Search results for: numerical prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5442

Search results for: numerical prediction

4752 An Experimental Study on Service Life Prediction of Self: Compacting Concrete Using Sorptivity as a Durability Index

Authors: S. Girish, N. Ajay

Abstract:

Permeation properties have been widely used to quantify durability characteristics of concrete for assessing long term performance and sustainability. The processes of deterioration in concrete are mediated largely by water. There is a strong interest in finding a better way of assessing the material properties of concrete in terms of durability. Water sorptivity is a useful single material property which can be one of the measures of durability useful in service life planning and prediction, especially in severe environmental conditions. This paper presents the results of the comparative study of sorptivity of Self-Compacting Concrete (SCC) with conventionally vibrated concrete. SCC is a new, special type of concrete mixture, characterized by high resistance to segregation that can flow through intricate geometrical configuration in the presence of reinforcement, under its own mass, without vibration and compaction. SCC mixes were developed for the paste contents of 0.38, 0.41 and 0.43 with fly ash as the filler for different cement contents ranging from 300 to 450 kg/m3. The study shows better performance by SCC in terms of capillary absorption. The sorptivity value decreased as the volume of paste increased. The use of higher paste content in SCC can make the concrete robust with better densification of the micro-structure, improving the durability and making the concrete more sustainable with improved long term performance. The sorptivity based on secondary absorption can be effectively used as a durability index to predict the time duration required for the ingress of water to penetrate the concrete, which has practical significance.

Keywords: self-compacting concrete, service life prediction, sorptivity, volume of paste

Procedia PDF Downloads 306
4751 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 152
4750 Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube

Authors: M. Guen

Abstract:

A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers.

Keywords: conical vortex tube, temperature separation, cold mass fraction, turbulence

Procedia PDF Downloads 238
4749 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: concrete beam, FRP bars, spacing effect, thermal deformation

Procedia PDF Downloads 192
4748 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique

Authors: M. A. Ansari, A. Hussain, A. Uddin

Abstract:

A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.

Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir

Procedia PDF Downloads 146
4747 Numerical Simulation of Wishart Diffusion Processes

Authors: Raphael Naryongo, Philip Ngare, Anthony Waititu

Abstract:

This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility model

Keywords: euler schemes, log-asset return, infinitesimal generator, wishart diffusion affine processes

Procedia PDF Downloads 363
4746 Numerical Solution of a Mathematical Model of Vortex Using Projection Method: Applications to Tornado Dynamics

Authors: Jagdish Prasad Maurya, Sanjay Kumar Pandey

Abstract:

Inadequate understanding of the complex nature of flow features in tornado vortex is a major problem in modelling tornadoes. Tornadoes are violent atmospheric phenomenon that appear all over the world. Modelling tornadoes aim to reduce the loss of the human lives and material damage caused by the tornadoes. Dynamics of tornado is investigated by a numerical technique, the improved version of the projection method. In this paper, authors solve the problem for axisymmetric tornado vortex by the said method that uses a finite difference approach for getting an accurate and stable solution. The conclusions drawn are that large radial inflow velocity occurs near the ground that leads to increase the tangential velocity. The increased velocity phenomenon occurs close to the boundary and absolute maximum wind is obtained near the vortex core. The results validate previous numerical and theoretical models.

Keywords: computational fluid dynamics, mathematical model, Navier-Stokes equations, tornado

Procedia PDF Downloads 338
4745 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 223
4744 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method

Authors: M. O. Olayiwola

Abstract:

Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.

Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation

Procedia PDF Downloads 418
4743 Development of Variable Order Block Multistep Method for Solving Ordinary Differential Equations

Authors: Mohamed Suleiman, Zarina Bibi Ibrahim, Nor Ain Azeany, Khairil Iskandar Othman

Abstract:

In this paper, a class of variable order fully implicit multistep Block Backward Differentiation Formulas (VOBBDF) using uniform step size for the numerical solution of stiff ordinary differential equations (ODEs) is developed. The code will combine three multistep block methods of order four, five and six. The order selection is based on approximation of the local errors with specific tolerance. These methods are constructed to produce two approximate solutions simultaneously at each iteration in order to further increase the efficiency. The proposed VOBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with single order Block Backward Differentiation Formula (BBDF). Numerical results shows the advantage of using VOBBDF for solving ODEs.

Keywords: block backward differentiation formulas, uniform step size, ordinary differential equations

Procedia PDF Downloads 428
4742 Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects

Authors: Abraham Terán Salcedo, Didier Samayoa Ochoa

Abstract:

This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension.

Keywords: box-counting, digital image processing, fractal dimension, numerical method

Procedia PDF Downloads 69
4741 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: composite, fuzzy, tool life, wear

Procedia PDF Downloads 280
4740 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 28
4739 Real Time Detection, Prediction and Reconstitution of Rain Drops

Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim

Abstract:

The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.

Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared

Procedia PDF Downloads 399
4738 Numerical Methodology to Support the Development of a Double Chamber Syringe

Authors: Lourenço Bastos, Filipa Carneiro, Bruno Vale, Rita Marques Joana Silva, Ricardo Freitas, Ângelo Marques, Sara Cortez, Alberta Coelho, Pedro Parreira, Liliana Sousa, Anabela Salgueiro, Bruno Silva

Abstract:

The process of flushing is considered to be an adequate technique to reduce the risk of infection during the clinical practice of venous catheterization. Nonetheless, there is still a lack of adhesion to this method, in part due to the complexity of this procedure. The project SeringaDuo aimed to develop an innovative double-chamber syringe for intravenous sequential administration of drugs and serums. This device served the purpose of improving the adherence to the practice, through the reduction of manipulations needed, which also improves patient safety, and though the promotion of flushing practice by health professionals, by simplifying this task. To assist on the development of this innovative syringe, a numerical methodology was developed and validated in order to predict the syringe’s mechanical and flow behavior during the fluids’ loading and administration phases, as well as to allow the material behavior evaluation during its production. For this, three commercial numerical simulation software was used, namely ABAQUS, ANSYS/FLUENT, and MOLDFLOW. This methodology aimed to evaluate the concepts feasibility and to optimize the geometries of the syringe’s components, creating this way an iterative process for product development based on numerical simulations, validated by the production of prototypes. Through this methodology, it was possible to achieve a final design that fulfils all the characteristics and specifications defined. This iterative process based on numerical simulations is a powerful tool for product development that allows obtaining fast and accurate results without the strict need for prototypes. An iterative process can be implemented, consisting of consecutive constructions and evaluations of new concepts, to obtain an optimized solution, which fulfils all the predefined specifications and requirements.

Keywords: Venous catheterization, flushing, syringe, numerical simulation

Procedia PDF Downloads 147
4737 Nonlinear Triad Interactions in Magnetohydrodynamic Plasma Turbulence

Authors: Yasser Rammah, Wolf-Christian Mueller

Abstract:

Nonlinear triad interactions in incompressible three-dimensional magnetohydrodynamic (3D-MHD) turbulence are studied by analyzing data from high-resolution direct numerical simulations of decaying isotropic (5123 grid points) and forced anisotropic (10242 x256 grid points) turbulence. An accurate numerical approach toward analyzing nonlinear turbulent energy transfer function and triad interactions is presented. It involves the direct numerical examination of every wavenumber triad that is associated with the nonlinear terms in the differential equations of MHD in the inertial range of turbulence. The technique allows us to compute the spectral energy transfer and energy fluxes, as well as the spectral locality property of energy transfer function. To this end, the geometrical shape of each underlying wavenumber triad that contributes to the statistical transfer density function is examined to infer the locality of the energy transfer. Results show that the total energy transfer is local via nonlocal triad interactions in decaying macroscopically isotropic MHD turbulence. In anisotropic MHD, turbulence subject to a strong mean magnetic field the nonlinear transfer is generally weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel directions compared to the isotropic case. These results support the recent mathematical findings, which also claim the locality of nonlinear energy transfer in MHD turbulence.

Keywords: magnetohydrodynamic (MHD) turbulence, transfer density function, locality function, direct numerical simulation (DNS)

Procedia PDF Downloads 371
4736 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 391
4735 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 195
4734 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations

Authors: M. Y. Waziri, M. A. Aliyu

Abstract:

The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.

Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate

Procedia PDF Downloads 621
4733 Numerical Model for Investigation of Recombination Mechanisms in Graphene-Bonded Perovskite Solar Cells

Authors: Amir Sharifi Miavaghi

Abstract:

It is believed recombination mechnisms in graphene-bonded perovskite solar cells based on numerical model in which doped-graphene structures are employed as anode/cathode bonding semiconductor. Moreover, th‌‌‌‌e da‌‌‌‌‌rk-li‌‌‌‌‌ght c‌‌‌‌urrent d‌‌‌‌ens‌‌‌‌ity-vo‌‌‌‌‌‌‌ltage density-voltage cu‌‌‌‌‌‌‌‌‌‌‌rves are investigated by regression analysis. L‌‌‌oss m‌‌‌‌echa‌‌‌‌nisms suc‌‌‌h a‌‌‌‌‌‌s ba‌‌‌‌ck c‌‌‌ontact b‌‌‌‌‌arrier, d‌‌‌‌eep surface defect i‌‌‌‌n t‌‌‌‌‌‌‌he adsorbent la‌‌‌yer is det‌‌‌‌‌ermined b‌‌‌y adapting th‌‌‌e sim‌‌‌‌‌ulated ce‌‌‌‌‌ll perfor‌‌‌‌‌mance to t‌‌‌‌he measure‌‌‌‌ments us‌‌‌‌ing the diffe‌‌‌‌‌‌rential evolu‌‌‌‌‌tion of th‌‌‌‌e global optimization algorithm. T‌‌‌‌he performance of t‌‌‌he c‌‌‌‌ell i‌‌‌‌n the connection proc‌‌‌‌‌ess incl‌‌‌‌‌‌udes J-V cur‌‌‌‌‌‌ves that are examined at di‌‌‌‌‌fferent tempe‌‌‌‌‌‌‌ratures an‌‌‌d op‌‌‌‌en cir‌‌‌‌cuit vol‌‌‌‌tage (V) und‌‌‌‌er differ‌‌‌‌‌ent light intensities as a function of temperature. Ba‌‌‌‌sed o‌‌‌n t‌‌‌he prop‌‌‌‌osed nu‌‌‌‌‌merical mod‌‌‌‌el a‌‌‌‌nd the acquired lo‌‌‌‌ss mecha‌‌‌‌‌‌nisms, our approach can be used to improve the efficiency of the solar cell further. Due to the high demand for alternative energy sources, solar cells are good alternatives for energy storage using the photovoltaic phenomenon.

Keywords: numerical model, recombination mechanism, graphen, perovskite solarcell

Procedia PDF Downloads 54
4732 Assessing the Efficiency of Pre-Hospital Scoring System with Conventional Coagulation Tests Based Definition of Acute Traumatic Coagulopathy

Authors: Venencia Albert, Arulselvi Subramanian, Hara Prasad Pati, Asok K. Mukhophadhyay

Abstract:

Acute traumatic coagulopathy in an endogenous dysregulation of the intrinsic coagulation system in response to the injury, associated with three-fold risk of poor outcome, and is more amenable to corrective interventions, subsequent to early identification and management. Multiple definitions for stratification of the patients' risk for early acute coagulopathy have been proposed, with considerable variations in the defining criteria, including several trauma-scoring systems based on prehospital data. We aimed to develop a clinically relevant definition for acute coagulopathy of trauma based on conventional coagulation assays and to assess its efficacy in comparison to recently established prehospital prediction models. Methodology: Retrospective data of all trauma patients (n = 490) presented to our level I trauma center, in 2014, was extracted. Receiver operating characteristic curve analysis was done to establish cut-offs for conventional coagulation assays for identification of patients with acute traumatic coagulopathy was done. Prospectively data of (n = 100) adult trauma patients was collected and cohort was stratified by the established definition and classified as "coagulopathic" or "non-coagulopathic" and correlated with the Prediction of acute coagulopathy of trauma score and Trauma-Induced Coagulopathy Clinical Score for identifying trauma coagulopathy and subsequent risk for mortality. Results: Data of 490 trauma patients (average age 31.85±9.04; 86.7% males) was extracted. 53.3% had head injury, 26.6% had fractures, 7.5% had chest and abdominal injury. Acute traumatic coagulopathy was defined as international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s. Of the 100 adult trauma patients (average age 36.5±14.2; 94% males), 63% had early coagulopathy based on our conventional coagulation assay definition. Overall prediction of acute coagulopathy of trauma score was 118.7±58.5 and trauma-induced coagulopathy clinical score was 3(0-8). Both the scores were higher in coagulopathic than non-coagulopathic patients (prediction of acute coagulopathy of trauma score 123.2±8.3 vs. 110.9±6.8, p-value = 0.31; trauma-induced coagulopathy clinical score 4(3-8) vs. 3(0-8), p-value = 0.89), but not statistically significant. Overall mortality was 41%. Mortality rate was significantly higher in coagulopathic than non-coagulopathic patients (75.5% vs. 54.2%, p-value = 0.04). High prediction of acute coagulopathy of trauma score also significantly associated with mortality (134.2±9.95 vs. 107.8±6.82, p-value = 0.02), whereas trauma-induced coagulopathy clinical score did not vary be survivors and non-survivors. Conclusion: Early coagulopathy was seen in 63% of trauma patients, which was significantly associated with mortality. Acute traumatic coagulopathy defined by conventional coagulation assays (international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s) demonstrated good ability to identify coagulopathy and subsequent mortality, in comparison to the prehospital parameter-based scoring systems. Prediction of acute coagulopathy of trauma score may be more suited for predicting mortality rather than early coagulopathy. In emergency trauma situations, where immediate corrective measures need to be taken, complex multivariable scoring algorithms may cause delay, whereas coagulation parameters and conventional coagulation tests will give highly specific results.

Keywords: trauma, coagulopathy, prediction, model

Procedia PDF Downloads 166
4731 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 92
4730 Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator

Authors: Aimad Koulali

Abstract:

Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance.

Keywords: finte element method, deformable vortex generator, numerical analysis, fluid structure interaction, ALE formlation, turbulent flow

Procedia PDF Downloads 88
4729 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 139
4728 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 221
4727 Impacts on the Modification of a Two-Blade Mobile on the Agitation of Newtonian Fluids

Authors: Abderrahim Sidi Mohammed Nekrouf, Sarra Youcefi

Abstract:

Fluid mixing plays a crucial role in numerous industries as it has a significant impact on the final product quality and performance. In certain cases, the circulation of viscous fluids presents challenges, leading to the formation of stagnant zones. To overcome this issue, stirring devices are employed for fluid mixing. This study focuses on a numerical analysis aimed at understanding the behavior of Newtonian fluids when agitated by a two-blade agitator in a cylindrical vessel. We investigate the influence of the agitator shape on fluid motion. Bi-blade agitators of this type are commonly used in the food, cosmetic, and chemical industries to agitate both viscous and non-viscous liquids. Numerical simulations were conducted using Computational Fluid Dynamics (CFD) software to obtain velocity profiles, streamlines, velocity contours, and the associated power number. The obtained results were compared with experimental data available in the literature, validating the accuracy of our numerical approach. The results clearly demonstrate that modifying the agitator shape has a significant impact on fluid motion. This modification generates an axial flow that enhances the efficiency of the fluid flow. The various velocity results convincingly reveal that the fluid is more uniformly agitated with this modification, resulting in improved circulation and a substantial reduction in stagnant zones.

Keywords: Newtonian fluids, numerical modeling, two blade., CFD

Procedia PDF Downloads 58
4726 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 78
4725 The Influence of the Discharge Point Position on the Pollutant Dispersion

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Said, Hervé Bournot, Georges Le Palec

Abstract:

The distribution characteristics of pollutants released at different vertical inlet positions of an open channel are investigated with a three-dimensional numerical model. Pollutants are injected from time-dependent sources in a turbulent free surface flow. Numerical computations were carried out using ANSYS Fluent which is based on the finite volume approach. The air/water interface was modeled with the volume of the fluid method (VOF). By focusing on investigating the influences of flow on pollutants, it is found that pollutant released from the bottom position of the channel takes more time to disperse in the longitudinal direction of the flow in comparison with the case of pollutant released near the free surface. On the other hand, the pollutant released from the bottom position generates a vertical dispersion with decreased amplitude. These findings may assist in cost-effective scientific countermeasures to be taken for accident or planned pollutant discharged into a river.

Keywords: numerical simulation, pollutant release, turbulent free surface flow, VOF model

Procedia PDF Downloads 496
4724 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat

Authors: Amit Kumar Verma

Abstract:

The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.

Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL

Procedia PDF Downloads 340
4723 Numerical Modeling of Air Pollution with PM-Particles and Dust

Authors: N. Gigauri, A. Surmava, L. Intskirveli, V. Kukhalashvili, S. Mdivani

Abstract:

The subject of our study is atmospheric air pollution with numerical modeling. In the presented article, as the object of research, there is chosen city Tbilisi, the capital of Georgia, with a population of one and a half million and a difficult terrain. The main source of pollution in Tbilisi is currently vehicles and construction dust. The concentrations of dust and PM (Particulate Matter) were determined in the air of Tbilisi and in its vicinity. There are estimated their monthly maximum, minimum, and average concentrations. Processes of dust propagation in the atmosphere of the city and its surrounding territory are modelled using a 3D regional model of atmospheric processes and an admixture transfer-diffusion equation. There were taken figures of distribution of the polluted cloud and dust concentrations in different areas of the city at different heights and at different time intervals with the background stationary westward and eastward wind. It is accepted that the difficult terrain and mountain-bar circulation affect the deformation of the cloud and its spread, there are determined time periods when the dust concentration in the city is greater than MAC (Maximum Allowable Concentration, MAC=0.5 mg/m³).

Keywords: air pollution, dust, numerical modeling, PM-particles

Procedia PDF Downloads 123