Search results for: deep vibro techniques
7816 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability
Procedia PDF Downloads 5527815 Recent Advances in Data Warehouse
Authors: Fahad Hanash Alzahrani
Abstract:
This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing
Procedia PDF Downloads 4047814 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation
Procedia PDF Downloads 1177813 Ancient Iran Water Technologies
Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand
Abstract:
The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran
Procedia PDF Downloads 1127812 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 1057811 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei
Abstract:
With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.Keywords: document processing, framework, formal definition, machine learning
Procedia PDF Downloads 2177810 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny
Abstract:
In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery
Procedia PDF Downloads 747809 Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration
Authors: Wei-Song Hung
Abstract:
We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO.Keywords: graphene oxide, self-assembly, alcohol dehydration, polyacrylonitrile (mPAN)
Procedia PDF Downloads 2957808 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization
Procedia PDF Downloads 3997807 Comparative Study of Learning Achievement via Jigsaw I and IV Techniques
Authors: Phongkon Weerpiput
Abstract:
This research study aimed to compare learning achievement between Jigsaw I and jigsaw IV techniques. The target group was 70 Thai major sophomores enrolled in a course entitled Foreign Language in Thai at the Faculty of Education, Suan Sunandha Rajabhat University. The research methodology was quasi-experimental design. A control group was given the Jigsaw I technique while an experimental group experienced the Jigsaw IV technique. The treatment content focused on Khmer loanwords in Thai language executed for a period of 3 hours per week for total of 3 weeks. The instruments included learning management plans and multiple-choice test items. The result yields no significant difference at level .05 between learning achievement of both techniques.Keywords: Jigsaw I technique, Jigsaw IV technique, learning achievement, major sophomores
Procedia PDF Downloads 2877806 Discrete-Event Modeling and Simulation Methodologies: Past, Present and Future
Authors: Gabriel Wainer
Abstract:
Modeling and Simulation methods have been used to better analyze the behavior of complex physical systems, and it is now common to use simulation as a part of the scientific and technological discovery process. M&S advanced thanks to the improvements in computer technology, which, in many cases, resulted in the development of simulation software using ad-hoc techniques. Formal M&S appeared in order to try to improve the development task of very complex simulation systems. Some of these techniques proved to be successful in providing a sound base for the development of discrete-event simulation models, improving the ease of model definition and enhancing the application development tasks; reducing costs and favoring reuse. The DEVS formalism is one of these techniques, which proved to be successful in providing means for modeling while reducing development complexity and costs. DEVS model development is based on a sound theoretical framework. The independence of M&S tasks made possible to run DEVS models on different environments (personal computers, parallel computers, real-time equipment, and distributed simulators) and middleware. We will present a historical perspective of discrete-event M&S methodologies, showing different modeling techniques. We will introduce DEVS origins and general ideas, and compare it with some of these techniques. We will then show the current status of DEVS M&S, and we will discuss a technological perspective to solve current M&S problems (including real-time simulation, interoperability, and model-centered development techniques). We will show some examples of the current use of DEVS, including applications in different fields. We will finally show current open topics in the area, which include advanced methods for centralized, parallel or distributed simulation, the need for real-time modeling techniques, and our view in these fields.Keywords: modeling and simulation, discrete-event simulation, hybrid systems modeling, parallel and distributed simulation
Procedia PDF Downloads 3237805 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations
Authors: Gianni Jacucci
Abstract:
Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability
Procedia PDF Downloads 387804 Disaster Probability Analysis of Banghabandhu Multipurpose Bridge for Train Accidents and Its Socio-Economic Impact on Bangladesh
Authors: Shahab Uddin, Kazi M. Uddin, Hamamah Sadiqa
Abstract:
The paper deals with the Banghabandhu Multipurpose Bridge (BMB), the 11th longest bridge in the world was constructed in 1998 aimed at contributing to promote economic development in Bangladesh. In recent years, however, the high incidence of traffic accidents and injuries at the bridge sites looms as a great safety concern. Investigation into the derailment of nine bogies out of thirteen of Dinajpur-bound intercity train ‘Drutajan Express ’were derailed and inclined on the Banghabandhu Multipurpose Bridge on 28 April 2014. The train accident in Bridge will be deep concern for both structural safety of bridge and people than other vehicles accident. In this study we analyzed the disaster probability of the Banghabandhu Multipurpose Bridge for accidents by checking the fitness of Bridge structure. We found that train accident impact is more risky than other vehicles accidents. We also found that socio-economic impact on Bangladesh will be deep concerned.Keywords: train accident, derailment, disaster, socio-economic
Procedia PDF Downloads 3027803 Energy Management Techniques in Mobile Robots
Authors: G. Gurguze, I. Turkoglu
Abstract:
Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.Keywords: energy management, mobile robot, robot administration, robot management, robot planning
Procedia PDF Downloads 2667802 Haematology and Serum Biochemical Profile of Laying Chickens Reared on Deep Litter System with or without Access to Grass or Legume Pasture under Humid Tropical Climate
Authors: E. Oke, A. O. Ladokun, J. O. Daramola, O. M. Onagbesan
Abstract:
There has been a growing interest on the effects of access to pasture on poultry health status. However, there is a paucity of data on the relative benefits of grass and legume pastures. An experiment was conducted to determine the effects of rearing systems {deep litter system (DL), deep litter with access to legumes (LP) or grass (GP) pastures} haematology and serum chemistry of ISA Brown layers. The study involved the use of two hundred and forty 12 weeks old pullets. The birds were reared until 60 weeks of age. Eighty birds were assigned to each treatment; each treatment had four replicates of 20 birds each. Blood samples (2.5 ml) were collected from the wing vein of two birds per replicate and serum chemistry and haematological parameters were determined. The results showed that there were no significant differences between treatments in all the parameters considered at 18 weeks of age. At 24 weeks old, the percentage of heterophyl (HET) in DL and LP were similar but higher than that of GP. The ratio of H:L was higher (P<0.05) in DL than those of LP and GP while LP and GP were comparable. At week 38 of age, the percentage of PCV in the birds in LP and GP were similar but the birds in DL had significantly lower level than that of GP. In the early production phase, serum total protein of the birds in LP was similar to that of GP but higher (P<0.05) than that of DL. At the peak production phase (week 38), the total protein in GP and DL were similar but significantly lower than that of LP. The albumin level in LP was greater (P<0.05) than GP but similar to that of DL. In the late production phase, the total protein in LP was significantly higher than that of DL but similar to that of GP. It was concluded that rearing chickens in either grass or legume pasture did not have deleterious effects on the health of laying chickens but improved some parameters including blood protein and HET/lymphocyte.Keywords: rearing systems, stylosanthes, cynodon serum chemistry, haematology, hen
Procedia PDF Downloads 3277801 The Effect of Artificial Intelligence on Decoration Designs
Authors: Ayed Mouris Gad Elsayed Khalil
Abstract:
This research focuses on historical techniques associated with the Lajevardin and Haft-Rangi production methods in tile production, with particular attention to identifying techniques for applying gold leaf to the surface of these historical glazed tiles. In this context, the history of the production of glazed, gilded and glazed Lajevardin ceramics from the Khwarizmanshahid and Mongol periods (11th to 13th centuries) was first evaluated in order to better understand the context and history of the methods of historical enameling. After a historical overview of glazed ceramic production techniques and the adoption of these techniques by civilizations, we focused on the niche production methods of glazes and Lajevardin glazes, two categories of decoration commonly found on tiles. A general method for classifying the different types of gold tiles was then introduced, applicable to tiles from to the Safavid period (16th-17th centuries). These categories include gold glazed Lajevardina tiles, haft rangi gold tiles, gold glazed monolithic tiles and gold mosaic tiles.Keywords: ethnicity, multi-cultural, jewelry, craft techniquemycenaean, ceramic, provenance, pigmentAmorium, glass bracelets, image, Byzantine empire
Procedia PDF Downloads 567800 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3487799 Modern Pedagogy Techniques for DC Motor Speed Control
Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal
Abstract:
Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed.Keywords: DC Motor, field control, pedagogy techniques, speed control, virtual environment, voltage control
Procedia PDF Downloads 4427798 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1427797 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 1027796 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes
Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun
Abstract:
Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces
Procedia PDF Downloads 1467795 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1027794 Complicated Corneal Ulceration in Cats: Clinical Diagnosis and Surgical Management of 80 Cases
Authors: Khaled M. Ali, Ayman A. Mostafa, Soliman M. Soliman
Abstract:
Objectives: To describe the most common clinical and endoscopic findings associated with complicated corneal ulcers in cats, and to determine the short-term outcomes after surgical treatment of these cats. Animals Eighteen client-owned cats of different breeds (52 females and 28 males), ranging in age from 3 months to 6 years, with corneal ulcers. Procedures: Cats were clinically evaluated to initially determine the concurrent corneal abnormalities. Endoscopic examination was performed to determine the anterior and posterior segments abnormalities. Superficial and deep stromal ulcers were treated using conjunctival flap. Corneal sequestrum was treated by partial keratectomy and conjunctival flap. Anterior synechia was treated via peripheral iridectomy and separation of the adhesion between the iris and the inner cornea. Symblepharon was treated by removal of the adhered conjunctival membrane from the cornea. Incurable endophthalmitis was treated surgically by extirpation. Short-term outcomes after surgical managements of selected corneal abnormalities were then assessed clinically and endoscopically. Results: Deep stromal ulcer with descemetocele, endophthalmitis, symblepharon, corneal sequestration and anterior synechia with secondary glaucoma and corneal scarring were the most common complications of corneal ulcer. FHV-1 was a common etiologic factor of corneal ulceration. Persistent corneal scars of varying shape and size developed in cats with deep stromal ulcer, anterior synechia, and corneal sequestration. Conclusions: Domestic shorthaired and Persian cats were the most predisposed breeds to FHV-1 infection and subsequent corneal ulceration. Immediate management of patients with corneal ulcer would prevent serious complications. No age or sex predisposition to complicated corneal ulceration in cats.Keywords: cats, complicated corneal ulceration, clinical, endoscopic diagnosis, FHV-1
Procedia PDF Downloads 2837793 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 1657792 Using Kalosara Tradition for Conflict Resolution in Tolaki's People, Southeast Sulawesi
Authors: S. S. Ramis Rauf
Abstract:
This study will be explained the role of local wisdom in Tolakinese customary law on customs offense. The scope of this study was the informants who have a conflict located in Southeast Sulawesi. Then, their conflicts were resolved by using Kalosara tradition. The method of this study was a qualitative research by applying the techniques of deep interviews, revealing experiences and stories from informants, interviews customary leaders who are skilled and experienced in the customary settlement process of Kalosara tradition. Kalosara, as Tolakinese local wisdom, has contained in Tolakinese customary law. Kalosara was the application of customary law which was guided by Tolaki’s people when there was a problem. Knowledge and understanding of the customs have been conceived as something that comes from the ancestors. They created custom rules based on the law of Allah SWT for the elderly to do with full of awareness. Then, it was hereditary obeying by their children from generation to generation. The conflict occurred because of several things, namely bad words, aspersion, and other violations (such as harassment and affair). In custom settlement process, kalosara was done by using the enforcement of Tolakinese customary law that managed within an institution. It was called as Sara Wonua. It led by someone who was called as Pu'utobu that serves as a customary leader.Keywords: kalosara, conflict resolution, tradition, unity, diversity
Procedia PDF Downloads 2107791 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction
Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz
Abstract:
Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.Keywords: image processing, noise, speckle, ultrasound
Procedia PDF Downloads 1107790 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature
Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon
Abstract:
Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.Keywords: deep-learning, altimetry, sea surface temperature, forecast
Procedia PDF Downloads 907789 Sedimentary, Diagenesis and Evaluation of High Quality Reservoir of Coarse Clastic Rocks in Nearshore Deep Waters in the Dongying Sag; Bohai Bay Basin
Authors: Kouassi Louis Kra
Abstract:
The nearshore deep-water gravity flow deposits in the Northern steep slope of Dongying depression, Bohai Bay basin, have been acknowledged as important reservoirs in the rift lacustrine basin. These deep strata term as coarse clastic sediment, deposit at the root of the slope have complex depositional processes and involve wide diagenetic events which made high-quality reservoir prediction to be complex. Based on the integrated study of seismic interpretation, sedimentary analysis, petrography, cores samples, wireline logging data, 3D seismic and lithological data, the reservoir formation mechanism deciphered. The Geoframe software was used to analyze 3-D seismic data to interpret the stratigraphy and build a sequence stratigraphic framework. Thin section identification, point counts were performed to assess the reservoir characteristics. The software PetroMod 1D of Schlumberger was utilized for the simulation of burial history. CL and SEM analysis were performed to reveal diagenesis sequences. Backscattered electron (BSE) images were recorded for definition of the textural relationships between diagenetic phases. The result showed that the nearshore steep slope deposits mainly consist of conglomerate, gravel sandstone, pebbly sandstone and fine sandstone interbedded with mudstone. The reservoir is characterized by low-porosity and ultra-low permeability. The diagenesis reactions include compaction, precipitation of calcite, dolomite, kaolinite, quartz cement and dissolution of feldspars and rock fragment. The main types of reservoir space are primary intergranular pores, residual intergranular pores, intergranular dissolved pores, intergranular dissolved pores, and fractures. There are three obvious anomalous high-porosity zones in the reservoir. Overpressure and early hydrocarbon filling are the main reason for abnormal secondary pores development. Sedimentary facies control the formation of high-quality reservoir, oil and gas filling preserves secondary pores from late carbonate cementation.Keywords: Bohai Bay, Dongying Sag, deep strata, formation mechanism, high-quality reservoir
Procedia PDF Downloads 1357788 Variation in Water Utilization of Typical Desert Shrubs in a Desert-Oasis Ecotone
Authors: Hai Zhou, Wenzhi Zhao
Abstract:
Water is one of the most important factors limiting plant growth and development in desert ecosystems. In order to understand how desert shrubs cope with variation in water sources over time, it is important to understand plant–water relations in desert-oasis ecotone. We selected the typical desert shrubs: Nitraria sibirica, Calligonum mongolicum and Haloxylon ammodendron of 5-, 10-, 20- and 40-year old as the research species, to study the seasonal variation of plant water sources and response to precipitation in the desert-oasis ecotone of Linze, Northwestern China. We examined stable isotopic ratios of oxygen (δ18O) in stem water of desert shrubs as well as in precipitation, groundwater, and soil water in different soil layers and seasons to determine water sources for the shrubs. We found that the N. sibirica and H. ammodendron of 5-, 10-year old showed significant seasonal variation characteristics of δ18O value of stem water and water sources. However, the C. mongolicum and 20- and 40-year H. ammodendron main water sources were from deep soil water and groundwater, and less response to precipitation pulse. After 22.4 mm precipitation, the contribution of shallow soil water (0-50cm) to the use of N. sibirica increased from 6.7% to 36.5%; the C. mongolicum rarely use precipitation that were about 58.29% and 23.51%, absorbed from the deep soil water and groundwater; the contribution of precipitation to use of H. ammodendron had significantly differences among the four ages. The H. ammodendron of 5- and 10-year old about 86.3% and 42.5% water sources absorbed from the shallow soil water after precipitation. However, the contribution to 20- and 40-year old plant was less than 15%. So, the precipitation was one of the main water sources for desert shrubs, but the species showed different water utilization. We conclude that the main water source of the N. sibirica and H. ammodendron of 5-, 10-year was soil water recharged by precipitation, but the deeply rooted H. ammodendron of 20‐ and 40‐year‐old and the C. mongolicum have the ability to exploit a deep and reliable water source.Keywords: water use pattern, water resource, stable isotope, seasonal change, precipitation pulse
Procedia PDF Downloads 4297787 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 305