to settling down of particles in some vials. The reactive groups of the intermediates kept the GNP formation mechanism on and did not lead to a stable particle formation till Day 10. Whereas SPR of GNP showed monotonous colour for the fractions collected in case of non fructosylated HbA0. Our findings accentuate the use of GNPs as a simple colorimetric sensing platform for the identification of intermediates of glycation reaction which could be implicated in the prognosis of the associated health risk due to T2DM and others.

Keywords: advance glycation endproducts, glycation, gold nano particle, sensor

Procedia PDF Downloads 304
93 Effects of Drying and Extraction Techniques on the Profile of Volatile Compounds in Banana Pseudostem

Authors: Pantea Salehizadeh, Martin P. Bucknall, Robert Driscoll, Jayashree Arcot, George Srzednicki

Abstract:

Banana is one of the most important crops produced in large quantities in tropical and sub-tropical countries. Of the total plant material grown, approximately 40% is considered waste and left in the field to decay. This practice allows fungal diseases such as Sigatoka Leaf Spot to develop, limiting plant growth and spreading spores in the air that can cause respiratory problems in the surrounding population. The pseudostem is considered a waste residue of production (60 to 80 tonnes/ha/year), although it is a good source of dietary fiber and volatile organic compounds (VOC’s). Strategies to process banana pseudostem into palatable, nutritious and marketable food materials could provide significant social and economic benefits. Extraction of VOC’s with desirable odor from dried and fresh pseudostem could improve the smell of products from the confectionary and bakery industries. Incorporation of banana pseudostem flour into bakery products could provide cost savings and improve nutritional value. The aim of this study was to determine the effects of drying methods and different banana species on the profile of volatile aroma compounds in dried banana pseudostem. The banana species analyzed were Musa acuminata and Musa balbisiana. Fresh banana pseudostem samples were processed by either freeze-drying (FD) or heat pump drying (HPD). The extraction of VOC’s was performed at ambient temperature using vacuum distillation and the resulting, mostly aqueous, distillates were analyzed using headspace solid phase microextraction (SPME) gas chromatography – mass spectrometry (GC-MS). Optimal SPME adsorption conditions were 50 °C for 60 min using a Supelco 65 μm PDMS/DVB Stableflex fiber1. Compounds were identified by comparison of their electron impact mass spectra with those from the Wiley 9 / NIST 2011 combined mass spectral library. The results showed that the two species have notably different VOC profiles. Both species contained VOC’s that have been established in literature to have pleasant appetizing aromas. These included l-Menthone, D-Limonene, trans-linlool oxide, 1-Nonanol, CIS 6 Nonen-1ol, 2,6 Nonadien-1-ol, Benzenemethanol, 4-methyl, 1-Butanol, 3-methyl, hexanal, 1-Propanol, 2-methyl- acid، 2-Methyl-2-butanol. Results show banana pseudostem VOC’s are better preserved by FD than by HPD. This study is still in progress and should lead to the optimization of processing techniques that would promote the utilization of banana pseudostem in the food industry.

Keywords: heat pump drying, freeze drying, SPME, vacuum distillation, VOC analysis

Procedia PDF Downloads 334
92 Tool Development for Assessing Antineoplastic Drugs Surface Contamination in Healthcare Services and Other Workplaces

Authors: Benoit Atge, Alice Dhersin, Oscar Da Silva Cacao, Beatrice Martinez, Dominique Ducint, Catherine Verdun-Esquer, Isabelle Baldi, Mathieu Molimard, Antoine Villa, Mireille Canal-Raffin

Abstract:

Introduction: Healthcare workers' exposure to antineoplastic drugs (AD) is a burning issue for occupational medicine practitioners. Biological monitoring of occupational exposure (BMOE) is an essential tool for assessing AD contamination of healthcare workers. In addition to BMOE, surface sampling is a useful tool in order to understand how workers get contaminated, to identify sources of environmental contamination, to verify the effectiveness of surface decontamination way and to ensure monitoring of these surfaces. The objective of this work was to develop a complete tool including a kit for surface sampling and a quantification analytical method for AD traces detection. The development was realized with the three following criteria: the kit capacity to sample in every professional environment (healthcare services, veterinaries, etc.), the detection of very low AD traces with a validated analytical method and the easiness of the sampling kit use regardless of the person in charge of sampling. Material and method: AD mostly used in term of quantity and frequency have been identified by an analysis of the literature and consumptions of different hospitals, veterinary services, and home care settings. The kind of adsorbent device, surface moistening solution and mix of solvents for the extraction of AD from the adsorbent device have been tested for a maximal yield. The AD quantification was achieved by an ultra high-performance liquid chromatography method coupled with tandem mass spectrometry (UHPLC-MS/MS). Results: With their high frequencies of use and their good reflect of the diverse activities through healthcare, 15 AD (cyclophosphamide, ifosfamide, doxorubicin, daunorubicin, epirubicin, 5-FU, dacarbazin, etoposide, pemetrexed, vincristine, cytarabine, methothrexate, paclitaxel, gemcitabine, mitomycin C) were selected. The analytical method was optimized and adapted to obtain high sensitivity with very low limits of quantification (25 to 5000ng/mL), equivalent or lowest that those previously published (for 13/15 AD). The sampling kit is easy to use, provided with a didactic support (online video and protocol paper). It showed its effectiveness without inter-individual variation (n=5/person; n= 5 persons; p=0,85; ANOVA) regardless of the person in charge of sampling. Conclusion: This validated tool (sampling kit + analytical method) is very sensitive, easy to use and very didactic in order to control the chemical risk brought by AD. Moreover, BMOE permits a focal prevention. Used in routine, this tool is available for every intervention of occupational health.

Keywords: surface contamination, sampling kit, analytical method, sensitivity

Procedia PDF Downloads 132
91 Methods of Detoxification of Nuts With Aflatoxin B1 Contamination

Authors: Auteleyeva Laura, Maikanov Balgabai, Smagulova Ayana

Abstract:

In order to find and select detoxification methods, patent and information research was conducted, as a result of which 68 patents for inventions were found, among them from the near abroad - 14 (Russia), from far abroad: China – 27, USA - 6, South Korea–1, Germany - 2, Mexico – 4, Yugoslavia – 7, Austria, Taiwan, Belarus, Denmark, Italy, Japan, Canada for 1 security document. Aflatoxin B₁ in various nuts was determined by two methods: enzyme immunoassay "RIDASCREEN ® FAST Aflatoxin" with determination of optical density on a microplate spectrophotometer RIDA®ABSORPTION 96 with RIDASOFT® software Win.NET (Germany) and the method of high-performance liquid chromatography (HPLC Corporation Water, USA) according to GOST 307112001. For experimental contamination of nuts, the cultivation of strain A was carried out. flavus KWIK-STIK on the medium of Chapek (France) with subsequent infection of various nuts (peanuts, peanuts with shells, badam, walnuts with and without shells, pistachios).Based on our research, we have selected 2 detoxification methods: method 1 – combined (5% citric acid solution + microwave for 640 W for 3 min + UV for 20 min) and a chemical method with various leaves of plants: Artemisia terra-albae, Thymus vulgaris, Callogonum affilium, collected in the territory of Akmola region (Artemisia terra-albae, Thymus vulgaris) and Western Kazakhstan (Callogonum affilium). The first stage was the production of ethanol extracts of Artemisia terraea-albae, Thymus vulgaris, Callogonum affilium. To obtain them, 100 g of vegetable raw materials were taken, which was dissolved in 70% ethyl alcohol. Extraction was carried out for 2 hours at the boiling point of the solvent with a reverse refrigerator using an ultrasonic bath "Sapphire". The obtained extracts were evaporated on a rotary evaporator IKA RV 10. At the second stage, the three samples obtained were tested for antimicrobial and antifungal activity. Extracts of Thymus vulgaris and Callogonum affilium showed high antimicrobial and antifungal activity. Artemisia terraea-albae extract showed high antimicrobial activity and low antifungal activity. When testing method 1, it was found that in the first and third experimental groups there was a decrease in the concentration of aflatoxin B1 in walnut samples by 63 and 65%, respectively, but these values also exceeded the maximum permissible concentrations, while the nuts in the second and third experimental groups had a tart lemon flavor; When testing method 2, a decrease in the concentration of aflatoxin B1 to a safe level was observed by 91% (0.0038 mg/kg) in nuts of the 1st and 2nd experimental groups (Artemisia terra-albae, Thymus vulgaris), while in samples of the 2nd and 3rd experimental groups, a decrease in the amount of aflatoxin in 1 to a safe level was observed.

Keywords: nuts, aflatoxin B1, my, mycotoxins

Procedia PDF Downloads 86
90 Development of Polylactic Acid Insert with a Cinnamaldehyde-Betacyclodextrin Complex for Cape Gooseberry (Physalis Peruviana L.) Packed

Authors: Gómez S. Jennifer, Méndez V. Camila, Moncayo M. Diana, Vega M. Lizeth

Abstract:

The cape gooseberry is a climacteric fruit; Colombia is one of the principal exporters in the world. The environmental condition of temperature and relative moisture decreases the titratable acidity and pH. These conditions and fruit maturation result in the fungal proliferation of Botrytis cinerea disease. Plastic packaging for fresh cape gooseberries was used for mechanical damage protection but created a suitable atmosphere for fungal growth. Beta-cyclodextrins are currently implemented as coatings for the encapsulation of hydrophobic compounds, for example, with bioactive compounds from essential oils such as cinnamaldehyde, which has a high antimicrobial capacity. However, it is a volatile substance. In this article, the casting method was used to obtain a polylactic acid (PLA) polymer film containing the beta-cyclodextrin-cinnamaldehyde inclusion complex, generating an insert that allowed the controlled release of the antifungal substance in packed cape gooseberries to decrease contamination by Botrytis cinerea in a latent state during storage. For the encapsulation technique, three ratios for the cinnamaldehyde: beta-cyclodextrin inclusion complex were proposed: (25:75), (40:60), and (50:50). Spectrophotometry, colorimetry in L*a*b* coordinate space and scanning electron microscopy (SEM) were made for the complex characterization. Subsequently, two ratios of tween and water (40:60) and (50:50) were used to obtain the polylactic acid (PLA) film. To determine mechanical and physical parameters of colourimetry in L*a*b* coordinate space, atomic force microscopy and stereoscopy were done to determine the transparency and flexibility of the film; for both cases, Statgraphics software was used to determine the best ratio in each of the proposed phases, where for encapsulation it was (50:50) with an encapsulation efficiency of 65,92%, and for casting the ratio (40:60) obtained greater transparency and flexibility that permitted its incorporation into the polymeric packaging. A liberation assay was also developed under ambient temperature conditions to evaluate the concentration of cinnamaldehyde inside the packaging through gas chromatography for three weeks. It was found that the insert had a controlled release. Nevertheless, a higher cinnamaldehyde concentration is needed to obtain the minimum inhibitory concentration for the fungus Botrytis cinerea (0.2g/L). The homogeneity of the cinnamaldehyde gas phase inside the packaging can be improved by considering other insert configurations. This development aims to impact emerging food preservation technologies with the controlled release of antifungals to reduce the affectation of the physico-chemical and sensory properties of the fruit as a result of contamination by microorganisms in the postharvest stage.

Keywords: antifungal, casting, encapsulation, postharvest

Procedia PDF Downloads 75
89 The Genus Bacillus, Effect on Commercial Crops of Colombia

Authors: L. C. Sánchez, L. C. Corrales, A. G. Lancheros, E. Castañeda, Y. Ariza, L. S. Fuentes, L. Sierra, J. L. Cuervo

Abstract:

The importance of environment friendly alternatives in agricultural processes is the reason why the research group Ceparium, the Colegio Mayor de Cundinamarca University, Colombia, investigated the genus Bacillus and its applicability for improving crops of economic importance in Colombia. In this investigation, we presented a study in which the genus Bacillus plays a leading role as beneficial microorganism. The objective was to identify the biochemical potential of three indigenous species of Bacillus, which were able to carry out actions for biological control against pathogens and pests or promoted growth to improve productivity of crops in Colombia. The procedures were performed in three phases: first, the production of biomass of an indigenous strain and a reference strain starting from culture media for production of spores and toxins were made. Spore count was done in a Neubauer chamber, concentrations of spores of Bacillus sphaericus were prepared and a bioassay was done at the Laboratory of Entomology at the University Jorge Tadeo Lozano of Plutella xylostella larvae, insect pest of crucifers in several Colombian regions. The second phase included the extraction in the liquid state fermentation, a secondary metabolite that has antibiosis action against fungi, call iturin B, and was obtained from strains of Bacillus subtilis. The molecule was identified using High Resolution Chromatography (HPLC) and its biocontrol effect on Fusarium sp fungus causes vascular wilt in economically important plant varieties, was confirmed using testing of antagonism in Petri dish. In the third phase, an initial procedure in that let recover and identify microorganisms of the genus Bacillus from the rhizosphere in two aromatic herbs, Rosmarinus officinalis and Thymus vulgaris L. was used. Subsequently, testing of antagonism against Fusarium sp were made and an assay was done under greenhouse conditions to observe biocontrol and growth promoting action by comparing growth in length and dry weight. In the first experiment, native Bacillus sphaericus was lethal to 92% Plutella xylostella larvae in 10 DDA. In the second experiment, iturin B was identified and biological control of Fusarium sp was demonstrated. In the third study, all strains demonstrated biological control and the B14 strain identified as Bacillus megaterium increased root length and productivity of the two plants in terms of weight. It was concluded that the native microorganisms of the genus Bacillus has a great biochemical potential that provides a beneficial interactions with plants, improve their growth and development and therefore a greater impact on production.

Keywords: genus bacillus, biological control, PGPRs, biochemical potential

Procedia PDF Downloads 435
88 Nitrate Photoremoval in Water Using Nanocatalysts Based on Ag / Pt over TiO2

Authors: Ana M. Antolín, Sandra Contreras, Francesc Medina, Didier Tichit

Abstract:

Introduction: High levels of nitrates (> 50 ppm NO3-) in drinking water are potentially risky to human health. In the recent years, the trend of nitrate concentration in groundwater is rising in the EU and other countries. Conventional catalytic nitrate reduction processes into N2 and H2O lead to some toxic intermediates and by-products, such as NO2-, NH4+, and NOx gases. Alternatively, photocatalytic nitrate removal using solar irradiation and heterogeneous catalysts is a very promising and ecofriendly technique. It has been scarcely performed and more research on highly efficient catalysts is still needed. In this work, different nanocatalysts supported on Aeroxide Titania P25 (P25) have been prepared varying: 0.5-4 % wt. Ag); Pt (2, 4 % wt.); Pt precursor (H2PtCl6/K2PtCl6); and impregnation order of both metals. Pt was chosen in order to increase the selectivity to N2 and decrease that to NO2-. Catalysts were characterized by nitrogen physisorption, X-Ray diffraction, UV-visible spectroscopy, TEM and X Ray-Photoelectron Spectroscopy. The aim was to determine the influence of the composition and the preparation method of the catalysts on the conversion and selectivity in the nitrate reduction, as well as going through an overall and better understanding of the process. Nanocatalysts synthesis: For the mono and bimetallic catalysts preparation, wise-drop wetness impregnation of the precursors (AgNO3, H2PtCl6, K2PtCl6) followed by a reduction step (NaBH4) was used to obtain the metal colloids. Results and conclusions: Denitration experiments were performed in a 350 mL PTFE batch reactor under inert standard operational conditions, ultraviolet irradiations (λ=254 nm (UV-C); λ=365 nm (UV-A)), and presence/absence of hydrogen gas as a reducing agent, contrary to most studies using oxalic or formic acid. Samples were analyzed by Ionic Chromatography. Blank experiments using respectively P25 (dark conditions), hydrogen only and UV irradiations without hydrogen demonstrated a clear influence of the presence of hydrogen on nitrate reduction. Also, they demonstrated that UV irradiation increased the selectivity to N2. Interestingly, the best activity was obtained under ultraviolet lamps, especially at a closer wavelength to visible light irradiation (λ = 365 nm) and H2. 2% Ag/P25 leaded to the highest NO3- conversion among the monometallic catalysts. However, nitrite quantities have to be diminished. On the other hand, practically no nitrate conversion was observed with the monometallics based on Pt/P25. Therefore, the amount of 2% Ag was chosen for the bimetallic catalysts. Regarding the bimetallic catalysts, it is observed that the metal impregnation order, amount and Pt precursor highly affects the results. Higher selectivity to the desirable N2 gas is obtained when Pt was firstly added, especially with K2PtCl6 as Pt precursor. This suggests that when Pt is secondly added, it covers the Ag particles, which are the most active in this reaction. It could be concluded that Ag allows the nitrate reduction step to nitrite, and Pt the nitrite reduction step toward the desirable N2 gas.

Keywords: heterogeneous catalysis, hydrogenation, nanocatalyst, nitrate removal, photocatalysis

Procedia PDF Downloads 272
87 Phytochemical and Antimicrobial Properties of Zinc Oxide Nanocomposites on Multidrug-Resistant E. coli Enzyme: In-vitro and in-silico Studies

Authors: Callistus I. Iheme, Kenneth E. Asika, Emmanuel I. Ugwor, Chukwuka U. Ogbonna, Ugonna H. Uzoka, Nneamaka A. Chiegboka, Chinwe S. Alisi, Obinna S. Nwabueze, Amanda U. Ezirim, Judeanthony N. Ogbulie

Abstract:

Antimicrobial resistance (AMR) is a major threat to the global health sector. Zinc oxide nanocomposites (ZnONCs), composed of zinc oxide nanoparticles and phytochemicals from Azadirachta indica aqueous leaf extract, were assessed for their physico-chemicals, in silico and in vitro antimicrobial properties on multidrug-resistant Escherichia coli enzymes. Gas chromatography coupled with mass spectroscope (GC-MS) analysis on the ZnONCs revealed the presence of twenty volatile phytochemical compounds, among which is scoparone. Characterization of the ZnONCs was done using ultraviolet-visible spectroscopy (UV-vis), energy dispersive spectroscopy (EDX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffractometer (XRD). Dehydrogenase enzyme converts colorless 2,3,5-triphenyltetrazolium chloride to the red triphenyl formazan (TPF). The rate of formazan formation in the presence of ZnONCs is proportional to the enzyme activities. The color formation is extracted and determined at 500 nm, and the percentage of enzyme activity is calculated. To determine the bioactive components of the ZnONCs, characterize their binding to enzymes, and evaluate the enzyme-ligand complex stability, respectively Discrete Fourier Transform (DFT) analysis, docking, and molecular dynamics simulations will be employed. The results showed arrays of ZnONCs nanorods with maximal absorption wavelengths of 320 nm and 350 nm and thermally stable at the temperature range of 423.77 to 889.69 ℃. In vitro study assessed the dehydrogenase inhibitory properties of the ZnONCs, conjugate of ZnONCs and ampicillin (ZnONCs-amp), the aqueous leaf extract of A. indica, and ampicillin (standard drug). The findings revealed that at the concentration of 500 μm/mL, 57.89 % of the enzyme activities were inhibited by ZnONCs compared to 33.33% and 21.05% of the standard drug (Ampicillin), and the aqueous leaf extract of the A. indica respectively. The inhibition of the enzyme activities by the ZnONCs at 500 μm/mL was further enhanced to 89.74 % by conjugating with Ampicillin. In silico study on the ZnONCs revealed scoparone as the most viable competitor of nicotinamide adenine dinucleotide (NAD⁺) for the coenzyme binding pocket on E. coli malate and histidinol dehydrogenase. From the findings, it can be concluded that the scoparone components of the nanocomposites in synergy with the zinc oxide nanoparticles inhibited E. coli malate and histidinol dehydrogenase by competitively binding to the NAD⁺ pocket and that the conjugation of the ZnONCs with ampicillin further enhanced the antimicrobial efficiency of the nanocomposite against multidrug resistant E. coli.

Keywords: antimicrobial resistance, dehydrogenase activities, E. coli, zinc oxide nanocomposites

Procedia PDF Downloads 49
86 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy

Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket

Abstract:

Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.

Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety

Procedia PDF Downloads 150
85 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks

Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari

Abstract:

Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.

Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)

Procedia PDF Downloads 292
84 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 114
83 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 256
82 Aquatic Sediment and Honey of Apis mellifera as Bioindicators of Pesticide Residues

Authors: Luana Guerra, Silvio C. Sampaio, Vladimir Pavan Margarido, Ralpho R. Reis

Abstract:

Brazil is the world's largest consumer of pesticides. The excessive use of these compounds has negative impacts on animal and human life, the environment, and food security. Bees, crucial for pollination, are exposed to pesticides during the collection of nectar and pollen, posing risks to their health and the food chain, including honey contamination. Aquatic sediments are also affected, impacting water quality and the microbiota. Therefore, the analysis of aquatic sediments and bee honey is essential to identify environmental contamination and monitor ecosystems. The aim of this study was to use samples of honey from honeybees (Apis mellifera) and aquatic sediment as bioindicators of environmental contamination by pesticides and their relationship with agricultural use in the surrounding areas. The sample collections of sediment and honey were carried out in two stages. The first stage was conducted in the Bituruna municipality region in the second half of the year 2022, and the second stage took place in the regions of Laranjeiras do Sul, Quedas do Iguaçu, and Nova Laranjeiras in the first half of the year 2023. In total, 10 collection points were selected, with 5 points in the first stage and 5 points in the second stage, where one sediment sample and one honey sample were collected for each point, totaling 20 samples. The honey and sediment samples were analyzed at the Laboratory of the Paraná Institute of Technology, with ten samples of honey and ten samples of sediment. The selected extraction method was QuEChERS, and the analysis of the components present in the sample was performed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The pesticides Azoxystrobin, Epoxiconazole, Boscalid, Carbendazim, Haloxifope, Fomesafen, Fipronil, Chlorantraniliprole, Imidacloprid, and Bifenthrin were detected in the sediment samples from the study area in Laranjeiras do Sul, Paraná, with Carbendazim being the compound with the highest concentration (0.47 mg/kg). The honey samples obtained from the apiaries showed satisfactory results, as they did not show any detection or quantification of the analyzed pesticides, except for Point 9, which had the fungicide tebuconazole but with a concentration Keywords: contamination, water research, agrochemicals, beekeeping activity

Procedia PDF Downloads 37
81 Blue Hydrogen Production Via Catalytic Aquathermolysis Coupled with Direct Carbon Dioxide Capture Via Adsorption

Authors: Sherif Fakher

Abstract:

Hydrogen has been gaining a lot of global attention as an uprising contributor in the energy sector. Labeled as an energy carrier, hydrogen is used in many industries and can be used to generate electricity via fuel cells. Blue hydrogen involves the production of hydrogen from hydrocarbons using different processes that emit CO₂. However, the CO₂ is captured and stored. Hence, very little environmental damage occurs during the hydrogen production process. This research investigates the ability to use different catalysts for the production of hydrogen from different hydrocarbon sources, including coal, oil, and gas, using a two-step Aquathermolysis reaction. The research presents the results of experiments conducted to evaluate different catalysts and also highlights the main advantages of this process over other blue hydrogen production methods, including methane steam reforming, autothermal reforming, and oxidation. Two methods of hydrogen generation were investigated including partial oxidation and aquathermolysis. For those two reactions, the reaction kinetics, thermodynamics, and medium were all investigated. Following this, experiments were conducted to test the hydrogen generation potential from both methods. The porous media tested were sandstone, ash, and prozzolanic material. The spent oils used were spent motor oil and spent vegetable oil from cooking. Experiments were conducted at temperatures up to 250 C and pressures up to 3000 psi. Based on the experimental results, mathematical models were developed to predict the hydrogen generation potential at higher thermodynamic conditions. Since both partial oxidation and aquathermolysis require relatively high temperatures to undergo, it was important to devise a method by which these high temperatures can be generated at a low cost. This was done by investigating two factors, including the porous media used and the reliance on the spent oil. Of all the porous media used, the ash had the highest thermal conductivity. The second step was the partial combustion of part of the spent oil to generate the heat needed to reach the high temperatures. This reduced the cost of the heat generation significantly. For the partial oxidation reaction, the spent oil was burned in the presence of a limited oxygen concentration to generate carbon monoxide. The main drawback of this process was the need for burning. This resulted in the generation of other harmful and environmentally damaging gases. Aquathermolysis does not rely on burning, which makes it the cleaner alternative. However, it needs much higher temperatures to run the reaction. When comparing the hydrogen generation potential for both using gas chromatography, aquathermolysis generated 23% more hydrogen using the same volume of spent oil compared to partial oxidation. This research introduces the concept of using spent oil for hydrogen production. This can be a very promising method to produce a clean source of energy using a waste product. This can also help reduce the reliance on freshwater for hydrogen generation which can divert the usage of freshwater to other more important applications.

Keywords: blue hydrogen production, catalytic aquathermolysis, direct carbon dioxide capture, CCUS

Procedia PDF Downloads 31
80 Evaluation of Monoterpenes Induction in Ugni molinae Ecotypes Subjected to a Red Grape Caterpillar (Lepidoptera: Arctiidae) Herbivory

Authors: Manuel Chacon-Fuentes, Leonardo Bardehle, Marcelo Lizama, Claudio Reyes, Andres Quiroz

Abstract:

The insect-plant interaction is a complex process in which the plant is able to release chemical signaling that modifies the behavior of insects. Insect herbivory can trigger mechanisms that allow the increase in the production of secondary metabolites that allow coping against the herbivores. Monoterpenes are a kind of secondary metabolites involved in direct defense acting as repellents of herbivorous or even in indirect defense acting as attractants for insect predators. In addition, an increase of the monoterpenes concentration is an effect commonly associated with the herbivory. Hence, plants subjected to damage by herbivory increase the monoterpenes production in comparison to plants without herbivory. In this framework, co-evolutionary aspects play a fundamental role in the adaptation of the herbivorous to their host and in the counter-adaptive strategies of the plants to avoid the herbivorous. In this context, Ugni molinae 'murtilla' is a native shrub from Chile characterized by its antioxidant activity mainly related to the phenolic compounds presents in its fruits. The larval stage of the red grape caterpillar Chilesia rudis Butler (Lepidoptera: Arctiidae) has been reported as an important defoliator of U. molinae. This insect is native from Chile and probably has been involved in a co-evolutionary process with murtilla. Therefore, we hypothesized that herbivory by the red grape caterpillar increases the emission of monoterpenes in Ugni molinae. Ecotypes 19-1 and 22-1 of murtilla were established and maintained at 25° C in the Laboratorio de Química Ecológica at Universidad de La Frontera. Red grape caterpillars of ⁓40 mm were collected near to Temuco (Chile) from grasses, and they were deprived of food for 24 h before performing the assays. Ten caterpillars were placed on the foliage of the ecotypes 19-1 and 22-1 and allowed to feed during 48 h. After this time, caterpillars were removed from the ecotypes and monoterpenes were collected. A glass chamber was used to enclose the ecotypes and a Porapak-Q column was used to trap the monoterpenes. After 24 h of capturing, columns were desorbed with hexane. Then, samples were injected in a gas chromatograph coupled to mass spectrometer and monoterpenes were determined according to the NIST library. All the experiments were performed in triplicate. Results showed that α-pinene, β-phellandrene, limonene, and 1,8 cineole were the main monoterpenes released by murtilla ecotypes. For the ecotype 19-1, the abundance of α-pinene was significantly higher in plants subjected to herbivory (100%) in relation to control plants (54.58%). Moreover, β-phellandrene and 1,8 cineole were observed only in control plants. For ecotype 22-1, there was no significant difference in monoterpenes abundance. In conclusion, the results suggest a trade-off of β-phellandrene and 1,8 cineole in response to herbivory damage by red grape caterpillar generating an increase in α-pinene abundance.

Keywords: Chilesia rudis, gas chromatography, monoterpenes, Ugni molinae

Procedia PDF Downloads 152
79 The Influence of Ibuprofen, Diclofenac and Naproxen on Composition and Ultrastructural Characteristics of Atriplex patula and Spinacia oleracea

Authors: Ocsana Opris, Ildiko Lung, Maria L. Soran, Alexandra Ciorita, Lucian Copolovici

Abstract:

The effects assessment of environmental stress factors on both crop and wild plants of nutritional value are a very important research topic. Continuously worldwide consumption of drugs leads to significant environmental pollution, thus generating environmental stress. Understanding the effects of the important drugs on plant composition and ultrastructural modification is still limited, especially at environmentally relevant concentrations. The aim of the present work was to investigate the influence of three non-steroidal anti-inflammatory drugs (NSAIDs) on chlorophylls content, carotenoids content, total polyphenols content, antioxidant capacity, and ultrastructure of orache (Atriplex patula L.) and spinach (Spinacia oleracea L.). All green leafy vegetables selected for this study were grown in controlled conditions and treated with solutions of different concentrations (0.1‒1 mg L⁻¹) of diclofenac, ibuprofen, and naproxen. After eight weeks of exposure of the plants to NSAIDs, the chlorophylls and carotenoids content were analyzed by high-performance liquid chromatography coupled with photodiode array and mass spectrometer detectors, total polyphenols and antioxidant capacity by ultraviolet-visible spectroscopy. Also, the ultrastructural analyses of the vegetables were performed using transmission electron microscopy in order to assess the influence of the selected NSAIDs on cellular organisms, mainly photosynthetic organisms (chloroplasts), energy supply organisms (mitochondria) and nucleus as a cellular metabolism coordinator. In comparison with the control plants, decreases in the content of chlorophylls were observed in the case of the Atriplex patula L. plants treated with ibuprofen (11-34%) and naproxen (25-52%). Also, the chlorophylls content from Spinacia oleracea L. was affected, the lowest decrease (34%) being obtained in the case of the treatment with naproxen (1 mg L⁻¹). Diclofenac (1 mg L⁻¹) affected the total polyphenols content (a decrease of 45%) of Atriplex patula L. and ibuprofen (1 mg L⁻¹) affected the total polyphenols content (a decrease of 20%) of Spinacia oleracea L. The results obtained also indicate a moderate reduction of carotenoids and antioxidant capacity in the treated plants, in comparison with the controls. The investigations by transmission electron microscopy demonstrated that the green leafy vegetables were affected by the selected NSAIDs. Thus, this research contributes to a better understanding of the adverse effects of these drugs on studied plants. Important to mention is that the dietary intake of these drugs contaminated plants, plants with important nutritional value, may also presume a risk to human health, but currently little is known about the fate of the drugs in plants and their effect on or risk to the ecosystem.

Keywords: abiotic stress, green leafy vegetables, pigments content, ultra structure

Procedia PDF Downloads 125
78 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction

Authors: Yanxue Shang, Jingbin Zeng

Abstract:

Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.

Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction

Procedia PDF Downloads 143
77 Influence of Gamma-Radiation Dosimetric Characteristics on the Stability of the Persistent Organic Pollutants

Authors: Tatiana V. Melnikova, Lyudmila P. Polyakova, Alla A. Oudalova

Abstract:

As a result of environmental pollution, the production of agriculture and foodstuffs inevitably contain residual amounts of Persistent Organic Pollutants (POP). The special attention must be given to organic pollutants, including various organochlorinated pesticides (OCP). Among priorities, OCP is DDT (and its metabolite DDE), alfa-HCH, gamma-HCH (lindane). The control of these substances spends proceeding from requirements of sanitary norms and rules. During too time often is lost sight of that the primary product can pass technological processing (in particular irradiation treatment) as a result of which transformation of physicochemical forms of initial polluting substances is possible. The goal of the present work was to study the OCP radiation degradation at a various gamma-radiation dosimetric characteristics. The problems posed for goal achievement: to evaluate the content of the priority of OCPs in food; study the character the degradation of OCP in model solutions (with micro concentrations commensurate with the real content of their agricultural and food products) depending upon dosimetric characteristics of gamma-radiation. Qualitative and quantitative analysis of OCP in food and model solutions by gas chromatograph Varian 3400 (Varian, Inc. (USA)); chromatography-mass spectrometer Varian Saturn 4D (Varian, Inc. (USA)) was carried out. The solutions of DDT, DDE, alpha- and gamma- isomer HCH (0.01, 0.1, 1 ppm) were irradiated on "Issledovatel" (60Co) and "Luch - 1" (60Co) installations at a dose 10 kGy with a variation of dose rate from 0.0083 up to 2.33 kGy/sec. It was established experimentally that OCP residual concentration in individual samples of food products (fish, milk, cereal crops, meat, butter) are evaluated as 10-1-10-4 mg/kg, the value of which depends on the factor-sensations territory and natural migration processes. The results were used in the preparation of model solutions OCP. The dependence of a degradation extent of OCP from a dose rate gamma-irradiation has complex nature. According to our data at a dose 10 kGy, the degradation extent of OCP at first increase passes through a maximum (over the range 0.23 – 0.43 Gy/sec), and then decrease with the magnification of a dose rate. The character of the dependence of a degradation extent of OCP from a dose rate is kept for various OCP, in polar and nonpolar solvents and does not vary at the change of concentration of the initial substance. Also in work conditions of the maximal radiochemical yield of OCP which were observed at having been certain: influence of gamma radiation with a dose 10 kGy, in a range of doses rate 0.23 – 0.43 Gy/sec; concentration initial OCP 1 ppm; use of solvent - 2-propanol after preliminary removal of oxygen. Based on, that at studying model solutions of OCP has been established that the degradation extent of pesticides and qualitative structure of OCP radiolysis products depend on a dose rate, has been decided to continue researches radiochemical transformations OCP into foodstuffs at various of doses rate.

Keywords: degradation extent, dosimetric characteristics, gamma-radiation, organochlorinated pesticides, persistent organic pollutants

Procedia PDF Downloads 249
76 Processes Controlling Release of Phosphorus (P) from Catchment Soils and the Relationship between Total Phosphorus (TP) and Humic Substances (HS) in Scottish Loch Waters

Authors: Xiaoyun Hui, Fiona Gentle, Clemens Engelke, Margaret C. Graham

Abstract:

Although past work has shown that phosphorus (P), an important nutrient, may form complexes with aqueous humic substances (HS), the principal component of natural organic matter, the nature of such interactions is poorly understood. Humic complexation may not only enhance P concentrations but it may change its bioavailability within such waters and, in addition, influence its transport within catchment settings. This project is examining the relationships and associations of P, HS, and iron (Fe) in Loch Meadie, Sutherland, North Scotland, a mesohumic freshwater loch which has been assessed as reference condition with respect to P. The aim is to identify characteristic spectroscopic parameters which can enhance the performance of the model currently used to predict reference condition TP levels for highly-coloured Scottish lochs under the Water Framework Directive. In addition to Loch Meadie, samples from other reference condition lochs in north Scotland and Shetland were analysed. By including different types of reference condition lochs (clear water, mesohumic and polyhumic water) this allowed the relationship between total phosphorus (TP) and HS to be more fully explored. The pH, [TP], [Fe], UV/Vis absorbance/spectra, [TOC] and [DOC] for loch water samples have been obtained using accredited methods. Loch waters were neutral to slightly acidic/alkaline (pH 6-8). [TP] in loch waters were lower than 50 µg L-1, and in Loch Meadie waters were typically <10 µg L-1. [Fe] in loch waters were mainly <0.6 mg L-1, but for some loch water samples, [Fe] were in the range 1.0-1.8 mg L-1and there was a positive correlation with [TOC] (r2=0.61). Lochs were classified as clear water, mesohumic or polyhumic based on water colour. The range of colour values of sampled lochs in each category were 0.2–0.3, 0.2–0.5 and 0.5–0.8 a.u. (10 mm pathlength), respectively. There was also a strong positive correlation between [DOC] and water colour (R2=0.84). The UV/Vis spectra (200-700 nm) for water samples were featureless with only a slight “shoulder” observed in the 270–290 nm region. Ultrafiltration was then used to separate colloidal and truly dissolved components from the loch waters and, since it contained the majority of aqueous P and Fe, the colloidal component was fractionated by gel filtration chromatography method. Gel filtration chromatographic fractionation of the colloids revealed two brown-coloured bands which had distinctive UV/Vis spectral features. The first eluting band had larger and more aromatic HS molecules than the second band, and in addition both P and Fe were primarily associated with the larger, more aromatic HS. This result demonstrated that P was able to form complexes with Fe-rich components of HS, and thus provided a scientific basis for the significant correlation between [Fe] and [TP] that the previous monitoring data of reference condition lochs from Scottish Environment Protection Agency (SEPA) showed. The distinctive features of the HS will be used as the basis for an improved spectroscopic tool.

Keywords: total phosphorus, humic substances, Scottish loch water, WFD model

Procedia PDF Downloads 546
75 Physicochemical Properties and Toxicity Studies on a Lectin from the Bulb of Dioscorea bulbifera

Authors: Uchenna Nkiruka Umeononihu, Adenike Kuku, Oludele Odekanyin, Olubunmi Babalola, Femi Agboola, Rapheal Okonji

Abstract:

In this study, a lectin from the bulb of Dioscorea bulbifera was purified, characterised, and its acute and sub-acute toxicity was investigated with a view to evaluate its toxic effects in mice. The protein from the bulb was extracted by homogenising 50 g of the bulb in 500 ml of phosphate buffered saline (0.025 M) of pH 7.2, stirred for 3 hr, and centrifuged at the speed of 3000 rpm. Blood group and sugar specificity assays of the crude extract were determined. The lectin was purified in a two-step procedure- gel filtration on Sephadex G-75 and affinity chromatography on Sepharose 4-B arabinose. The degree of purity of the purified lectin was ascertained by SDS-polyacrylamide gel electrophoresis. Detection of covalently bound carbohydrate was carried out with Periodic Acid-Schiffs (PAS) reagent staining technique. Effects of temperature, pH, and EDTA on the lectin were carried out using standard methods. This was followed by acute toxicity studies via oral and subcutaneous routes using mice. The animals were monitored for mortality and signs of toxicity. The sub-acute toxicity studies were carried out using rats. Different concentrations of the lectin were administered twice daily for 5 days via the subcutaneous route. The animals were sacrificed on the sixth day; blood samples and liver tissues were collected. Biochemical assays (determination of total protein, direct bilirubin, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), catalase (CAT), and superoxide dismutase (SOD)) were carried out on the serum and liver homogenates. The collected organs (heart, liver, kidney, and spleen) were subjected to histopathological analysis. The results showed that lectin from the bulbs of Dioscorea bulbifera agglutinated non-specifically the erythrocytes of the human ABO system as well as rabbit erythrocytes. The haemagglutinating activity was strongly inhibited by arabinose and dulcitol with minimum inhibitory concentrations of 0.781 and 6.25, respectively. The lectin was purified to homogeneity with native and subunit molecular weights of 56,273 and 29,373 Daltons, respectively. The lectin was thermostable up to 30 0C and lost 25 %, 33.3 %, and 100 % of its heamagglutinating activity at 40°C, 50°C, and 60°C, respectively. The lectin was maximally active at pH 4 and 5 but lost its total activity at pH eight, while EDTA (10 mM) had no effect on its haemagglutinating activity. PAS reagent staining showed that the lectin was not a glycoprotein. The sub-acute studies on rats showed elevated levels of ALT, AST, serum bilirubin, total protein in serum and liver homogenates suggesting damage to liver and spleen. The study concluded that the aerial bulb of D. bulbifera lectin was non-specific in its heamagglutinating activity and dimeric in its structure. The lectin shared some physicochemical characteristics with lectins from other Dioscorecea species and was moderately toxic to the liver and spleen of treated animals.

Keywords: Dioscorea bulbifera, heamagglutinin, lectin, toxicity

Procedia PDF Downloads 127
74 An Automated Magnetic Dispersive Solid-Phase Extraction Method for Detection of Cocaine in Human Urine

Authors: Feiyu Yang, Chunfang Ni, Rong Wang, Yun Zou, Wenbin Liu, Chenggong Zhang, Fenjin Sun, Chun Wang

Abstract:

Cocaine is the most frequently used illegal drug globally, with the global annual prevalence of cocaine used ranging from 0.3% to 0.4 % of the adult population aged 15–64 years. Growing consumption trend of abused cocaine and drug crimes are a great concern, therefore urine sample testing has become an important noninvasive sampling whereas cocaine and its metabolites (COCs) are usually present in high concentrations and relatively long detection windows. However, direct analysis of urine samples is not feasible because urine complex medium often causes low sensitivity and selectivity of the determination. On the other hand, presence of low doses of analytes in urine makes an extraction and pretreatment step important before determination. Especially, in gathered taking drug cases, the pretreatment step becomes more tedious and time-consuming. So developing a sensitive, rapid and high-throughput method for detection of COCs in human body is indispensable for law enforcement officers, treatment specialists and health officials. In this work, a new automated magnetic dispersive solid-phase extraction (MDSPE) sampling method followed by high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for quantitative enrichment of COCs from human urine, using prepared magnetic nanoparticles as absorbants. The nanoparticles were prepared by silanizing magnetic Fe3O4 nanoparticles and modifying them with divinyl benzene and vinyl pyrrolidone, which possesses the ability for specific adsorption of COCs. And this kind of magnetic particle facilitated the pretreatment steps by electromagnetically controlled extraction to achieve full automation. The proposed device significantly improved the sampling preparation efficiency with 32 samples in one batch within 40mins. Optimization of the preparation procedure for the magnetic nanoparticles was explored and the performances of magnetic nanoparticles were characterized by scanning electron microscopy, vibrating sample magnetometer and infrared spectra measurements. Several analytical experimental parameters were studied, including amount of particles, adsorption time, elution solvent, extraction and desorption kinetics, and the verification of the proposed method was accomplished. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.1 ng·mL-1 with recoveries ranging from 75.1 to 105.7%. Compared to traditional sampling method, this method is time-saving and environmentally friendly. It was confirmed that the proposed automated method was a kind of highly effective way for the trace cocaine and cocaine metabolites analyses in human urine.

Keywords: automatic magnetic dispersive solid-phase extraction, cocaine detection, magnetic nanoparticles, urine sample testing

Procedia PDF Downloads 204
73 Quality by Design in the Optimization of a Fast HPLC Method for Quantification of Hydroxychloroquine Sulfate

Authors: Pedro J. Rolim-Neto, Leslie R. M. Ferraz, Fabiana L. A. Santos, Pablo A. Ferreira, Ricardo T. L. Maia-Jr., Magaly A. M. Lyra, Danilo A F. Fonte, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim

Abstract:

Initially developed as an antimalarial agent, hydroxychloroquine (HCQ) sulfate is often used as a slow-acting antirheumatic drug in the treatment of disorders of connective tissue. The United States Pharmacopeia (USP) 37 provides a reversed-phase HPLC method for quantification of HCQ. However, this method was not reproducible, producing asymmetric peaks in a long analysis time. The asymmetry of the peak may cause an incorrect calculation of the concentration of the sample. Furthermore, the analysis time is unacceptable, especially regarding the routine of a pharmaceutical industry. The aiming of this study was to develop a fast, easy and efficient method for quantification of HCQ sulfate by High Performance Liquid Chromatography (HPLC) based on the Quality by Design (QbD) methodology. This method was optimized in terms of peak symmetry using the surface area graphic as the Design of Experiments (DoE) and the tailing factor (TF) as an indicator to the Design Space (DS). The reference method used was that described at USP 37 to the quantification of the drug. For the optimized method, was proposed a 33 factorial design, based on the QbD concepts. The DS was created with the TF (in a range between 0.98 and 1.2) in order to demonstrate the ideal analytical conditions. Changes were made in the composition of the USP mobile-phase (USP-MP): USP-MP: Methanol (90:10 v/v, 80:20 v/v and 70:30 v/v), in the flow (0.8, 1.0 and 1.2 mL) and in the oven temperature (30, 35, and 40ºC). The USP method allowed the quantification of drug in a long time (40-50 minutes). In addition, the method uses a high flow rate (1,5 mL.min-1) which increases the consumption of expensive solvents HPLC grade. The main problem observed was the TF value (1,8) that would be accepted if the drug was not a racemic mixture, since the co-elution of the isomers can become an unreliable peak integration. Therefore, the optimization was suggested in order to reduce the analysis time, aiming a better peak resolution and TF. For the optimization method, by the analysis of the surface-response plot it was possible to confirm the ideal setting analytical condition: 45 °C, 0,8 mL.min-1 and 80:20 USP-MP: Methanol. The optimized HPLC method enabled the quantification of HCQ sulfate, with a peak of high resolution, showing a TF value of 1,17. This promotes good co-elution of isomers of the HCQ, ensuring an accurate quantification of the raw material as racemic mixture. This method also proved to be 18 times faster, approximately, compared to the reference method, using a lower flow rate, reducing even more the consumption of the solvents and, consequently, the analysis cost. Thus, an analytical method for the quantification of HCQ sulfate was optimized using QbD methodology. This method proved to be faster and more efficient than the USP method, regarding the retention time and, especially, the peak resolution. The higher resolution in the chromatogram peaks supports the implementation of the method for quantification of the drug as racemic mixture, not requiring the separation of isomers.

Keywords: analytical method, hydroxychloroquine sulfate, quality by design, surface area graphic

Procedia PDF Downloads 639
72 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 82