Search results for: nurse image
2395 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning
Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho
Abstract:
Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning
Procedia PDF Downloads 962394 A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories
Authors: Nabilah Ibrahim, Khaliza Musa
Abstract:
The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI.Keywords: B-mode Ultrasound Image, carotid artery diameter, canny edge detection, body mass index
Procedia PDF Downloads 4442393 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 1942392 Normalized Compression Distance Based Scene Alteration Analysis of a Video
Authors: Lakshay Kharbanda, Aabhas Chauhan
Abstract:
In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics.Keywords: image compression, Kolmogorov complexity, normalized compression distance, root mean square error
Procedia PDF Downloads 3402391 Smart Signature - Medical Communication without Barrier
Authors: Chia-Ying Lin
Abstract:
This paper explains how to enhance doctor-patient communication and nurse-patient communication through multiple intelligence signing methods and user-centered. It is hoped that through the implementation of the "electronic consent", the problems faced by the paper consent can be solved: storage methods, resource utilization, convenience, correctness of information, integrated management, statistical analysis and other related issues. Make better use and allocation of resources to provide better medical quality. First, invite the medical records department to assist in the inventory of paper consent in the hospital: organising, classifying, merging, coding, and setting. Second, plan the electronic consent configuration file: set the form number, consent form group, fields and templates, and the corresponding doctor's order code. Next, Summarize four types of rapid methods of electronic consent: according to the doctor's order, according to the medical behavior, according to the schedule, and manually generate the consent form. Finally, system promotion and adjustment: form an "electronic consent promotion team" to improve, follow five major processes: planning, development, testing, release, and feedback, and invite clinical units to raise the difficulties faced in the promotion, and make improvements to the problems. The electronic signature rate of the whole hospital will increase from 4% in January 2022 to 79% in November 2022. Use the saved resources more effectively, including: reduce paper usage (reduce carbon footprint), reduce the cost of ink cartridges, re-plan and use the space for paper medical records, and save human resources to provide better services. Through the introduction of information technology and technology, the main spirit of "lean management" is implemented. Transforming and reengineering the process to eliminate unnecessary waste is also the highest purpose of this project.Keywords: smart signature, electronic consent, electronic medical records, user-centered, doctor-patient communication, nurse-patient communication
Procedia PDF Downloads 1252390 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 82389 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 702388 'Low Electronic Noise' Detector Technology in Computed Tomography
Authors: A. Ikhlef
Abstract:
Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector
Procedia PDF Downloads 1262387 3D Remote Sensing Images Parallax Refining Based On HTML5
Authors: Qian Pei, Hengjian Tong, Weitao Chen, Hai Wang, Yanrong Feng
Abstract:
Horizontal parallax is the foundation of stereoscopic viewing. However, the human eye will feel uncomfortable and it will occur diplopia if horizontal parallax is larger than eye separation. Therefore, we need to do parallax refining before conducting stereoscopic observation. Although some scholars have been devoted to online remote sensing refining, the main work of image refining is completed on the server side. There will be a significant delay when multiple users access the server at the same time. The emergence of HTML5 technology in recent years makes it possible to develop rich browser web application. Authors complete the image parallax refining on the browser side based on HTML5, while server side only need to transfer image data and parallax file to browser side according to the browser’s request. In this way, we can greatly reduce the server CPU load and allow a large number of users to access server in parallel and respond the user’s request quickly.Keywords: 3D remote sensing images, parallax, online refining, rich browser web application, HTML5
Procedia PDF Downloads 4612386 Velocity Distribution in Open Channels with Sand: An Experimental Study
Authors: E. Keramaris
Abstract:
In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.Keywords: particle image velocimetry, sand bed, velocity distribution, Reynolds number
Procedia PDF Downloads 3742385 Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation
Authors: Nima Shafaghi, Gunay Anlaş, C. Can Aydiner
Abstract:
A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation.Keywords: digital image correlation, fracture, martensitic phase transition, mode I, NiTi, transformation zone
Procedia PDF Downloads 3532384 Noninvasive Evaluation of Acupuncture by Measuring Facial Temperature through Thermal Image
Authors: An Guo, Hieyong Jeong, Tianyi Wang, Na Li, Yuko Ohno
Abstract:
Acupuncture, known as sensory simulation, has been used to treat various disorders for thousands of years. However, present studies had not addressed approaches for noninvasive measurement in order to evaluate therapeutic effect of acupuncture. The purpose of this study is to propose a noninvasive method to evaluate acupuncture by measuring facial temperature through thermal image. Three human subjects were recruited in this study. Each subject received acupuncture therapy for 30 mins. Acupuncture needles (Ø0.16 x 30 mm) were inserted into Baihui point (DU20), Neiguan points (PC6) and Taichong points (LR3), acupuncture needles (Ø0.18 x 39 mm) were inserted into Tanzhong point (RN17), Zusanli points (ST36) and Yinlingquan points (SP9). Facial temperature was recorded by an infrared thermometer. Acupuncture therapeutic effect was compared pre- and post-acupuncture. Experiment results demonstrated that facial temperature changed according to acupuncture therapeutic effect. It was concluded that proposed method showed high potential to evaluate acupuncture by noninvasive measurement of facial temperature.Keywords: acupuncture, facial temperature, noninvasive evaluation, thermal image
Procedia PDF Downloads 1872383 A Comparison between Different Segmentation Techniques Used in Medical Imaging
Authors: Ibtihal D. Mustafa, Mawia A. Hassan
Abstract:
Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image.Keywords: MRI, segmentation, correlation, structural similarity
Procedia PDF Downloads 4102382 Introduction of Acute Paediatric Services in Primary Care: Evaluating the Impact on GP Education
Authors: Salman Imran, Chris Healey
Abstract:
Traditionally, medical care of children in England and Wales starts from primary care with a referral to secondary care paediatricians who may not investigate further. Many primary care doctors do not undergo a paediatric rotation/exposure in training. As a result, there are many who have not acquired the necessary skills to manage children hence increasing hospital referral. With the current demand on hospitals in the National Health Service managing more problems in the community is needed. One way of handling this is to set up clinics, meetings and huddles in GP surgeries where professionals involved (general practitioner, paediatrician, health visitor, community nurse, dietician, school nurse) come together and share information which can help improve communication and care. The increased awareness and education that paediatricians can impart in this way will help boost confidence for primary care professionals to be able to be more self-sufficient. This has been tried successfully in other regions e.g., St. Mary’s Hospital in London but is crucial for a more rural setting like ours. The primary aim of this project would be to educate specifically GP’s and generally all other health professionals involved. Additional benefits would be providing care nearer home, increasing patient’s confidence in their local surgery, improving communication and reducing unnecessary patient flow to already stretched hospital resources. Methods: This was done as a plan do study act cycle (PDSA). Three clinics were delivered in different practices over six months where feedback from staff and patients was collected. Designated time for teaching/discussion was used which involved some cases from the actual clinics. Both new and follow up patients were included. Two clinics were conducted by a paediatrician and nurse whilst the 3rd involved paediatrician and local doctor. The distance from hospital to clinics varied from two miles to 22 miles approximately. All equipment used was provided by primary care. Results: A total of 30 patients were seen. All patients found the location convenient as it was nearer than the hospital. 70-90% clearly understood the reason for a change in venue. 95% agreed to the importance of their local doctor being involved in their care. 20% needed to be seen in the hospital for further investigations. Patients felt this to be a more personalised, in-depth, friendly and polite experience. Local physicians felt this to be a more relaxed, familiar and local experience for their patients and they managed to get immediate feedback regarding their own clinical management. 90% felt they gained important learning from the discussion time and the paediatrician also learned about their understanding and gaps in knowledge/focus areas. 80% felt this time was valuable for targeted learning. Equipment, information technology, and office space could be improved for the smooth running of any future clinics. Conclusion: The acute paediatric outpatient clinic can be successfully established in primary care facilities. Careful patient selection and adequate facilities are important. We have demonstrated a further step in the reduction of patient flow to hospitals and upskilling primary care health professionals. This service is expected to become more efficient with experience.Keywords: clinics, education, paediatricians, primary care
Procedia PDF Downloads 1632381 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring
Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang
Abstract:
Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.Keywords: building, image matching, temperature, unmanned aerial vehicle
Procedia PDF Downloads 2922380 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice
Authors: Chiling Chen, Chiaoying Chou, Siyang Wu
Abstract:
Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy
Procedia PDF Downloads 3002379 The Interaction of Country-of-Manufacturing with Country-of-Design within Different Consumption Context
Authors: Ebru Genc, Shih-Ching Wang
Abstract:
In today’s globalized world, while companies move their production centers to developing countries in order to gain cost advantage, they receive negative responses from consumers because of the weak image of those countries. In this study, we looked at this tradeoff faced by multinational companies. Some companies that have headquarters in developed countries have devised a strategy of manipulating country-of-origin (COO) information by introducing the concept of country of design (COD). We analyzed the impact of country-of-manufacturing (COM) information on consumers’ product evaluation and purchase intention in the presence of different levels of COD information, namely, in terms of developed and developing countries. We found that it is not advantageous for a firm to publish a design location with a strong image if the firm is producing in a country that has a weak image. On the other hand, revealing COD information has a reinforcing effect on consumers’ product evaluation and purchase intention if the firm is producing in a country with a strong image. Second, we studied the impact of consumption context on this relationship (in terms of public or private use) and found that for products that are typically used in public, COM has significantly shown higher importance on product evaluation and purchase intention, compared to products typically used in private. However, our results show that consumption context shows no effect of an impact resulting from COD information.Keywords: consumption context, country of design, country of manufacturing, country of origin
Procedia PDF Downloads 2492378 Neural Rendering Applied to Confocal Microscopy Images
Authors: Daniel Li
Abstract:
We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing
Procedia PDF Downloads 6582377 Virtual Social Networks and the Formation of the Mental Image of Tehran Metro Vendors of Themselves
Authors: Seyed Alireza Mirmohammadi
Abstract:
Tehran Metro vendors are one of the working minorities in the capital, which is an essential cross-cultural case study. Today, with difficult economic conditions, subway vendors are increasing. Tehran metro vendors are in daily contact with many people in different metro stations. Due to the ban on their activities in this place and sometimes the humiliating look of some people, they experience special conditions compared to other people in the community. One of the most critical sources of shaping people's mentality toward their social status and identity in the media and, in the meantime, virtual social networks, due to various communication facilities such as Dualism and the possibility of high activity of users have a special place. Statistics have shown that virtual social networks have become an indispensable source of communication, information, and entertainment today. In this study, 15 semi-structured interviews were conducted with 15 metro vendors in Tehran about their membership in various virtual social networks and their mental perception of using them. The research results indicate that the obtained mentality of metro peddlers towards themselves is negative in virtual social networks, and they do not receive a good image of themselves in these networks.Keywords: metro, tehran, intercultural communication, metro vendors, self image
Procedia PDF Downloads 1162376 Sub-Pixel Mapping Based on New Mixed Interpolation
Authors: Zeyu Zhou, Xiaojun Bi
Abstract:
Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation
Procedia PDF Downloads 2292375 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods
Authors: Auday Al-Mayyahi, Phil Birch, William Wang
Abstract:
A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor
Procedia PDF Downloads 3022374 Performance Evaluation of a Very High-Resolution Satellite Telescope
Authors: Walid A. Attia, Taher M. Bazan, Fawzy Eltohamy, Mahmoud Fathy
Abstract:
System performance evaluation is an essential stage in the design of high-resolution satellite telescopes prior to the development process. In this paper, a system performance evaluation of a very high-resolution satellite telescope is investigated. The evaluated system has a Korsch optical scheme design. This design has been discussed in another paper with respect to three-mirror anastigmat (TMA) scheme design and the former configuration showed better results. The investigated system is based on the Korsch optical design integrated with a time-delay and integration charge coupled device (TDI-CCD) sensor to achieve a ground sampling distance (GSD) of 25 cm. The key performance metrics considered are the spatial resolution, the signal to noise ratio (SNR) and the total modulation transfer function (MTF) of the system. In addition, the national image interpretability rating scale (NIIRS) metric is assessed to predict the image quality according to the modified general image quality equation (GIQE). Based on the orbital, optical and detector parameters, the estimated GSD is found to be 25 cm. The SNR has been analyzed at different illumination conditions of target albedos, sun and sensor angles. The system MTF has been computed including diffraction, aberration, optical manufacturing, smear and detector sampling as the main contributors for evaluation the MTF. Finally, the system performance evaluation results show that the computed MTF value is found to be around 0.08 at the Nyquist frequency, the SNR value was found to be 130 at albedo 0.2 with a nadir viewing angles and the predicted NIIRS is in the order of 6.5 which implies a very good system image quality.Keywords: modulation transfer function, national image interpretability rating scale, signal to noise ratio, satellite telescope performance evaluation
Procedia PDF Downloads 3842373 A Preliminary Study of Local Customers' Perception towards the Image of the Spa and Their Intention to Visit
Authors: Felsy J. Sandi
Abstract:
There is a potential of growth in the spa industry due to the influx of domestic and international tourist coming to Sabah, Malaysia. It is a good opportunity to venture into this industry for the country’s economic future growth, and therefore, it is essential for this area to be researched. Being one of the fastest growing industries in the world, has led to enormous challenges, which need to be addressed. Malaysia is also riding with this phenomenon. The President of the Malaysian Association of Wellness and Spa stated that the misconception about the Spa industry’s image, especially amongst the elderly is the biggest challenge faced by the industry, as they perceived the spa industry is equivalent to a prostitution center. Therefore, the objective of this study is to explore the issue by analyzing whether image can be added in the theory of planned behavior to better understand the consumer’s intention to visit, in the spa context. The Theory of Planned Behavior by Ajzen, a theory or model in predicting intention, has three constructs; such as Attitude as the first construct, the second construct is Subjective Norm and the third construct is Perceived Behavioral Control. Qualitative research is used as this is an exploratory research. The site of study will be at Jari Jari Spa, located in Kota Kinabalu, the only spa in Sabah that was awarded as the Center of Excellence (CoE) by the Ministry of Tourism and Culture in Malaysia. The findings propose to provide useful information to the relevant stakeholders on ways to approach local customers to convince them to visit the spa and for spa marketers to help them develop and design effective marketing strategies. Future investigation should consider more on the perception and loyalty of the local customers.Keywords: consumer's perception, image, local customer, spa, visit intention
Procedia PDF Downloads 2702372 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 322371 Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level
Authors: Jefunnie Matahum, Yu-Chi Kuo, Chao-Ming Su, Tzong-Rong Ger
Abstract:
Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level.Keywords: magnetic nanoparticles, single cell, magnetophoresis, image analysis
Procedia PDF Downloads 3322370 Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials
Authors: Dingding Chen, Kazuo Arakawa, Masakazu Uchino, Changheng Xu
Abstract:
Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results show that 3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate.Keywords: digital image correlation, VARTM, FRP, fiber volume fraction
Procedia PDF Downloads 3422369 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: augmented reality framework, server-client model, vision-based tracking, image search
Procedia PDF Downloads 2752368 A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea
Authors: L. I. Izhar, T. Stathaki, K. Howell
Abstract:
Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved.Keywords: Blaschko’s lines, image registration, morphoea, thermal imaging
Procedia PDF Downloads 3102367 Developing Telehealth-Focused Advanced Practice Nurse Educational Partnerships
Authors: Shelley Y. Hawkins
Abstract:
Introduction/Background: As technology has grown exponentially in healthcare, nurse educators must prepare Advanced Practice Registered Nurse (APRN) graduates with the knowledge and skills in information systems/technology to support and improve patient care and health care systems. APRN’s are expected to lead in caring for populations who lack accessibility and availability through the use of technology, specifically telehealth. The capacity to effectively and efficiently use technology in patient care delivery is clearly delineated in the American Association of Colleges of Nursing (AACN) Doctor of Nursing Practice (DNP) and Master of Science in Nursing (MSN) Essentials. However, APRN’s have minimal, or no, exposure to formalized telehealth education and lack necessary technical skills needed to incorporate telehealth into their patient care. APRN’s must successfully master the technology using telehealth/telemedicine, electronic health records, health information technology, and clinical decision support systems to advance health. Furthermore, APRN’s must be prepared to lead the coordination and collaboration with other healthcare providers in their use and application. Aim/Goal/Purpose: The purpose of this presentation is to establish and operationalize telehealth-focused educational partnerships between one University School of Nursing and two health care systems in order to enhance the preparation of APRN NP students for practice, teaching, and/or scholarly endeavors. Methods: The proposed project was initially presented by the project director to selected multidisciplinary stakeholders including leadership, home telehealth personnel, primary care providers, and decision support systems within two major health care systems to garner their support for acceptance and implementation. Concurrently, backing was obtained from key university-affiliated colleagues including the Director of Simulation and Innovative Learning Lab and Coordinator of the Health Care Informatics Program. Technology experts skilled in design and production in web applications and electronic modules were secured from two local based technology companies. Results: Two telehealth-focused APRN Program academic/practice partnerships have been established. Students have opportunities to engage in clinically based telehealth experiences focused on: (1) providing patient care while incorporating various technology with a specific emphasis on telehealth; (2) conducting research and/or evidence-based practice projects in order to further develop the scientific foundation regarding incorporation of telehealth with patient care; and (3) participating in the production of patient-level educational materials related to specific topical areas. Conclusions: Evidence-based APRN student telehealth clinical experiences will assist in preparing graduates who can effectively incorporate telehealth into their clinical practice. Greater access for diverse populations will be available as a result of the telehealth service model as well as better care and better outcomes at lower costs. Furthermore, APRN’s will provide the necessary leadership and coordination through interprofessional practice by transforming health care through new innovative care models using information systems and technology.Keywords: academic/practice partnerships, advanced practice nursing, nursing education, telehealth
Procedia PDF Downloads 2422366 Cost Effective Real-Time Image Processing Based Optical Mark Reader
Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar
Abstract:
In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding
Procedia PDF Downloads 173