Search results for: gambling decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4034

Search results for: gambling decision

3344 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 96
3343 Exploring Perceptions of Non-Energy Benefits and Energy Efficiency Investment in the Malaysian Industrial Sector

Authors: Siti Noor Baiti Binti Mustafa

Abstract:

Energy management studies regarding energy efficiency investments in Malaysia has yet to address the lack of empirical research that examines pro- sustainability behavior of managers in the industrial sector and how it influences energy efficiency investment decision-making. This study adopts the Theory of Planned Behavior (TPB) to examine the relationship between personal attitude, subjective norms, and perceived behavioral control (PBC), the intention of energy efficiency investments, and how perceptions of Non-Energy Benefits (NEB) influence these intentions among managers in the industrial sector in Malaysia. Managers from various sub-sectors in the industrial sector were selected from a sample of companies that are participants of the Government-led program named the Energy Audit Conditional Grant (EACG) that aimed to promote energy efficiency. Data collection was conducted through an online semi-structured, open-ended questionnaire and then later interviewed. The results of this explorative sequential qualitative study showed that perceived behavioral control was a significant predictor of energy efficiency investment intentions as compared to factors such as attitude and subjective norms. The level of awareness and perceptions towards NEB further played a significant factor in influencing energy efficiency investment decision-making as well. Various measures and policy recommendations are provided together with insights on factors that influence decision-makers intention to invest in energy efficiency, whilst new knowledge on NEB perceptions will be useful to enhance the attractiveness of energy-efficient investments.

Keywords: energy efficiency investments, non-energy benefits, theory of planned behavior, personal attitude, subjective norms, perceived behavioral control, Malaysia industrial sector

Procedia PDF Downloads 126
3342 An Exploration of Cross-culture Consumer Behaviour - The Characteristics of Chinese Consumers’ Decision Making in Europe

Authors: Yongsheng Guo, Xiaoxian Zhu, Mandella Osei-Assibey Bonsu

Abstract:

This study explores the effects of national culture on consumer behaviour by identifying the characteristics of Chinese consumers’ decision making in Europe. It offers a better understanding of how cultural factors affect consumers’ behaviour, and how consumers make decisions in other nations with different culture. It adopted a grounded theory approach and conducted twenty-four in-depth interviews. Grounded theory models are developed to link the causal conditions, process and consequences. Results reveal that some cultural factors including conservatism, emotionality, acquaintance community, long-term orientation and principles affect Chinese consumers when making purchase decisions in Europe. Most Chinese consumers plan and prepare their expenditure and stay in Europe as cultural learners, and purchase durable products or assets as investment, and share their experiences within a community. This study identified potential problems such as political and social environment, complex procedures, and restrictions. This study found that external factors influence on internal factors and then internal characters determine consumer behaviour. This study proposes that cultural traits developed in convergence evolution through social selection and Chinese consumers persist most characters but adapt some perceptions and actions overtime in other countries. This study suggests that cultural marketing could be adopted by companies to reflect consumers’ preferences. Agencies, shops, and the authorities could take actions to reduce the complexity and restrictions.

Keywords: national culture, consumer behaviour, decision making, cultural marketing

Procedia PDF Downloads 94
3341 Long Term Examination of the Profitability Estimation Focused on Benefits

Authors: Stephan Printz, Kristina Lahl, René Vossen, Sabina Jeschke

Abstract:

Strategic investment decisions are characterized by high innovation potential and long-term effects on the competitiveness of enterprises. Due to the uncertainty and risks involved in this complex decision making process, the need arises for well-structured support activities. A method that considers cost and the long-term added value is the cost-benefit effectiveness estimation. One of those methods is the “profitability estimation focused on benefits – PEFB”-method developed at the Institute of Management Cybernetics at RWTH Aachen University. The method copes with the challenges associated with strategic investment decisions by integrating long-term non-monetary aspects whilst also mapping the chronological sequence of an investment within the organization’s target system. Thus, this method is characterized as a holistic approach for the evaluation of costs and benefits of an investment. This participation-oriented method was applied to business environments in many workshops. The results of the workshops are a library of more than 96 cost aspects, as well as 122 benefit aspects. These aspects are preprocessed and comparatively analyzed with regards to their alignment to a series of risk levels. For the first time, an accumulation and a distribution of cost and benefit aspects regarding their impact and probability of occurrence are given. The results give evidence that the PEFB-method combines precise measures of financial accounting with the incorporation of benefits. Finally, the results constitute the basics for using information technology and data science for decision support when applying within the PEFB-method.

Keywords: cost-benefit analysis, multi-criteria decision, profitability estimation focused on benefits, risk and uncertainty analysis

Procedia PDF Downloads 445
3340 Against the Idea of Public Power as Free Will

Authors: Donato Vese

Abstract:

According to the common interpretation, in a legal system, public powers are established by law. Exceptions are admitted in an emergency or particular relationship with public power. However, we currently agree that law allows public administration a margin of decision, even in the case of non-discretionary acts. Hence, the administrative decision not exclusively established by law becomes the rule in the ordinary state of things, non-only in state of exception. This paper aims to analyze and discuss different ideas on discretionary power on the Rule of Law and Rechtsstaat. Observing the legal literature in Europe and Nord and South America, discretionary power can be described as follow: it could be considered a margin that law accords to the executive power for political decisions or a choice between different interpretations of vague legal previsions. In essence, this explanation admits for the executive a decision not established by law or anyhow not exclusively established by law. This means that the discretionary power of public administration integrates the law. However, integrating law does not mean to decide according to the law, but it means to integrate law with a decision involving public power. Consequently, discretionary power is essentially free will. In this perspective, also the Rule of Law and the Rechtsstaat are notions explained differently. Recently, we can observe how the European notion of Rechtsstaat is founded on the formal validity of the law; therefore, for this notion, public authority’s decisions not regulated by law represent a problem. Thus, different systems of law integration have been proposed in legal literature, such as values, democracy, reasonableness, and so on. This paper aims to verify how, looking at those integration clauses from a logical viewpoint, integration based on the recourse to the legal system itself does not resolve the problem. The aforementioned integration clauses are legal rules that require hard work to explain the correct meaning of the law; in particular, they introduce dangerous criteria in favor of the political majority. A different notion of public power can be proposed. This notion includes two main features: (a) sovereignty belongs to persons and not the state, and (b) fundamental rights are not grounded but recognized by Constitutions. Hence, public power is a system based on fundamental rights. According to this approach, it can also be defined as the notion of public interest as concrete maximization of fundamental rights enjoyments. Like this, integration of the law, vague or subject to several interpretations, must be done by referring to the system of fundamental individual rights. We can think, for instance, to fundamental rights that are right in an objective view but not legal because not established by law.

Keywords: administrative discretion, free will, fundamental rights, public power, sovereignty

Procedia PDF Downloads 110
3339 Applying Risk Taking in Islamic Finance: A Fiqhī Viewpoint

Authors: Mohamed Fairooz Abdul Khir

Abstract:

The linkage between liability for risk and legitimacy of reward is a governing principle that must be fully observed in financial transactions. It is the cornerstone of any Islamic business or financial deal. The absence of risk taking principle may give rise to numerous prohibited elements such as ribā, gharar and gambling that violate the objectives of financial transactions. However, fiqhī domains from which it emanates have not been clearly spelled out by the scholars. In addition, the concept of risk taking in relation to contemporary risks associated with financial contracts, such as credit risk, liquidity risk, reputational risk and market risk, needs further scrutiny as regard their Sharīʿah bases. Hence, this study is imperatively significant to prove that absence of risk taking concept in Islamic financial instruments give rise to prohibited elements particularly ribā. This study is primarily intended to clarify the concept of risk in Islamic financial transactions from the fiqhī perspective and evaluate analytically the selected issues involving risk taking based on the established concept of risk taking from fiqhī viewpoint. The selected issues are amongst others charging cost of fund on defaulting customers, holding the lessee liable for total loss of leased asset under ijārah thumma al-bayʿ and capital guarantee under mushārakah based instruments. This is a library research in which data has been collected from various materials such as classical fiqh books, regulators’ policy guidelines and journal articles. This study employed deductive and inductive methods to analyze the data critically in search for conclusive findings. It suggests that business risks have to be evaluated based on their subjects namely (i) property (māl) and (ii) work (ʿamal) to ensure that Islamic financial instruments structured based on certain Sharīʿah principles are not diverted from the risk taking concept embedded in them. Analysis of the above selected cases substantiates that when risk taking principle is breached, the prohibited elements such as ribā, gharar and maysir do arise and that they impede the realization of the maqāṣid al-Sharīʿah intended from Islamic financial contracts.

Keywords: Islamic finance, ownership risk, ribā, risk taking

Procedia PDF Downloads 328
3338 Application of Fuzzy TOPSIS in Evaluating Green Transportation Options for Dhaka Megacity

Authors: Md. Moniruzzaman, Thirayoot Limanond

Abstract:

Being the most visible indicator, the transport system of a city points out how developed the city is. Dhaka megacity holds a mixed composition of motorized and non-motorized modes of transport and the number of vehicle figure is escalating over times. And this obviously poses associated environmental costs like air pollution, noise etc. which is degrading the quality of life in the city. Eventually sustainable transport or more importantly green transport from environmental point of view has become a prime choice to the transport professionals in order to cope up the crisis. Currently the city authority is planning to execute such sustainable transport systems that could serve the pressing demand of the present and meet the future needs effectively. This study focuses on the selection and evaluation of green transportation systems among potential alternatives on a priority basis. In this paper, Fuzzy TOPSIS - a multi-criteria decision method is presented to find out the most prioritized alternative. In the first step, Twenty-one individual specific criteria for sustainability assessment are selected. In the following step, experts provide linguistic ratings to the potential alternatives with respect to the selected criteria. The approach is used to generate aggregate scores for sustainability assessment and selection of the best alternative. In the third step, a sensitivity analysis is performed to understand the influence of criteria weights on the decision making process. The key strength of fuzzy TOPSIS approach is its practical applicability having a generation of good quality solution even under uncertainty.

Keywords: green transport, multi-criteria decision approach, urban transportation system, sustainability assessment, fuzzy theory, uncertainty

Procedia PDF Downloads 292
3337 An Evaluation of Barriers to Implement Reverse Logistics: A Case Study of Indian Fastener Industry

Authors: D. Garg, S. Luthra, A. Haleem

Abstract:

Reverse logistics (RL) is supposed to be a systematic procedure that helps in improving the environmental hazards and maintain business sustainability for industries. Industries in Indian are now opting for adoption of RL techniques in business. But, RL practices are not popular in Indian industries because of many barriers for its successful implementation. Therefore, need arises to identify and evaluate the barriers to implement RL practices by taking an Indian industries perspective. Literature review approach and case study approach have been adapted to identify relevant barriers to implement RL practices. Further, Fuzzy Decision Making Trial and Evaluation Laboratory methodology has been brought into use for evaluating causal relationships among the barriers to implement RL practices. Seven barriers out of ten barriers have been categorized into the cause group and remaining into effect group. This research will help Indian industries to manage these barriers towards effective implementing RL practices.

Keywords: barriers, decision making trial and evaluation laboratory (DEMATEL), fuzzy set theory, Indian industries, reverse logistics (RL)

Procedia PDF Downloads 329
3336 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 71
3335 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan

Authors: Feras Hanandeh, Majdi Shannag

Abstract:

This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.

Keywords: data mining, classification, extracting rules, decision tree

Procedia PDF Downloads 417
3334 The Impact of Social Media on Urban E-planning: A Review of the Literature

Authors: Farnoosh Faal

Abstract:

The rapid growth of social media has brought significant changes to the field of urban e-planning. This study aims to review the existing literature on the impact of social media on urban e-planning processes. The study begins with a discussion of the evolution of social media and its role in urban e-planning. The review covers research on the use of social media for public engagement, citizen participation, stakeholder communication, decision-making, and monitoring and evaluation of urban e-planning initiatives. The findings suggest that social media has the potential to enhance public participation and improve decision-making in urban e-planning processes. Social media platforms such as Facebook, Twitter, and Instagram can provide a platform for citizens to engage with planners and policymakers, express their opinions, and provide feedback on planning proposals. Social media can also facilitate the collection and analysis of data, including real-time data, to inform urban e-planning decision-making. However, the literature also highlights some challenges associated with the use of social media in urban e-planning. These challenges include issues related to the representativeness of social media users, the quality of information obtained from social media, the potential for bias and manipulation of social media content, and the need for effective data management and analysis. The study concludes with recommendations for future research on the use of social media in urban e-planning. The recommendations include the need for further research on the impact of social media on equity and social justice in planning processes, the need for more research on effective strategies for engaging underrepresented groups, and the development of guidelines for the use of social media in urban e-planning processes. Overall, the study suggests that social media has the potential to transform urban e-planning processes but that careful consideration of the opportunities and challenges associated with its use is essential for effective and ethical planning practice.

Keywords: social media, Urban e-planning, public participation, citizen engagement

Procedia PDF Downloads 238
3333 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering

Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala

Abstract:

Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.

Keywords: e-Tendering, e-Procurement, group decision making, tender evaluation, tender evaluation committee, UML, object-oriented methodologies, system development

Procedia PDF Downloads 264
3332 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 152
3331 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 413
3330 Proposal of a Model Supporting Decision-Making Based on Multi-Objective Optimization Analysis on Information Security Risk Treatment

Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu

Abstract:

Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.

Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization

Procedia PDF Downloads 462
3329 Utilizing Literature Review and Shared Decision-Making to Support a Patient Make the Decision: A Case Study of Virtual Reality for Postoperative Pain

Authors: Pei-Ru Yang, Yu-Chen Lin, Jia-Min Wu

Abstract:

Background: A 58-year-old man with a history of osteoporosis and diabetes presented with chronic pain in his left knee due to severe knee joint degeneration. The knee replacement surgery was recommended by the doctor. But the patient suffered from low pain tolerance and wondered if virtual reality could relieve acute postoperative wound pain. Methods: We used the PICO (patient, intervention, comparison, and outcome) approach to generate indexed keywords and searched systematic review articles from 2017 to 2021 on the Cochran Library, PubMed, and Clinical Key databases. Results: The initial literature results included 38 articles, including 12 Cochrane library articles and 26 PubMed articles. One article was selected for further analysis after removing duplicates and off-topic articles. The eight trials included in this article were published between 2013 and 2019 and recruited a total of 723 participants. The studies, conducted in India, Lebanon, Iran, South Korea, Spain, and China, included adults who underwent hemorrhoidectomy, dental surgery, craniotomy or spine surgery, episiotomy repair, and knee surgery, with a mean age (24.1 ± 4.1 to 73.3 ± 6.5). Virtual reality is an emerging non-drug postoperative analgesia method. The findings showed that pain control was reduced by a mean of 1.48 points (95% CI: -2.02 to -0.95, p-value < 0.0001) in minor surgery and 0.32 points in major surgery (95% CI: -0.53 to -0.11, p-value < 0.03), and the overall postoperative satisfaction has improved. Discussion: Postoperative pain is a common clinical problem in surgical patients. Research has confirmed that virtual reality can create an immersive interactive environment, communicate with patients, and effectively relieve postoperative pain. However, virtual reality requires the purchase of hardware and software and other related computer equipment, and its high cost is a disadvantage. We selected the best literature based on clinical questions to answer the patient's question and used share decision making (SDM) to help the patient make decisions based on the clinical situation after knee replacement surgery to improve the quality of patient-centered care.

Keywords: knee replacement surgery, postoperative pain, share decision making, virtual reality

Procedia PDF Downloads 69
3328 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters

Authors: Hecson Christian, Joel Macwan

Abstract:

Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.

Keywords: GIS, AHP, MCDA, Geo-technical

Procedia PDF Downloads 145
3327 Redefining Infrastructure as Code Orchestration Using AI

Authors: Georges Bou Ghantous

Abstract:

This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.

Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making

Procedia PDF Downloads 36
3326 Decision Support System for Fetus Status Evaluation Using Cardiotocograms

Authors: Oyebade K. Oyedotun

Abstract:

The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.

Keywords: decision support, cardiotocogram, classification, neural networks

Procedia PDF Downloads 336
3325 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 359
3324 Unconscious Bias in Judicial Decisions: Legal Genealogy and Disgust in Cases of Private, Adult, Consensual Sexual Acts Leading to Injury

Authors: Susanna Menis

Abstract:

‘Unconscious’ bias is widespread, affecting society on all levels of decision-making and beyond. Placed in the law context, this study will explore the direct effect of the psycho-social and cultural evolution of unconscious bias on how a judicial decision was made. The aim of this study is to contribute to socio-legal scholarship by examining the formation of unconscious bias and its influence on the creation of legal rules that judges believe reflect social solidarity and protect against violence. The study seeks to understand how concepts like criminalization and unlawfulness are constructed by the common law. The study methodology follows two theoretical approaches: historical genealogy and emotions as sociocultural phenomena. Both methods have the ‘tracing back’ of the original formation of a social way of seeing and doing things in common. The significance of this study lies in the importance of reflecting on the ways unconscious bias may be formed; placing judges’ decisions under this spotlight forces us to challenge the status quo, interrogate justice, and seek refinement of the law.

Keywords: legal geneology, emotions, disgust, criminal law

Procedia PDF Downloads 61
3323 Accounting Management Information System for Convenient Shop in Bangkok Thailand

Authors: Anocha Rojanapanich

Abstract:

The purpose of this research is to develop and design an accounting management information system for convenient shop in Bangkok Thailand. The study applied the System Development Life Cycle (SDLC) for development which began with study and analysis of current data, including the existing system. Then, the system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Product diversity, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management and importance of cost information for decision making also as well as.

Keywords: accounting management information system, convenient shop, cost information for decision making system, development life cycle

Procedia PDF Downloads 421
3322 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.

Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify

Procedia PDF Downloads 388
3321 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 107
3320 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 123
3319 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms

Authors: Sanjiti Sharma, Carol Seger

Abstract:

Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.

Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias

Procedia PDF Downloads 29
3318 Social Media, Networks and Related Technology: Business and Governance Perspectives

Authors: M. A. T. AlSudairi, T. G. K. Vasista

Abstract:

The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.

Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks

Procedia PDF Downloads 452
3317 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: discrete event simulation, emergency medical services, forecast model, hospital selection

Procedia PDF Downloads 92
3316 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity

Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz

Abstract:

The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.

Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance

Procedia PDF Downloads 110
3315 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)

Authors: Fatih Iscan, Ceren Yagci

Abstract:

Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice.

Keywords: GIS, landfill, solid waste, spatial analysis

Procedia PDF Downloads 361