Search results for: decision model
18888 The Role of Artificial Intelligence in Criminal Procedure
Authors: Herke Csongor
Abstract:
The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment
Procedia PDF Downloads 3818887 Design of a Pneumonia Ontology for Diagnosis Decision Support System
Authors: Sabrina Azzi, Michal Iglewski, Véronique Nabelsi
Abstract:
Diagnosis error problem is frequent and one of the most important safety problems today. One of the main objectives of our work is to propose an ontological representation that takes into account the diagnostic criteria in order to improve the diagnostic. We choose pneumonia disease since it is one of the frequent diseases affected by diagnosis errors and have harmful effects on patients. To achieve our aim, we use a semi-automated method to integrate diverse knowledge sources that include publically available pneumonia disease guidelines from international repositories, biomedical ontologies and electronic health records. We follow the principles of the Open Biomedical Ontologies (OBO) Foundry. The resulting ontology covers symptoms and signs, all the types of pneumonia, antecedents, pathogens, and diagnostic testing. The first evaluation results show that most of the terms are covered by the ontology. This work is still in progress and represents a first and major step toward a development of a diagnosis decision support system for pneumonia.Keywords: Clinical decision support system, Diagnostic errors, Ontology, Pneumonia
Procedia PDF Downloads 18818886 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: evolutionary computation, feature selection, classification, clustering
Procedia PDF Downloads 37018885 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 14918884 Child Protection Decision Making in England and Finland: A Comparative Analysis
Authors: Rachel Falconer
Abstract:
Background: The United Nations Convention on the Rights of the Child sets out the duties placed on signatory nations to take measures to protect children from all forms of violence, abuse, neglect and maltreatment. The systems for ensuring this protection vary globally, shaped by national welfare policies. In England and Finland, past research has highlighted differences in how child protection issues are framed and how state agencies respond. However, less is known about how such differences impact processes of social work judgment and decision making in practice. Method: Data was collected as part of a wider PhD project in three stages. First, social workers in sites across England and Finland were asked to complete a short questionnaire. Participants were then asked to comment on two constructed case vignettes, and were interviewed about their experiences of child protection decision making at the point of referral. Interviews were analyzed using NVivo to draw out key themes. Findings: There were similarities in how the English and Finnish social workers responded to the case vignettes; for example, participants in both countries expressed concerns about similar risk factors and all felt further assessment was needed. Differences were observed, in particular, in regard to the sources of support and guidance participants referred to, with the English social workers appearing to rely more upon managerial input for their decisions than the Finnish social workers. These findings suggest evidence for two distinct decision making approaches: ‘supervised’ and ‘supported’ judgement. Implications for practice: The findings have relevance to the conference theme of research and evaluation of social work practice, and support the findings of previous studies that have emphasized the significance of organizational factors in child protection decision making. The comparative methodology has also helped to demonstrate how organizational factors can influence practice in different child protection system ‘orientations’. The presentation will discuss the potential practice implications of ‘supervised’, manager-led approaches to decision making as contrasted with ‘supported’, team-led approaches, inviting discussion about the relevance of these findings for social work in other countries.Keywords: child protection, comparative research, decision making, social work, vignettes
Procedia PDF Downloads 25318883 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia
Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay
Abstract:
Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.Keywords: AquaCrop model, calibration, validation, simulation
Procedia PDF Downloads 6718882 Resource-Constrained Assembly Line Balancing Problems with Multi-Manned Workstations
Authors: Yin-Yann Chen, Jia-Ying Li
Abstract:
Assembly line balancing problems can be categorized into one-sided, two-sided, and multi-manned ones by using the number of operators deployed at workstations. This study explores the balancing problem of a resource-constrained assembly line with multi-manned workstations. Resources include machines or tools in assembly lines such as jigs, fixtures, and hand tools. A mathematical programming model was developed to carry out decision-making and planning in order to minimize the numbers of workstations, resources, and operators for achieving optimal production efficiency. To improve the solution-finding efficiency, a genetic algorithm (GA) and a simulated annealing algorithm (SA) were designed and developed in this study to be combined with a practical case in car making. Results of the GA/SA and mathematics programming were compared to verify their validity. Finally, analysis and comparison were conducted in terms of the target values, production efficiency, and deployment combinations provided by the algorithms in order for the results of this study to provide references for decision-making on production deployment.Keywords: heuristic algorithms, line balancing, multi-manned workstation, resource-constrained
Procedia PDF Downloads 20818881 The Role of Emotions in the Consumer: Theoretical Review and Analysis of Components
Authors: Mikel Alonso López
Abstract:
The early eighties saw the rise of a new research trend in several prestigious journals, mainly articles that related emotions with the decision-making processes of the consumer, and stopped treating them as external elements. That is why we ask questions such as: what are emotions? Are there different types of emotions? What components do they have? Which theories exist about them? In this study, we will review the main theories and components of emotion analysing the cognitive factor and the different emotional states that are generally recognizable with a focus in the classic debate as to whether they occur before the cognitive process or the affective process.Keywords: emotion, consumer behaviour, feelings, decision making
Procedia PDF Downloads 34618880 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database
Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang
Abstract:
For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree
Procedia PDF Downloads 22418879 Web-Based Paperless Campus: An Approach to Reduce the Cost and Complexity of Education Administration
Authors: Yekini N. Asafe, Haastrup A. Victor, Lawal N. Olawale, Okikiola F. Mercy
Abstract:
Recent increase in access to personal computer and networking systems have made it feasible to perform much of cumbersome and costly paper-based administration in all organization. Desktop computers, networking systems, high capacity storage devices and telecommunications system is currently allowing the transfer of various format of data to be processed, stored and dissemination for the purpose of decision making. Going paperless is more of benefits compare to full paper-based office. This paper proposed a model for design and implementation of e-administration system (paperless campus) for an institution of learning. If this model is design and implemented it will reduced cost and complexity of educational administration also eliminate menaces and environmental hazards attributed to paper-based administration within schools and colleges.Keywords: e-administration, educational administration, paperless campus, paper-based administration
Procedia PDF Downloads 37918878 The Importance of Downstream Supply Chain in Supply Chain Risk Management: Multi-Objective Optimization
Authors: Zohreh Khojasteh-Ghamari, Takashi Irohara
Abstract:
One of the efficient ways in supply chain risk management is avoiding the interruption in Supply Chain (SC) before it occurs. Although the majority of the organizations focus on their first-tier suppliers to avoid risk in the SC, studies show that in only 60 percent of the disruption cases the reason is first tier suppliers. In the 40 percent of the SC disruptions, the reason is downstream SC, which is the second tier and lower. Due to the increasing complexity and interrelation of modern supply chains, the SC elements have become difficult to trace. Moreover, studies show that there is a vital need to better understand the integration of risk and visibility, especially in the context of multiple objectives. In this study, we propose a multi-objective programming model to avoid disruption in SC. The objective of this study is evaluating the effect of downstream SCV on managing supply chain risk. We propose a multi-objective mathematical programming model with the objective functions of minimizing the total cost and maximizing the downstream supply chain visibility (SCV). The decision variable is supplier selection. We assume there are several manufacturers and several candidate suppliers. For each manufacturer, our model proposes the best suppliers with the lowest cost and maximum visibility in downstream supply chain. We examine the applicability of the model by numerical examples. We also define several scenarios for datasets and observe the tendency. The results show that minimum visibility in downstream SC is needed to have a safe SC network.Keywords: downstream supply chain, optimization, supply chain risk, supply chain visibility
Procedia PDF Downloads 24418877 Career Decisiveness among Indian College Going Students: A Psychosocial Study
Authors: Preeti Nakhat, Neeta Sinha
Abstract:
Career plays an indispensable role in shaping one’s outlook on life. Choosing right career adds 'feathers to the life' whereas wrong career decision 'takes a toll 'in one’s life. It is pivotal for the students to know the career opportunities related to their field where they can escalate and excel. With the aim to comprehend certainty and indecisiveness in career decision among college students, a study will be conducted. The study focuses to gain insight on decisiveness and indecisiveness of career among the students. The hypotheses for the study are (1) There is no relation between the medium of education (vernacular/English medium) and career decisiveness among the college students. (2) There is no relation between the faculty(science, commerce, arts)chosen and career decisiveness. (3)There is no relation between father’s qualification and career decisiveness. To test the aforementioned hypotheses, a survey questionnaire will be used. The questionnaire is 'Career decision scale' by Samuel H. Osipow. This study will include 200 college going students. The data will be collected from first, second, third, and fourth year students. Statistical analysis of the data collected with be done through SPSS/Excel calculation and then the hypotheses will be tested.Keywords: career decisiveness, career indecisiveness, college students, career
Procedia PDF Downloads 30018876 Budgetary Performance Model for Managing Pavement Maintenance
Authors: Vivek Hokam, Vishrut Landge
Abstract:
An ideal maintenance program for an industrial road network is one that would maintain all sections at a sufficiently high level of functional and structural conditions. However, due to various constraints such as budget, manpower and equipment, it is not possible to carry out maintenance on all the needy industrial road sections within a given planning period. A rational and systematic priority scheme needs to be employed to select and schedule industrial road sections for maintenance. Priority analysis is a multi-criteria process that determines the best ranking list of sections for maintenance based on several factors. In priority setting, difficult decisions are required to be made for selection of sections for maintenance. It is more important to repair a section with poor functional conditions which includes uncomfortable ride etc. or poor structural conditions i.e. sections those are in danger of becoming structurally unsound. It would seem therefore that any rational priority setting approach must consider the relative importance of functional and structural condition of the section. The maintenance priority index and pavement performance models tend to focus mainly on the pavement condition, traffic criteria etc. There is a need to develop the model which is suitably used with respect to limited budget provisions for maintenance of pavement. Linear programming is one of the most popular and widely used quantitative techniques. A linear programming model provides an efficient method for determining an optimal decision chosen from a large number of possible decisions. The optimum decision is one that meets a specified objective of management, subject to various constraints and restrictions. The objective is mainly minimization of maintenance cost of roads in industrial area. In order to determine the objective function for analysis of distress model it is necessary to fix the realistic data into a formulation. Each type of repair is to be quantified in a number of stretches by considering 1000 m as one stretch. A stretch considered under study is having 3750 m length. The quantity has to be put into an objective function for maximizing the number of repairs in a stretch related to quantity. The distress observed in this stretch are potholes, surface cracks, rutting and ravelling. The distress data is measured manually by observing each distress level on a stretch of 1000 m. The maintenance and rehabilitation measured that are followed currently are based on subjective judgments. Hence, there is a need to adopt a scientific approach in order to effectively use the limited resources. It is also necessary to determine the pavement performance and deterioration prediction relationship with more accurate and economic benefits of road networks with respect to vehicle operating cost. The infrastructure of road network should have best results expected from available funds. In this paper objective function for distress model is determined by linear programming and deterioration model considering overloading is discussed.Keywords: budget, maintenance, deterioration, priority
Procedia PDF Downloads 20718875 Extended Literature Review on Sustainable Energy by Using Multi-Criteria Decision Making Techniques
Authors: Koray Altintas, Ozalp Vayvay
Abstract:
Increased global issues such as depletion of sources, environmental problems and social inequality triggered public awareness towards finding sustainable solutions in order to ensure the well-being of the current as well as future generations. Since energy plays a significant role in improved social and economic well-being and is imperative on both industrial and commercial wealth creation, it is a must to develop a standardized set of metrics which makes it possible to indicate the present condition relative to conditions in the past and to develop any perspective which is required to frame actions for the future. This is not an easy task by considering the complexity of the issue which requires integrating economic, environmental and social aspects of sustainable energy. Multi-criteria decision making (MCDM) can be considered as a form of integrated sustainability evaluation and a decision support approach that can be used to solve complex problems featuring; conflicting objectives, different forms of data and information, multi-interests and perspectives. On that matter, MCDM methods are useful for providing solutions to complex energy management problems. The aim of this study is to review MCDM approaches that can be used for examining sustainable energy management. This study presents an insight into MCDM techniques and methods that can be useful for engineers, researchers and policy makers working in the energy sector.Keywords: sustainable energy, sustainability criteria, multi-criteria decision making, sustainability dimensions
Procedia PDF Downloads 33018874 Leadership, A Toll to Support Innovations and Inventive Education at Universities
Authors: Peter Balco, Miriam Filipova
Abstract:
The university education is generally concentrated on acquiring theoretical as well as professional knowledge. The right mix of these knowledges is key in creating innovative as well as inventive solutions. Despite the understanding of their importance by the professional community, these are promoted with problems and misunderstanding. The reason for the failure of many non-traditional, innovative approaches is the ignorance of Leadership in the process of their implementation, ie decision-making. In our paper, we focused on the role of Leadership in the educational process and how this knowledge can support decision-making, the selection of a suitable, optimal solution for practice.Keywords: leadership, soft skills, innovation, invention, knowledge
Procedia PDF Downloads 18918873 Development of a Classification Model for Value-Added and Non-Value-Added Operations in Retail Logistics: Insights from a Supermarket Case Study
Authors: Helena Macedo, Larissa Tomaz, Levi Guimarães, Luís Cerqueira-Pinto, José Dinis-Carvalho
Abstract:
In the context of retail logistics, the pursuit of operational efficiency and cost optimization involves a rigorous distinction between value-added and non-value-added activities. In today's competitive market, optimizing efficiency and reducing operational costs are paramount for retail businesses. This research paper focuses on the development of a classification model adapted to the retail sector, specifically examining internal logistics processes. Based on a comprehensive analysis conducted in a retail supermarket located in the north of Portugal, which covered various aspects of internal retail logistics, this study questions the concept of value and the definition of wastes traditionally applied in a manufacturing context and proposes a new way to assess activities in the context of internal logistics. This study combines quantitative data analysis with qualitative evaluations. The proposed classification model offers a systematic approach to categorize operations within the retail logistics chain, providing actionable insights for decision-makers to streamline processes, enhance productivity, and allocate resources more effectively. This model contributes not only to academic discourse but also serves as a practical tool for retail businesses, aiding in the enhancement of their internal logistics dynamics.Keywords: lean retail, lean logisitcs, retail logistics, value-added and non-value-added
Procedia PDF Downloads 6518872 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making
Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab
Abstract:
Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning
Procedia PDF Downloads 35218871 How Rational Decision-Making Mechanisms of Individuals Are Corrupted under the Presence of Others and the Reflection of This on Financial Crisis Management Situations
Authors: Gultekin Gurcay
Abstract:
It is known that the most crucial influence of the psychological, social and emotional factors that affect any human behavior is to corrupt the rational decision making mechanism of the individuals and cause them to display irrational behaviors. In this regard, the social context of human beings influences the rationality of our decisions, and people tend to display different behaviors when they were alone compared to when they were surrounded by others. At this point, the interaction and interdependence of the behavioral finance and economics with the area of social psychology comes, where intentions and the behaviors of the individuals are being analyzed in the actual or implied presence of others comes into prominence. Within the context of this study, the prevalent theories of behavioral finance, which are The Prospect Theory, The Utility Theory Given Uncertainty and the Five Axioms of Choice under Uncertainty, Veblen’s Hidden Utility Theory, and the concept of ‘Overreaction’ has been examined and demonstrated; and the meaning, existence and validity of these theories together with the social context has been assessed. Finally, in this study the behavior of the individuals in financial crisis situations where the majority of the society is being affected from the same negative conditions at the same time has been analyzed, by taking into account how individual behavior will change according to the presence of the others.Keywords: conditional variance coefficient, financial crisis, garch model, stock market
Procedia PDF Downloads 24018870 Marketing Mix Factor Affecting Decision Making Behavior in Using Fitness Service
Authors: Siri-Orn Champatong
Abstract:
The objectives of this research were to study the attitude of service marketing mix that affected the decision making behavior to use fitness service in case of the fitness in Thailand. This study employed by survey research and questionnaire was used to collect the data from 400 of consumers who have used the service and interested in using the service in the future. The descriptive statistics and multiple regression analysis were used to analyze data. The results revealed that the attitude toward overall marketing mix was at moderate level. For particulars, attitude toward product and service aspects were at good level, however, attitude toward price, place, promotion, people, physical evidence and service quality aspects were at moderate level. The hypothesis testing results showed that attitude toward each aspect affected word of mouth, however, attitude toward product and service, place, promotion, people and physical evidence affected tendency to use fitness service at .05 statistically significant level.Keywords: decision making behavior, fitness, marketing mix, marketing service
Procedia PDF Downloads 34118869 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors
Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.Keywords: construction safety, contractor selection, decision support system, relational database
Procedia PDF Downloads 28018868 Approach to Formulate Intuitionistic Fuzzy Regression Models
Authors: Liang-Hsuan Chen, Sheng-Shing Nien
Abstract:
This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method
Procedia PDF Downloads 13818867 Green Supply Chain Design: A Mathematical Modeling Approach
Authors: Nusrat T. Chowdhury
Abstract:
Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade
Procedia PDF Downloads 23918866 The Antecedent Variables of Government Financial Accounting System (SAKD) Implementation and Its Consequences: Empirical Study on the Device of Regional Coordinating Agency for Development of Cross County, City Region III Central Java Province, Indo
Authors: Dona Primasari
Abstract:
This study examines the antecedent variables of Government Financial Acccounting System (SAKD) implementation and its consequence. The antecedent variables are: decentralization of decision making, adaptation, and the manager support. The consequences are satisfaction and performance officer. This research represents the empirical test which used convenience sampling technics in data collection. The data were collected from 167 officers of local government in the Regional Coordinating Agency for Development of Cross County/City Region III Central Java Province. Data analysis used Structural Equation Model (SEM) with the AMOS 18.0 program. The result of hypothesis examination indicates that six raised hypothesis are accepted and two hypothesis are rejected.Keywords: decentralization of decision making, adaptation officer, manager support, implementation of Government Accounting Financial System (SAKD), satisfaction and performance officer
Procedia PDF Downloads 38918865 Electronic Government Services Adoption from Multi-Nationalities Perspectives
Authors: Isaac Kofi Mensah, Jianing Mi, Cheng Feng
Abstract:
Electronic government is the application of Information and Communication Technologies (ICTs) by the government to improve public service delivery to citizens and businesses. The purpose of this study is to investigate factors influencing the adoption and use of e-government services from different nationalities perspectives. The Technology Acceptance Model (TAM) will be used as the theoretical framework for the study. A questionnaire would be developed and administered to 500 potential respondents who are students from different nationalities in China. Predictors such as perceived usefulness, perceived ease of use, computer self-efficacy, trust in both the internet and government, social influence and perceived service quality would be examined with regard to their impact on the intention to use e-government services. This research is currently at the design and implementation stage. The completion of this study will provide useful insights into understanding factors impacting the decision to use e-government services from a cross and multi nationalities perspectives.Keywords: different nationalities, e-government, e-government services, technology acceptance model (TAM)
Procedia PDF Downloads 42918864 Skills Development: The Active Learning Model of a French Computer Science Institute
Authors: N. Paparisteidi, D. Rodamitou
Abstract:
This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.Keywords: active learning, blended learning, higher education, skills development
Procedia PDF Downloads 10418863 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)
Procedia PDF Downloads 20918862 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 20818861 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 14218860 The Impact of Structural Empowerment on Risk Management Practices: A Case Study of Saudi Arabia Construction Small and Medium-Sized Enterprises
Authors: S. Alyami, S. Mohammad
Abstract:
These Risk management practices have a significant impact on construction SMEs. The effective utilisation of these practices depends on culture change in order to optimise decision making for critical activities within construction projects. Thus, successful implementation of empowerment strategies would enhance operational employees to participate in effective decision making. However, there remain many barriers to individuals and organisations within empowerment strategies that require empirical investigation before the industry can benefit from their implementation. Gaps in understanding the relationship between employee empowerment and risk management practices still exist. This research paper aims to examine the impact of the structural empowerment on risk management practices in construction SMEs. The questionnaire has been distributed to participants (162 employees) that involve projects and civil engineers within a case study from Saudi construction SMEs. Partial least squares based structural equation modeling (PLS-SEM) was utilised to perform analysis. The results reveal a positive relationship between empowerment and risk management practices. The study shows how structural empowerment contributes to operational employees in risk management practices through involving activities such as decision making, self-efficiency, and autonomy. The findings of this study will contribute to close the current gaps in the construction SMEs context.Keywords: construction SMEs, culture, decision making, empowerment, risk management
Procedia PDF Downloads 11918859 A Value-Oriented Metamodel for Small and Medium Enterprises’ Decision Making
Authors: Romain Ben Taleb, Aurélie Montarnal, Matthieu Lauras, Mathieu Dahan, Romain Miclo
Abstract:
To be competitive and sustainable, any company has to maximize its value. However, unlike listed companies that can assess their values based on market shares, most Small and Medium Enterprises (SMEs) which are non-listed cannot have direct and live access to this critical information. Traditional accounting reports only give limited insights to SME decision-makers about the real impact of their day-to-day decisions on the company’s performance and value. Most of the time, an SME’s financial valuation is made one time a year as the associated process is time and resource-consuming, requiring several months and external expertise to be completed. To solve this issue, we propose in this paper a value-oriented metamodel that enables real-time and dynamic assessment of the SME’s value based on the large definition of their assets. These assets cover a wider scope of resources of the company and better account for immaterial assets. The proposal, which is illustrated in a case study, discusses the benefits of incorporating assets in the SME valuation.Keywords: SME, metamodel, decision support system, financial valuation, assets
Procedia PDF Downloads 92