Search results for: remote monitoring system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20175

Search results for: remote monitoring system

19455 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 481
19454 Monitor Vehicle Speed Using Internet of Things Based Wireless Sensor Network System

Authors: Akber Oumer Abdurezak

Abstract:

Road traffic accident is a major problem in Ethiopia, resulting in the deaths of many people and potential injuries and crash every year and loss of properties. According to the Federal Transport Authority, one of the main causes of traffic accident and crash in Ethiopia is over speeding. Implementation of different technologies is used to monitor the speed of vehicles in order to minimize accidents and crashes. This research aimed at designing a speed monitoring system to monitor the speed of travelling vehicles and movements, reporting illegal speeds or overspeeding vehicles to the concerned bodies. The implementation of the system is through a wireless sensor network. The proposed system can sense and detect the movement of vehicles, process, and analysis the data obtained from the sensor and the cloud system. The data is sent to the central controlling server. The system contains accelerometer and gyroscope sensors to sense and collect the data of the vehicle. Arduino to process the data and Global System for Mobile Communication (GSM) module for communication purposes to send the data to the concerned body. When the speed of the vehicle exceeds the allowable speed limit, the system sends a message to database as “over speeding”. Both accelerometer and gyroscope sensors are used to collect acceleration data. The acceleration data then convert to speed, and the corresponding speed is checked with the speed limit, and those above the speed limit are reported to the concerned authorities to avoid frequent accidents. The proposed system decreases the occurrence of accidents and crashes due to overspeeding and can be used as an eye opener for the implementation of other intelligent transport system technologies. This system can also integrate with other technologies like GPS and Google Maps to obtain better output.

Keywords: accelerometer, IOT, GSM, gyroscope

Procedia PDF Downloads 75
19453 Malware Detection in Mobile Devices by Analyzing Sequences of System Calls

Authors: Jorge Maestre Vidal, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes.

Keywords: android, information security, intrusion detection systems, malware, mobile devices

Procedia PDF Downloads 302
19452 Artificial Intelligence Based Online Monitoring System for Cardiac Patient

Authors: Syed Qasim Gilani, Muhammad Umair, Muhammad Noman, Syed Bilawal Shah, Aqib Abbasi, Muhammad Waheed

Abstract:

Cardiovascular Diseases(CVD's) are the major cause of death in the world. The main reason for these deaths is the unavailability of first aid for heart failure. In many cases, patients die before reaching the hospital. We in this paper are presenting innovative online health service for Cardiac Patients. The proposed online health system has two ends. Users through device developed by us can communicate with their doctor through a mobile application. This interface provides them with first aid.Also by using this service, they have an easy interface with their doctors for attaining medical advice. According to the proposed system, we developed a device called Cardiac Care. Cardiac Care is a portable device which a patient can use at their home for monitoring heart condition. When a patient checks his/her heart condition, Electrocardiogram (ECG), Blood Pressure(BP), Temperature are sent to the central database. The severity of patients condition is checked using Artificial Intelligence Algorithm at the database. If the patient is suffering from the minor problem, our algorithm will suggest a prescription for patients. But if patient's condition is severe, patients record is sent to doctor through the mobile Android application. Doctor after reviewing patients condition suggests next step. If a doctor identifies the patient condition as critical, then the message is sent to the central database for sending an ambulance for the patient. Ambulance starts moving towards patient for bringing him/her to hospital. We have implemented this model at prototype level. This model will be life-saving for millions of people around the globe. According to this proposed model patients will be in contact with their doctors all the time.

Keywords: cardiovascular disease, classification, electrocardiogram, blood pressure

Procedia PDF Downloads 184
19451 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 339
19450 Constraining the Potential Nickel Laterite Area Using Geographic Information System-Based Multi-Criteria Rating in Surigao Del Sur

Authors: Reiner-Ace P. Mateo, Vince Paolo F. Obille

Abstract:

The traditional method of classifying the potential mineral resources requires a significant amount of time and money. In this paper, an alternative way to classify potential mineral resources with GIS application in Surigao del Sur. The three (3) analog map data inputs integrated to GIS are geologic map, topographic map, and land cover/vegetation map. The indicators used in the classification of potential nickel laterite integrated from the analog map data inputs are a geologic indicator, which is the presence of ultramafic rock from the geologic map; slope indicator and the presence of plateau edges from the topographic map; areas of forest land, grassland, and shrublands from the land cover/vegetation map. The potential mineral of the area was classified from low up to very high potential. The produced mineral potential classification map of Surigao del Sur has an estimated 4.63% low nickel laterite potential, 42.15% medium nickel laterite potential, 43.34% high nickel laterite potential, and 9.88% very high nickel laterite from its ultramafic terrains. For the validation of the produced map, it was compared with known occurrences of nickel laterite in the area using a nickel mining tenement map from the area with the application of remote sensing. Three (3) prominent nickel mining companies were delineated in the study area. The generated potential classification map of nickel-laterite in Surigao Del Sur may be of aid to the mining companies which are currently in the exploration phase in the study area. Also, the currently operating nickel mines in the study area can help to validate the reliability of the mineral classification map produced.

Keywords: mineral potential classification, nickel laterites, GIS, remote sensing, Surigao del Sur

Procedia PDF Downloads 123
19449 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 190
19448 Application of Medical Information System for Image-Based Second Opinion Consultations–Georgian Experience

Authors: Kldiashvili Ekaterina, Burduli Archil, Ghortlishvili Gocha

Abstract:

Introduction – Medical information system (MIS) is at the heart of information technology (IT) implementation policies in healthcare systems around the world. Different architecture and application models of MIS are developed. Despite of obvious advantages and benefits, application of MIS in everyday practice is slow. Objective - On the background of analysis of the existing models of MIS in Georgia has been created a multi-user web-based approach. This presentation will present the architecture of the system and its application for image based second opinion consultations. Methods – The MIS has been created with .Net technology and SQL database architecture. It realizes local (intranet) and remote (internet) access to the system and management of databases. The MIS is fully operational approach, which is successfully used for medical data registration and management as well as for creation, editing and maintenance of the electronic medical records (EMR). Five hundred Georgian language electronic medical records from the cervical screening activity illustrated by images were selected for second opinion consultations. Results – The primary goal of the MIS is patient management. However, the system can be successfully applied for image based second opinion consultations. Discussion – The ideal of healthcare in the information age must be to create a situation where healthcare professionals spend more time creating knowledge from medical information and less time managing medical information. The application of easily available and adaptable technology and improvement of the infrastructure conditions is the basis for eHealth applications. Conclusion - The MIS is perspective and actual technology solution. It can be successfully and effectively used for image based second opinion consultations.

Keywords: digital images, medical information system, second opinion consultations, electronic medical record

Procedia PDF Downloads 450
19447 A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model

Authors: Christina Klippel, Lucia Pezzi, Silvio Neto, Rafael Bertani, Priscila Mendes, Flavio Machado, Aline Szeliga, Maria Cosendey, Adilson Mariz, Raquel Santos, Lys Bendett, Pedro Velasco, Thalita Rolleigh, Bruna Bellote, Daria Coelho, Bruna Martins, Julia Almeida, Juliana Cerqueira

Abstract:

This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders.

Keywords: neurology, intracranial pressure, medical education, simulation

Procedia PDF Downloads 172
19446 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things

Authors: Benny Sand, Yotam Lurie, Shlomo Mark

Abstract:

Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.

Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI

Procedia PDF Downloads 102
19445 A Service Evaluation Exploring the Effectiveness of a Tier 3 Weight Management Programme Offering Face-To-Face and Remote Dietetic Support

Authors: Rosemary E. Huntriss, Lucy Jones

Abstract:

Obesity and excess weight continue to be significant health problems in England. Traditional weight management programmes offer face-to-face support or group education. Remote care is recognised as a viable means of support; however, its effectiveness has not previously been evaluated in a tier 3 weight management setting. This service evaluation explored the effectiveness of online coaching, telephone support, and face-to-face support as optional management strategies within a tier 3 weight management programme. Outcome data were collected for adults with a BMI ≥ 45 or ≥ 40 with complex comorbidity who were referred to a Tier 3 weight management programme from January 2018 and had been discharged before October 2018. Following an initial 45-minute consultation with a specialist weight management dietitian, patients were offered a choice of follow-up support in the form of online coaching supported by an app (8 x 15 minutes coaching), face-to-face or telephone appointments (4 x 30 minutes). All patients were invited to a final 30-minute face-to-face assessment. The planned intervention time was between 12 and 24 weeks. Patients were offered access to adjunct face-to-face or telephone psychological support. One hundred and thirty-nine patients were referred into the programme from January 2018 and discharged before October 2018. One hundred and twenty-four patients (89%) attended their initial assessment. Out of those who attended their initial assessment, 110 patients (88.0%) completed more than half of the programme and 77 patients (61.6%) completed all sessions. The average length of the completed programme (all sessions) was 17.2 (SD 4.2) weeks. Eighty-five (68.5%) patients were coached online, 28 (22.6%) patients were supported face-to-face support, and 11 (8.9%) chose telephone support. Two patients changed from online coaching to face-to-face support due to personal preference and were included in the face-to-face group for analysis. For those with data available (n=106), average weight loss across the programme was 4.85 (SD 3.49)%; average weight loss was 4.70 (SD 3.19)% for online coaching, 4.83 (SD 4.13)% for face-to-face support, and 6.28 (SD 4.15)% for telephone support. There was no significant difference between weight loss achieved with face-to-face vs. online coaching (4.83 (SD 4.13)% vs 4.70 (SD 3.19) (p=0.87) or face-to-face vs. remote support (online coaching and telephone support combined) (4.83 (SD 4.13)% vs 4.85 (SD 3.30)%) (p=0.98). Remote support has been shown to be as effective as face-to-face support provided by a dietitian in the short-term within a tier 3 weight management setting. The completion rates were high compared with another tier 3 weight management services suggesting that offering remote support as an option may improve completion rates within a weight management service.

Keywords: dietitian, digital health, obesity, weight management

Procedia PDF Downloads 141
19444 Reflections of AB English Students on Their English Language Experiences

Authors: Roger G. Pagente Jr.

Abstract:

This study seeks to investigate the language learning experiences of the thirty-nine AB-English majors who were selected through fish-bowl technique from the 157 students enrolled in the AB-English program. Findings taken from the diary, questionnaire and unstructured interview revealed that motivation, learners’ belief, self-monitoring, language anxiety, activities and strategies were the prevailing factors that influenced the learning of English of the participants.

Keywords: diary, English language learning experiences, self-monitoring, language anxiety

Procedia PDF Downloads 606
19443 Securing Health Monitoring in Internet of Things with Blockchain-Based Proxy Re-Encryption

Authors: Jerlin George, R. Chitra

Abstract:

The devices with sensors that can monitor your temperature, heart rate, and other vital signs and link to the internet, known as the Internet of Things (IoT), have completely transformed the way we control health. Providing real-time health data, these sensors improve diagnostics and treatment outcomes. Security and privacy matters when IoT comes into play in healthcare. Cyberattacks on centralized database systems are also a problem. To solve these challenges, the study uses blockchain technology coupled with proxy re-encryption to secure health data. ThingSpeak IoT cloud analyzes the collected data and turns them into blockchain transactions which are safely kept on the DriveHQ cloud. Transparency and data integrity are ensured by blockchain, and secure data sharing among authorized users is made possible by proxy re-encryption. This results in a health monitoring system that preserves the accuracy and confidentiality of data while reducing the safety risks of IoT-driven healthcare applications.

Keywords: internet of things, healthcare, sensors, electronic health records, blockchain, proxy re-encryption, data privacy, data security

Procedia PDF Downloads 15
19442 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 345
19441 Optimal Maintenance Policy for a Three-Unit System

Authors: A. Abbou, V. Makis, N. Salari

Abstract:

We study the condition-based maintenance (CBM) problem of a system subject to stochastic deterioration. The system is composed of three units (or modules): (i) Module 1 deterioration follows a Markov process with two operational states and one failure state. The operational states are partially observable through periodic condition monitoring. (ii) Module 2 deterioration follows a Gamma process with a known failure threshold. The deterioration level of this module is fully observable through periodic inspections. (iii) Only the operating age information is available of Module 3. The lifetime of this module has a general distribution. A CBM policy prescribes when to initiate a maintenance intervention and which modules to repair during intervention. Our objective is to determine the optimal CBM policy minimizing the long-run expected average cost of operating the system. This is achieved by formulating a Markov decision process (MDP) and developing the value iteration algorithm for solving the MDP. We provide numerical examples illustrating the cost-effectiveness of the optimal CBM policy through a comparison with heuristic policies commonly found in the literature.

Keywords: reliability, maintenance optimization, Markov decision process, heuristics

Procedia PDF Downloads 219
19440 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 86
19439 Evaluation of Vehicle Classification Categories: Florida Case Study

Authors: Ren Moses, Jaqueline Masaki

Abstract:

This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.

Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic

Procedia PDF Downloads 180
19438 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing

Authors: Neha Devi, P. K. Joshi

Abstract:

Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.

Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis

Procedia PDF Downloads 164
19437 The Urban Expansion Characterization of the Bir El Djir Municipality using Remote Sensing and GIS

Authors: Fatima Achouri, Zakaria Smahi

Abstract:

Bir El Djir is an important coastal township in Oran department, located at 450 Km far away from Algiers on northwest of Algeria. In this coastal area, the urban sprawl is one of the main problems that reduce the limited highly fertile land. So, using the remote sensing and GIS technologies have shown their great capabilities to solve many earth resources issues. The aim of this study is to produce land use and cover map for the studied area at varied periods to monitor possible changes that may occurred, particularly in the urban areas and subsequently predict likely changes. For this, two spatial images SPOT and Landsat satellites from 1987 and 2014 respectively were used to assess the changes of urban expansion and encroachment during this period with photo-interpretation and GIS approach. The results revealed that the town of Bir El Djir has shown a highest growth rate in the period 1987-2014 which is 521.1 hectares in terms of area. These expansions largely concern the new real estate constructions falling within the social and promotional housing programs launched by the government. Indeed, during the last census period (1998 -2008), the population of this town has almost doubled from 73 029 to 152 151 inhabitants with an average annual growth of 5.2%. This also significant population growth is causing an accelerated urban expansion of the periphery which causing its conurbation with the towns of Oran in the West side. The most urban expansion is characterized by the new construction in the form of spontaneous or peripheral precarious habitat, but also unstructured slums settled especially in the southeastern part of town.

Keywords: urban expansion, remote sensing, photo-interpretation, spatial dynamics

Procedia PDF Downloads 269
19436 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic

Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña

Abstract:

Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.

Keywords: remote sensing, intertidal sediment, airborne sensors, heavy metals, eTOCoxicity, robust statistic, estimation

Procedia PDF Downloads 421
19435 Overview of Standard Unit System of Shenzhen Land Spatial Planning and Case Analysis

Authors: Ziwei Huang

Abstract:

The standard unit of Shenzhen land spatial planning has the characteristics of vertical conduction, horizontal evaluation, internal balance and supervision of implementation. It mainly assumes the role of geospatial unit, assists in promoting the complex development of the business in Shenzhen and undertakes the management and transmission of upper and lower levels of planning as well as the Urban management functions such as gap analysis of public facilities, planning evaluation and dynamic monitoring of planning information. Combining with the application examples of the analysis of gaps in public facilities in Longgang District, it can be found that the standard unit of land spatial planning in Shenzhen as a small-scale geographic basic unit, has a stronger urban spatial coupling effect. However, the universality of the application of the system is still lacking and it is necessary to propose more scientific and powerful standard unit delineation standards and planning function evaluation indicators to guide the implementation of the system's popularization and application.

Keywords: Shenzhen city, land spatial planning, standard unit system, urban delicacy management

Procedia PDF Downloads 128
19434 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State

Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing

Abstract:

Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.

Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch

Procedia PDF Downloads 167
19433 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis

Authors: Enemeri George Uweiyohowo

Abstract:

Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)

Procedia PDF Downloads 213
19432 Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam

Authors: Jang-Hwan Yin, Hae-Jeong Jeong, Hyo-Geun Jeong

Abstract:

K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water.

Keywords: PV generation system, clean energy, green growth, solar energy

Procedia PDF Downloads 413
19431 Soil Nutrient Management Implications of Growing Food Crops within the Coffee Gardens

Authors: Pennuel P. Togonave, Bartholomew S. Apis, Emma Kiup, Gure Tumae, Johannes Pakatul, Michael Webb

Abstract:

Interplanting food crops in coffee gardens has increased in recent years. The purpose of this study was to quantify the nutrient management implications of growing food crops within the coffee garden and to investigate the sustainability of this practice through field surveys in two accessible sites (Asaro and Bena) and two remote sites (Marawaka and Baira), in Eastern Highlands Province of Papua New Guinea. Coffee gardens were selected at each site and surveys were conducted to assess the status of intercropping in each of the smallholder coffee gardens. Food crops in the coffee gardens were sampled for nutrient analysis Survey results indicate intercropping as a common practice in coffee gardens and entailed mixed cropping of food crops in an irregular pattern and spacing. More than 40% of the farmers used 40-60% of their total coffee garden area for intercropping. In remote sites, more than 50% of the coffee garden areas closest to the house were intercropped with food crops compared to 40% of inaccessible sites. In both remote and accessible sites, the most common intercropped food crops were 90% banana (Musa spp) varieties and 50% sugarcane (Saccharum spp). Nutrient analysis of the by-products and residuals of some common intercrops shows the potential to replenish the coffee plant's deficient nutrients like Potassium, Magnesium, Phosphorus, Boron and Zinc. Intercropping of coffee gardens is increasing due to land pressure, marketing opportunities, food security and labor supply

Keywords: by-products, coffee, crops, intercropping, nutrients, soil

Procedia PDF Downloads 81
19430 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 348
19429 A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea

Authors: L. I. Izhar, T. Stathaki, K. Howell

Abstract:

Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved.

Keywords: Blaschko’s lines, image registration, morphoea, thermal imaging

Procedia PDF Downloads 310
19428 Long-Term Sitting Posture Identifier Connected with Cloud Service

Authors: Manikandan S. P., Sharmila N.

Abstract:

Pain in the neck, intermediate and anterior, and even low back may occur in one or more locations. Numerous factors can lead to back discomfort, which can manifest into sensations in the other parts of your body. Up to 80% of people will have low back problems at a certain stage of their lives, making spine-related pain a highly prevalent ailment. Roughly twice as commonly as neck pain, low back discomfort also happens about as often as knee pain. According to current studies, using digital devices for extended periods of time and poor sitting posture are the main causes of neck and low back pain. There are numerous monitoring techniques provided to enhance the sitting posture for the aforementioned problems. A sophisticated technique to monitor the extended sitting position is suggested in this research based on this problem. The system is made up of an inertial measurement unit, a T-shirt, an Arduino board, a buzzer, and a mobile app with cloud services. Based on the anatomical position of the spinal cord, the inertial measurement unit was positioned on the inner back side of the T-shirt. The IMU (inertial measurement unit) sensor will evaluate the hip position, imbalanced shoulder, and bending angle. Based on the output provided by the IMU, the data will be analyzed by Arduino, supplied through the cloud, and shared with a mobile app for continuous monitoring. The buzzer will sound if the measured data is mismatched with the human body's natural position. The implementation and data prediction with design to identify balanced and unbalanced posture using a posture monitoring t-shirt will be further discussed in this research article.

Keywords: IMU, posture, IOT, textile

Procedia PDF Downloads 89
19427 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
19426 Comparison of Dynamic Characteristics of Railway Bridge Spans to Know the Health of Elastomeric Bearings Using Tri Axial Accelerometer Sensors

Authors: Narayanakumar Somasundaram, Venkat Nihit Chirivella, Venkata Dilip Kumar Pasupuleti

Abstract:

Ajakool, India, has a multi-span bridge that is constructed for rail transport with a maximum operating speed of 100 km/hr. It is a standard RDSO design of a PSC box girder carrying a single railway track. The Structural Health Monitoring System (SHM) is designed and installed to compare and analyze the vibrations and displacements on the bridge due to different live loads from moving trains. The study is conducted for three different spans of the same bridge to understand the health of the elastomeric bearings. Also, to validate the same, a three-dimensional finite element model is developed, and modal analysis is carried out. The proposed methodology can help in detecting deteriorated elastomeric bearings using only wireless tri-accelerometer sensors. Detailed analysis and results are presented in terms of mode shapes, accelerations, displacements, and their importance to each other. This can be implemented with a lot of ease and can be more accurate.

Keywords: dynamic effects, vibration analysis, accelerometer sensors, finite element analysis, structural health monitoring, elastomeric bearing

Procedia PDF Downloads 136