Search results for: genetic components
4822 Growth Curves Genetic Analysis of Native South Caspian Sea Poultry Using Bayesian Statistics
Authors: Jamal Fayazi, Farhad Anoosheh, Mohammad R. Ghorbani, Ali R. Paydar
Abstract:
In this study, to determine the best non-linear regression model describing the growth curve of native poultry, 9657 chicks of generations 18, 19, and 20 raised in Mazandaran breeding center were used. Fowls and roosters of this center distributed in south of Caspian Sea region. To estimate the genetic variability of none linear regression parameter of growth traits, a Gibbs sampling of Bayesian analysis was used. The average body weight traits in the first day (BW1), eighth week (BW8) and twelfth week (BW12) were respectively estimated as 36.05, 763.03, and 1194.98 grams. Based on the coefficient of determination, mean squares of error and Akaike information criteria, Gompertz model was selected as the best growth descriptive function. In Gompertz model, the estimated values for the parameters of maturity weight (A), integration constant (B) and maturity rate (K) were estimated to be 1734.4, 3.986, and 0.282, respectively. The direct heritability of BW1, BW8 and BW12 were respectively reported to be as 0.378, 0.3709, 0.316, 0.389, 0.43, 0.09 and 0.07. With regard to estimated parameters, the results of this study indicated that there is a possibility to improve some property of growth curve using appropriate selection programs.Keywords: direct heritability, Gompertz, growth traits, maturity weight, native poultry
Procedia PDF Downloads 2644821 Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots
Authors: Hossein Keshavarz, Alejandro Ramirez-Serrano
Abstract:
Energy efficiency and locomotion speed are two key parameters for legged robots; thus, finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot’s hind legs.Keywords: genetic algorithm optimization, locomotion path planning, quadruped robots, redundant legs
Procedia PDF Downloads 1044820 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes
Authors: Stefan Papastefanou
Abstract:
Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability
Procedia PDF Downloads 1084819 Body Mass Components in Young Soccer Players
Authors: Elizabeta Sivevska, Sunchica Petrovska, Vaska Antevska, Lidija Todorovska, Sanja Manchevska, Beti Dejanova, Ivanka Karagjozova, Jasmina Pluncevic Gligoroska
Abstract:
Introduction: Body composition plays an important role in the selection of young soccer players and it is associated with their successful performance. The most commonly used model of body composition divides the body into two compartments: fat components and fat-free mass (muscular and bone components). The aims of the study were to determine the body composition parameters of young male soccer players and to show the differences in age groups. Material and methods: A sample of 52 young male soccer players, with an age span from 9 to 14 years were divided into two groups according to the age (group 1 aged 9 to 12 years and group 2 aged 12 to 14 years). Anthropometric measurements were taken according to the method of Mateigka. The following measurements were made: body weight, body height, circumferences (arm, forearm, thigh and calf), diameters (elbow, knee, wrist, ankle) and skinfold thickness (biceps, triceps, thigh, leg, chest, abdomen). The measurements were used in Mateigka’s equations. Results: Body mass components were analyzed as absolute values (in kilograms) and as percentage values: the muscular component (MC kg and MC%), the bone component (BCkg and BC%) and the body fat (BFkg and BF%). The group up to 12 years showed the following mean values of the analyzed parameters: MM=21.5kg; MM%=46.3%; BC=8.1kg; BC%=19.1%; BF= 6.3kg; BF%= 15.7%. The second group aged 12-14 year had mean values of body composition parameters as follows: MM=25.6 kg; MM%=48.2%; BC = 11.4 kg; BC%=21.6%; BF= 8.5 kg; BF%= 14. 7%. Conclusions: The young soccer players aged 12 up to 14 years who are in the pre-pubertal phase of growth and development had higher bone component (p<0.05) compared to younger players. There is no significant difference in muscular and fat body component between the two groups of young soccer players.Keywords: body composition, young soccer players, body fat, fat-free mass
Procedia PDF Downloads 4584818 Model Based Design of Fly-by-Wire Flight Controls System of a Fighter Aircraft
Authors: Nauman Idrees
Abstract:
Modeling and simulation during the conceptual design phase are the most effective means of system testing resulting in time and cost savings as compared to the testing of hardware prototypes, which are mostly not available during the conceptual design phase. This paper uses the model-based design (MBD) method in designing the fly-by-wire flight controls system of a fighter aircraft using Simulink. The process begins with system definition and layout where modeling requirements and system components were identified, followed by hierarchical system layout to identify the sequence of operation and interfaces of system with external environment as well as the internal interface between the components. In the second step, each component within the system architecture was modeled along with its physical and functional behavior. Finally, all modeled components were combined to form the fly-by-wire flight controls system of a fighter aircraft as per system architecture developed. The system model developed using this method can be simulated using any simulation software to ensure that desired requirements are met even without the development of a physical prototype resulting in time and cost savings.Keywords: fly-by-wire, flight controls system, model based design, Simulink
Procedia PDF Downloads 1174817 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques
Authors: Bhrugesh Radadiya, Jaydeep Shah
Abstract:
In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm
Procedia PDF Downloads 7284816 Effects of Environmental and Genetic Factors on Growth Performance, Fertility Traits and Milk Yield/Composition in Saanen Goats
Authors: Deniz Dincel, Sena Ardicli, Hale Samli, Mustafa Ogan, Faruk Balci
Abstract:
The aim of the study was to determine the effects of some environmental and genetic factors on growth, fertility traits, milk yield and composition in Saanen goats. For this purpose, the total of 173 Saanen goats and kids were investigated for growth, fertility and milk traits in Marmara Region of Turkey. Fertility parameters (n=70) were evaluated during two years. Milk samples were collected during the lactation and the milk yield/components (n=59) of each goat were calculated. In terms of CSN3 and AGPAT6 gene; the genotypes were defined by PCR-RFLP. Saanen kids (n=86-112) were measured from birth to 6 months of life. The birth, weaning, 60ᵗʰ, 90ᵗʰ, 120ᵗʰ and 180tᵗʰ days of average live weights were calculated. The effects of maternal age on pregnancy rate (p < 0.05), birth rate (p < 0.05), infertility rate (p < 0.05), single born kidding (p < 0.001), twinning rate (p < 0.05), triplet rate (p < 0.05), survival rate of kids until weaning (p < 0.05), number of kids per parturition (p < 0.01) and number of kids per mating (p < 0.01) were found significant. The impacts of year on birth rate (p < 0.05), abortion rate (p < 0.001), single born kidding (p < 0.01), survival rate of kids until weaning (p < 0.01), number of kids per mating (p < 0.01) were found significant for fertility traits. The impacts of lactation length on all milk yield parameters (lactation milk, protein, fat, totally solid, solid not fat, casein and lactose yield) (p < 0.001) were found significant. The effects of age on all milk yield parameters (lactation milk, protein, fat, total solid, solid not fat, casein and lactose yield) (p < 0.001), protein rate (p < 0.05), fat rate (p < 0.05), total solid rate (p < 0.01), solid not fat rate (p < 0.05), casein rate (p < 0.05) and lactation length (p < 0.01), were found significant too. However, the effect of AGPAT6 gene on milk yield and composition was not found significant in Saanen goats. The herd was found monomorphic (FF) for CSN3 gene. The effects of sex on live weights until 90ᵗʰ days of life (birth, weaning and 60ᵗʰ day of average weight) were found significant statistically (p < 0.001). The maternal age affected only birth weight (p < 0,001). The effects month at birth on all of the investigated day [the birth, 120ᵗʰ, 180ᵗʰ days (p < 0.05); the weaning, 60ᵗʰ, 90ᵗʰ days (p < 0,001)] were found significant. The birth type was found significant on the birth (p < 0,001), weaning (p < 0,01), 60ᵗʰ (p < 0,01) and 90ᵗʰ (p < 0,01) days of average live weights. As a result, screening the other regions of CSN3, AGPAT6 gene and also investigation the phenotypic association of them should be useful to clarify the efficiency of target genes. Environmental factors such as maternal age, year, sex and birth type were found significant on some growth, fertility and milk traits in Saanen goats. So consideration of these factors could be used as selection criteria in dairy goat breeding.Keywords: fertility, growth, milk yield, Saanen goats
Procedia PDF Downloads 1664815 Analysis of the AZF Region in Slovak Men with Azoospermia
Authors: J. Bernasovská, R. Lohajová Behulová, E. Petrejčiková, I. Boroňová, I. Bernasovský
Abstract:
Y chromosome microdeletions are the most common genetic cause of male infertility and screening for these microdeletions in azoospermic or severely oligospermic men is now standard practice. Analysis of the Y chromosome in men with azoospermia or severe oligozoospermia has resulted in the identification of three regions in the euchromatic part of the long arm of the human Y chromosome (Yq11) that are frequently deleted in men with otherwise unexplained spermatogenic failure. PCR analysis of microdeletions in the AZFa, AZFb and AZFc regions of the human Y chromosome is an important screening tool. The aim of this study was to analyse the type of microdeletions in men with fertility disorders in Slovakia. We evaluated 227 patients with azoospermia and with normal karyotype. All patient samples were analyzed cytogenetically. For PCR amplification of sequence-tagged sites (STS) of the AZFa, AZFb and AZFc regions of the Y chromosome was used Devyser AZF set. Fluorescently labeled primers for all markers in one multiplex PCR reaction were used and for automated visualization and identification of the STS markers we used genetic analyzer ABi 3500xl (Life Technologies). We reported 13 cases of deletions in the AZF region 5,73%. Particular types of deletions were recorded in each region AZFa,b,c .The presence of microdeletions in the AZFc region was the most frequent. The study confirmed that percentage of microdeletions in the AZF region is low in Slovak azoospermic patients, but important from a prognostic view.Keywords: AZF, male infertility, microdeletions, Y chromosome
Procedia PDF Downloads 3734814 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm
Procedia PDF Downloads 1234813 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems
Authors: Mohammad Mohammadzadeh, Alireza Ghasempour
Abstract:
In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm
Procedia PDF Downloads 2994812 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller
Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan
Abstract:
Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller
Procedia PDF Downloads 4834811 The Effect of MOOC-Based Distance Education in Academic Engagement and Its Components on Kerman University Students
Authors: Fariba Dortaj, Reza Asadinejad, Akram Dortaj, Atena Baziyar
Abstract:
The aim of this study was to determine the effect of distance education (based on MOOC) on the components of academic engagement of Kerman PNU. The research was quasi-experimental method that cluster sampling with an appropriate volume was used in this study (one class in experimental group and one class in controlling group). Sampling method is single-stage cluster sampling. The statistical society is students of Kerman Payam Noor University, which) were selected 40 of them as sample (20 students in the control group and 20 students in experimental group). To test the hypothesis, it was used the analysis of univariate and Co-covariance to offset the initial difference (difference of control) in the experimental group and the control group. The instrument used in this study is academic engagement questionnaire of Zerang (2012) that contains component of cognitive, behavioral and motivational engagement. The results showed that there is no significant difference between mean scores of academic components of academic engagement in experimental group and the control group on the post-test, after elimination of the pre-test. The adjusted mean scores of components of academic engagement in the experimental group were higher than the adjusted average of scores after the test in the control group. The use of technology-based education in distance education has been effective in increasing cognitive engagement, motivational engagement and behavioral engagement among students. Experimental variable with the effect size 0.26, predicted 26% of cognitive engagement component variance. Experimental variable with the effect size 0.47, predicted 47% of the motivational engagement component variance. Experimental variable with the effect size 0.40, predicted 40% of behavioral engagement component variance. So teaching with technology (MOOC) has a positive impact on increasing academic engagement and academic performance of students in educational technology. The results suggest that technology (MOOC) is used to enrich the teaching of other lessons of PNU.Keywords: educational technology, distance education, components of academic engagement, mooc technology
Procedia PDF Downloads 1494810 Development of AUTOSAR Software Components of MDPS System
Authors: Jae-Woo Kim, Kyung-Joong Lee, Hyun-Sik Ahn
Abstract:
This paper describes the development of a Motor-Driven Power Steering (MDPS) system using Automotive Open System Architecture (AUTOSAR) methodology. The MDPS system is a new power steering technology for vehicles and it can enhance driver’s convenience and fuel efficiency. AUTOSAR defines common standards for the implementation of embedded automotive software. Some aspects of safety and timing requirements are analyzed. Through the AUTOSAR methodology, the embedded software becomes more flexible, reusable and maintainable than ever. Hence, we first design software components (SW-C) for MDPS control based on AUTOSAR and implement SW-Cs for MDPS control using authoring tool following AUTOSAR standards.Keywords: AUTOSAR, MDPS, simulink, software component
Procedia PDF Downloads 3504809 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search
Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek
Abstract:
Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling
Procedia PDF Downloads 3624808 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef
Abstract:
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 2674807 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery
Authors: Chun-Lang Chang, Chun-Kai Liu
Abstract:
In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery
Procedia PDF Downloads 3224806 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling
Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal
Abstract:
It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability
Procedia PDF Downloads 2974805 A Genetic Identification of Candida Species Causing Intravenous Catheter-Associated Candidemia in Heart Failure Patients
Authors: Seyed Reza Aghili, Tahereh Shokohi, Shirin Sadat Hashemi Fesharaki, Mohammad Ali Boroumand, Bahar Salmanian
Abstract:
Introduction: Intravenous catheter-associated fungal infection as nosocomial infection continue to be a deep problem among hospitalized patients, decreasing quality of life and adding healthcare costs. The capacity of catheters in the spread of candidemia in heart failure patients is obvious. The aim of this study was to evaluate the prevalence and genetic identification of Candida species in heart disorder patients. Material and Methods: This study was conducted in Tehran Hospital of Cardiology Center (Tehran, Iran, 2014) during 1.5 years on the patients hospitalized for at least 7 days and who had central or peripheral vein catheter. Culture of catheters, blood and skin of the location of catheter insertion were applied for detecting Candida colonies in 223 patients. Identification of Candida species was made on the basis of a combination of various phenotypic methods and confirmed by sequencing the ITS1-5.8S-ITS2 region amplified from the genomic DNA using PCR and the NCBI BLAST. Results: Of the 223 patients samples tested, we identified totally 15 Candida isolates obtained from 9 (4.04%) catheter cultures, 3 (1.35%) blood cultures and 2 (0.90%) skin cultures of the catheter insertion areas. On the base of ITS region sequencing, out of nine Candida isolates from catheter, 5(55.6%) C. albicans, 2(22.2%) C. glabrata, 1(11.1%) C. membranifiaciens and 1 (11.1%) C. tropicalis were identified. Among three Candida isolates from blood culture, C. tropicalis, C. carpophila and C. membranifiaciens were identified. Non-candida yeast isolated from one blood culture was Cryptococcus albidus. One case of C. glabrata and one case of Candida albicans were isolated from skin culture of the catheter insertion areas in patients with positive catheter culture. In these patients, ITS region of rDNA sequence showed a similarity between Candida isolated from the skin and catheter. However, the blood samples of these patients were negative for fungal growth. We report two cases of catheter-related candidemia caused by C. membranifiaciens and C. tropicalis on the base of genetic similarity of species isolated from blood and catheter which were treated successfully with intravenous fluconazole and catheter removal. In phenotypic identification methods, we could only identify C. albicans and C. tropicalis and other yeast isolates were diagnosed as Candida sp. Discussion: Although more than 200 species of Candida have been identified, only a few cause diseases in humans. There is some evidence that non-albicans infections are increasing. Many risk factors, including prior antibiotic therapy, use of a central venous catheter, surgery, and parenteral nutrition are considered to be associated with candidemia in hospitalized heart failure patients. Identifying the route of infection in candidemia is difficult. Non-albicans candida as the cause of candidemia is increasing dramatically. By using conventional method, many non-albicans isolates remain unidentified. So, using more sensitive and specific molecular genetic sequencing to clarify the aspects of epidemiology of the unknown candida species infections is essential. The positive blood and catheter cultures for candida isolates and high percentage of similarity of their ITS region of rDNA sequence in these two patients confirmed the diagnosis of intravenous catheter-associated candidemia.Keywords: catheter-associated infections, heart failure patient, molecular genetic sequencing, ITS region of rDNA, Candidemia
Procedia PDF Downloads 3314804 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1114803 Scheduling of Cross-Docking Center: An Auction-Based Algorithm
Authors: Eldho Paul, Brijesh Paul
Abstract:
This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres.Keywords: auction mechanism, cross-docking centre, genetic algorithm, scheduling of trucks
Procedia PDF Downloads 4124802 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques
Authors: Amir Peyman Soleymani, Jasna Jankovic
Abstract:
The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations
Procedia PDF Downloads 1544801 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load
Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova
Abstract:
The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution
Procedia PDF Downloads 3004800 Case Study: Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.Keywords: cash flow optimization, payment plan, procurement management, subcontracting plan
Procedia PDF Downloads 1314799 Opto-Mechanical Characterization of Aspheric Lenses from the Hybrid Method
Authors: Aliouane Toufik, Hamdi Amine, Bouzid Djamel
Abstract:
Aspheric optical components are an alternative to the use of conventional lenses in the implementation of imaging systems for the visible range. Spherical lenses are capable of producing aberrations. Therefore, they are not able to focus all the light into a single point. Instead, aspherical lenses correct aberrations and provide better resolution even with compact lenses incorporating a small number of lenses. Metrology of these components is very difficult especially when the resolution requirements increase and insufficient or complexity of conventional tools requires the development of specific approaches to characterization. This work is part of the problem existed because the objectives are the study and comparison of different methods used to measure surface rays hybrid aspherical lenses.Keywords: manufacture of lenses, aspherical surface, precision molding, radius of curvature, roughness
Procedia PDF Downloads 4674798 Evaluation of Genetic Diversity for Salt Stress in Maize Hybrids (Zea Mays L.) at Seedling Stage
Authors: Abdu Qayyum, Hafiz Muhammad Saeed, Mamoona Hanif, Etrat Noor, Waqas Malik, Shoaib Liaqat
Abstract:
Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germ plasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure.Keywords: salinity, hybrids, maize, variation
Procedia PDF Downloads 7224797 Application of Biosensors in Forensic Analysis
Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani
Abstract:
Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.Keywords: biosensors, forensic analysis, biological fluid, crime detection
Procedia PDF Downloads 11174796 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3324795 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks
Procedia PDF Downloads 4454794 Agricultural Biotechnology Crop Improvement
Authors: Mohsen Rezaei Aghdam
Abstract:
Recombinant DNA technology has meaningfully augmented the conventional crop improvement and has a great possibility to contribution plant breeders to encounter the augmented food request foretold for the 21st century. Predictable changes in weather and its erraticism, chiefly extreme fevers and vicissitudes in rainfall are expected to brand crop upgrading even more vital for food manufacture. Tissue attitude has been downtrodden to create genetic erraticism from which harvest plants can be better, to improve the state of health of the recognized physical and to upsurge the number of wanted germplasms obtainable to the plant breeder. This appraisal delivers an impression of the chances obtainable by the integration of vegetable biotechnology into plant development efforts and increases some of the social subjects that need to be considered in their application. Public-private companies offer chances to catalyze new approaches and investment while accelerating integrated research and development and commercial supply chain-based solutions. Novel varieties derivative by encouraged mutatgenesis are used commonly: rice in Thailand. These paper combinations obtainable data about the influence of change breeding-derived crop changes around the world, traveler magnetism the possibility of mutation upbringing as a flexible and feasible approach appropriate to any crop if that suitable objectives and selection approaches are used.Keywords: crop, improve, genetic, agricultural
Procedia PDF Downloads 1674793 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output
Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin
Abstract:
With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.Keywords: channel estimation, LMMSE, LS, MIMO, MMSE
Procedia PDF Downloads 191