Search results for: performance management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20331

Search results for: performance management

13251 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials

Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco

Abstract:

Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.

Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites

Procedia PDF Downloads 254
13250 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles

Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık

Abstract:

Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.

Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles

Procedia PDF Downloads 74
13249 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations

Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang

Abstract:

Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.

Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments

Procedia PDF Downloads 144
13248 Way to Successful Enterprise Resource Planning System Implementation in Developing Countries: Case of Public Sector Unit

Authors: Suraj Kumar Mukti

Abstract:

Enterprise Resource Planning (ERP) system is a management tool to integrate all departments in an organization. It integrates business processes, manages resources efficiently and provides an appropriate decision support system to management. ERP system implementation is a typical and time taking process as well as money consuming process. Articles related to key success factors of ERP system implementation are available in the literature, but rare authors have focused on roadmap of successful ERP system implementation. Postponement is better if the organization is not ready to implement ERP system in better way; hence checking of organization’s preparation to adopt new system is an important prerequisite to ensure the success of ERP system implementation in an organization. Then comes what will be called as success of ERP system implementation. Benefits achieved by ERP system may be categorized into two categories; viz. tangible and intangible benefits. This research article presents a roadmap to ensure the success of ERP system implementation and benefits achieved through the new system as in success indicator. A case study is presented to evaluate the success and benefit achieved through the new system. The article gives a comprehensive approach to academicians and a roadmap to the organizations seeking to implement the ERP system.

Keywords: ERP system, decision support system, tangible, intangible

Procedia PDF Downloads 313
13247 Durham Region: How to Achieve Zero Waste in a Municipal Setting

Authors: Mirka Januszkiewicz

Abstract:

The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed.

Keywords: municipal waste, residential, waste diversion, zero waste

Procedia PDF Downloads 211
13246 On Grammatical Metaphors: A Corpus-Based Reflection on the Academic Texts Written in the Field of Environmental Management

Authors: Masoomeh Estaji, Ahdie Tahamtani

Abstract:

Considering the necessity of conducting research and publishing academic papers during Master’s and Ph.D. programs, graduate students are in dire need of improving their writing skills through either writing courses or self-study planning. One key feature that could aid academic papers to look more sophisticated is the application of grammatical metaphors (GMs). These types of metaphors represent the ‘non-congruent’ and ‘implicit’ ways of decoding meaning through which one grammatical category is replaced by another, more implied counterpart, which can alter the readers’ understanding of the text as well. Although a number of studies have been conducted on the application of GMs across various disciplines, almost none has been devoted to the field of environmental management, and the scope of the previous studies has been relatively limited compared to the present work. In the current study, attempts were made to analyze different types of GMs used in academic papers published in top-tiered journals in the field of environmental management, and make a list of the most frequently used GMs based on their functions in this particular discipline to make the teaching of academic writing courses more explicit and the composition of academic texts more well-structured. To fulfill these purposes, a corpus-based analysis based on the two theoretical models of Martin et al. (1997) and Liardet (2014) was run. Through two stages of manual analysis and concordancers, ten recent academic articles entailing 132490 words published in two prestigious journals were precisely scrutinized. The results yielded that through the whole IMRaD sections of the articles, among all types of ideational GMs, material processes were the most frequent types. The second and the third ranks would apply to the relational and mental categories, respectively. Regarding the use of interpersonal GMs, objective expanding metaphors were the highest in number. In contrast, subjective interpersonal metaphors, either expanding or contracting, were the least significant. This would suggest that scholars in the field of Environmental Management tended to shift the focus on the main procedures and explain technical phenomenon in detail, rather than to compare and contrast other statements and subjective beliefs. Moreover, since no instances of verbal ideational metaphors were detected, it could be deduced that the act of ‘saying or articulating’ something might be against the standards of the academic genre. One other assumption would be that the application of ideational GMs is context-embedded and that the more technical they are, the least frequent they become. For further studies, it is suggested that the employment of GMs to be studied in a wider scope and other disciplines, and the third type of GMs known as ‘textual’ metaphors to be included as well.

Keywords: English for specific purposes, grammatical metaphor, academic texts, corpus-based analysis

Procedia PDF Downloads 155
13245 Students’ Academic and Personal Needs: Basis for a Guidance Program

Authors: Susan Marie R. De La Cruz, Bernadette F. De La Cruz, Georgia D. Demavibas

Abstract:

This study determined the top 10 perceived students’ academic needs, personal needs, personal obstacles in achieving their academic goals, are as they need assistance, and their perceived feelings in math, reading and writing. The North Carolina State College, Student Support Services needs assessment survey was used. The respondents were the randomly chosen122Graduate school students. The top 10 academic needs are as follows: need to improve memory, communication skills, study habits, time management skills, career decisions, vocabulary, math skills, test taking skills, reading comprehension, and the need to reduce math anxiety. Top 10 personal needs are as follows: difficulty meeting deadline, difficulty managing money, inadequate computer skills, afraid of failing graduate school, difficulty participating in class/group discussions, absence from school, anxiety during exams, little or no experience with internet, personal counseling needs, and unsure of university academic procedures. Students’ top 10 perceived personal obstacles were as follows: issues surrounding sickness in family, lack of time management, lack of money, feeling tired, fears to speak in class, poor study habits, problems at home, late in class, too shy, and always feeling sick and easily distracted. Students felt need assistance in areas surrounding personal budget, stress management, motivation, anxiety, depressions, leadership development and goals/decision making. It is recommended that enrichment activities be provided to respond to students’ academic and personal needs. Also, Graduate School Guidance Counselor collaborates with other licensed Guidance Counselors in other colleges to have a well-coordinated and effective delivery of services responsive to students’ needs.

Keywords: academic needs, guidance counsellors, guidance service, needs assessment survey, personal needs, student services

Procedia PDF Downloads 323
13244 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 63
13243 The Environmental Influence on Slow Learners' Learning Achievement

Authors: Niphattha Hannapha

Abstract:

This paper examines how the classroom environment influences slow learners’ learning achievement; it focuses on how seating patterns affect students’ behaviours and which patterns best contribute to students’ learning performance. The researcher studied how slow learners’ characteristics and seating patterns influenced their behaviours and performance at Ban Hin Lad School. As a nonparticipant observation, the target groups included 15 slow learners from Prathomsueksa (Grades) 4 and 5. Students’ behaviours were recorded during their learning activities in order to minimize their reading and written expression disorder in Thai language tutorials. The result showed four seating patterns and two behaviors which obstructed students’ learning. The average of both behaviours mostly occurred when students were seated with patterns 1 (the seat facing the door, with the corridor alongside) and 3 (the seat alongside the door, facing the aisle) respectively. Seating patterns 1 and 3 demonstrated visibility (the front and side) of a walking path with two-way movement. However, seating patterns 2 (seating with the door alongside and the aisle at the back) and 4 (sitting with the door at the back and the aisle alongside) demonstrated visibility (the side) of a walking path with one-way movement. In Summary, environmental design is important to enhance concentration in slow learners who have reading and writing disabilities. This study suggests that students should be seated where they can have the least visibility of movement to help them increase continuous learning. That means they can have a better chance of developing reading and writing abilities in comparison with other patterns of seating.

Keywords: slow learning, interior design, interior environment, classroom

Procedia PDF Downloads 194
13242 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 90
13241 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 30
13240 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network

Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar

Abstract:

Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.

Keywords: Bitcoin network, propagation delay, clustering, scalability

Procedia PDF Downloads 105
13239 Control of the Pest Bemisia tabaci With the Entomopathogenic Fungus Beauveria bassiana in a Geothermal Greenhouse in Southern Tunisia

Authors: Besma Hamrouni Assadi, Mohamed Sadok Belkadhi

Abstract:

The whitefly Bemisia tabaci is a cosmopolitan insect that causes serious damage to greenhouse crops. It is increasingly recognized that the use of biological control means such as entomopathogenic fungi presents a sustainable solution to integrated pest management programs. In order to reduce the use of chemical pesticides, Beauveria bassiana strain R444 was tested against eggs and second, third and fourth instar larvae of B. tabaci in a geothermal tomato greenhouse in southern Tunisia. This entomopathogenic fungus was compared to a chemical pesticide Imidacloprid and an untreated control. We found significant mortality of individuals caused by B. bassiana comparable to that caused by the chemical pesticide. After four weeks of follow-up, this fungus causes a mortality of eggs and larvae of B. tabaci that exceeds 60%. It shows that the use of entomopathogenic fungi can help reduce the use of pesticides to control B. tabaci on geothermal crops.

Keywords: entomopathogenic fungi, Bemisia tabaci, geothermal greenhouse, integrated pest management programs

Procedia PDF Downloads 92
13238 Disaster Management Using Wireless Sensor Networks

Authors: Akila Murali, Prithika Manivel

Abstract:

Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.

Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology

Procedia PDF Downloads 394
13237 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator

Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard

Abstract:

Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.

Keywords: blade tip timing, blisk, finite element, vibration measurement

Procedia PDF Downloads 296
13236 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 63
13235 Embodied Neoliberalism and the Mind as Tool to Manage the Body: A Descriptive Study Applied to Young Australian Amateur Athletes

Authors: Alicia Ettlin

Abstract:

Amid the rise of neoliberalism to the leading economic policy model in Western societies in the 1980s, people have started to internalise a neoliberal way of thinking, whereby the human body has become an entity that can and needs to be precisely managed through free yet rational decision-making processes. The neoliberal citizen has consequently become an entrepreneur of the self who is free, independent, rational, productive and responsible for themselves, their health and wellbeing as well as their appearance. The focus on individuals as entrepreneurs who manage their bodies through the rationally thinking mind has, however, become increasingly criticised for viewing the social actor as ‘disembodied’, as a detached, social actor whose powerful mind governs over the passive body. On the other hand, the discourse around embodiment seeks to connect rational decision-making processes to the dominant neoliberal discourse which creates an embodied understanding that the body, just as other areas of people’s lives, can and should be shaped, monitored and managed through cognitive and rational thinking. This perspective offers an understanding of the body regarding its connections with the social environment that reaches beyond the debates around mind-body binary thinking. Hence, following this argument, body management should not be thought of as either solely guided by embodied discourses nor as merely falling into a mind-body dualism, but rather, simultaneously and inseparably as both at once. The descriptive, qualitative analysis of semi-structured in-depth interviews conducted with young Australian amateur athletes between the age of 18 and 24 has shown that most participants are interested in measuring and managing their body to create self-knowledge and self-improvement. The participants thereby connected self-improvement to weight loss, muscle gain or simply staying fit and healthy. Self-knowledge refers to body measurements including weight, BMI or body fat percentage. Self-management and self-knowledge that are reliant on one another to take rational and well-thought-out decisions, are both characteristic values of the neoliberal doctrine. A neoliberal way of thinking and looking after the body has also by many been connected to rewarding themselves for their discipline, hard work or achievement of specific body management goals (e.g. eating chocolate for reaching the daily step count goal). A few participants, however, have shown resistance against these neoliberal values, and in particular, against the precise monitoring and management of the body with the help of self-tracking devices. Ultimately, however, it seems that most participants have internalised the dominant discourses around self-responsibility, and by association, a sense of duty to discipline their body in normative ways. Even those who have indicated their resistance against body work and body management practices that follow neoliberal thinking and measurement systems, are aware and have internalised the concept of the rational operating mind that needs or should decide how to look after the body in terms of health but also appearance ideals. The discussion around the collected data thereby shows that embodiment and the mind/body dualism constitute two connected, rather than two separate or opposing concepts.

Keywords: dualism, embodiment, mind, neoliberalism

Procedia PDF Downloads 151
13234 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 199
13233 Studies on the Existing Status of MSW Management in Agartala City and Recommendation for Improvement

Authors: Subhro Sarkar, Umesh Mishra

Abstract:

Agartala Municipal Council (AMC) is the municipal body which regulates and governs the Agartala city. MSW management may be proclaimed as a tool which rests on the principles of public health, economy, engineering and other aesthetic or environmental factors by dealing with the controlled generation, collection, transport, processing and disposal of MSW. Around 220-250 MT of solid waste per day is collected by AMC out of which 12-14 MT is plastic and is disposed of in Devendra Chandra Nagar dumping ground (33 acres), nearly 12-15 km from the city. A survey was performed to list down the prevailing operations conducted by the AMC which includes road sweeping, garbage lifting, carcass removal, biomedical waste collection, dumping, and incineration. Different types of vehicles are engaged to carry out these operations. Door to door collection of garbage is done from the houses with the help of 220 tricycles issued by 53 NGOs. The location of the dustbin containers were earmarked which consisted of 4.5 cum, 0.6 cum containers and 0.1 cum containers, placed at various locations within the city. The total household waste was categorized as organic, recyclable and other wastes. It was found that East Pratapgarh ward produced 99.3% organic waste out of the total MSW generated in that ward which is maximum among all the wards. A comparison of the waste generation versus the family size has been made. A questionnaire for the survey of MSW from household and market place was prepared. The average waste generated (in kg) per person per day was found out for each of the wards. It has been noted that East Jogendranagar ward had a maximum per person per day waste generation of 0.493 kg/day.In view of the studies made, it has been found that AMC has failed to implement MSWM in an effective way because of the unavailability of suitable facilities for treatment and disposal of the large amount of MSW. It has also been noted that AMC is not following the standard procedures of handling MSW. Transportation system has also been found less effective leading to waste of time, money and manpower.

Keywords: MSW, waste generation, solid waste disposal, management

Procedia PDF Downloads 303
13232 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model

Procedia PDF Downloads 337
13231 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 94
13230 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 36
13229 The Use of Beneficial Microorganisms from Diverse Environments for the Management of Aflatoxin in Maize

Authors: Mathias Twizeyimana, Urmila Adhikari, Julius P. Sserumaga, David Ingham

Abstract:

The management of aflatoxins (naturally occurring toxins produced by certain fungi, most importantly Aspergillus flavus and A. parasiticus) relies mostly on the use of best cultural practices and, in some cases, the use of the biological control consisting of atoxigenic strains inhibiting the toxigenic strains through competition resulting in considerable toxin reduction. At AgBiome, we have built a core collection of over 100,000 fully sequenced microbes from diverse environments and employ both the microbes and their sequences in the discovery of new biological products for disease and pest control. The most common approach to finding beneficial microbes consists of isolating microorganisms from samples collected from diverse environments, selecting antagonistic strains through empirical screening, studying modes of action, and stabilization through the formulation of selected microbial isolates. A total of 608 diverse bacterial strains were screened using a high-throughput assay (48-well assay) to identify strains that inhibit toxigenic A. flavus growth on maize kernels. Active strains in 48-well assay had their pathogen inhibiting activity confirmed using the Flask Assay and were concurrently tested for their ability to reduce the aflatoxin content in maize grains. Strains with best growth inhibition and reduction of aflatoxin were tested in the greenhouse and field trials. From the field trials, three bacterial strains, AFS000009 (Pseudomonas chlororaphis), AFS032321 (Bacillus subtilis), AFS024683 (Bacillus velezensis), had aflatoxin concentrations (ppb) values that were significantly lower than those of inoculated control. The identification of biological products with high efficacy in inhibiting pathogen growth and eventually reducing the aflatoxin content will provide a valuable alternative to control strategies used in aflatoxin contamination management.

Keywords: aflatoxin, microorganism bacteria, biocontrol, beneficial microbes

Procedia PDF Downloads 164
13228 Improved Reuse and Storage Performances at Room Temperature of a New Environmental-Friendly Lactate Oxidase Biosensor Made by Ambient Electrospray Deposition

Authors: Antonella Cartoni, Mattea Carmen Castrovilli

Abstract:

A biosensor for lactate detection has been developed using an environmentally friendly approach. The biosensor is based on lactate oxidase (LOX) and has remarkable capabilities for reuse and storage at room temperature. The manufacturing technique employed is ambient electrospray deposition (ESD), which enables efficient and sustainable immobilization of the LOX enzyme on a cost-effective com-mercial screen-printed Prussian blue/carbon electrode (PB/C-SPE). The study demonstrates that the ESD technology allows the biosensor to be stored at ambient pressure and temperature for extended periods without affecting the enzymatic activity. The biosensor can be stored for up to 90 days without requiring specific storage conditions, and it can be reused for up to 24 measurements on both freshly prepared electrodes and electrodes that are three months old. The LOX-based biosensor exhibits a lin-ear range of lactate detection between 0.1 and 1 mM, with a limit of detection of 0.07±0.02 mM. Ad-ditionally, it does not exhibit any memory effects. The immobilization process does not involve the use of entrapment matrices or hazardous chemicals, making it environmentally sustainable and non-toxic compared to current methods. Furthermore, the application of a electrospray deposition cycle on previously used biosensors rejuvenates their performance, making them comparable to freshly made biosensors. This highlights the excellent recycling potential of the technique, eliminating the waste as-sociated with disposable devices.

Keywords: green friendly, reuse, storage performance, immobilization, matrix-free, electrospray deposition, biosensor, lactate oxidase, enzyme

Procedia PDF Downloads 47
13227 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study

Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang

Abstract:

While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.

Keywords: eye tracking, information comprehension, personal health information, visualization

Procedia PDF Downloads 86
13226 An Efficient Architecture for Dynamic Customization and Provisioning of Virtual Appliance in Cloud Environment

Authors: Rajendar Kandan, Mohammad Zakaria Alli, Hong Ong

Abstract:

Cloud computing is a business model which provides an easier management of computing resources. Cloud users can request virtual machine and install additional softwares and configure them if needed. However, user can also request virtual appliance which provides a better solution to deploy application in much faster time, as it is ready-built image of operating system with necessary softwares installed and configured. Large numbers of virtual appliances are available in different image format. User can download available appliances from public marketplace and start using it. However, information published about the virtual appliance differs from each providers leading to the difficulty in choosing required virtual appliance as it is composed of specific OS with standard software version. However, even if user choses the appliance from respective providers, user doesn’t have any flexibility to choose their own set of softwares with required OS and application. In this paper, we propose a referenced architecture for dynamically customizing virtual appliance and provision them in an easier manner. We also add our experience in integrating our proposed architecture with public marketplace and Mi-Cloud, a cloud management software.

Keywords: cloud computing, marketplace, virtualization, virtual appliance

Procedia PDF Downloads 271
13225 Laboratory Scale Production of Bio-Based Chemicals from Industrial Waste Feedstock in South Africa

Authors: P. Mandree, S. O. Ramchuran, F. O'Brien, L. Sethunya, S. Khumalo

Abstract:

South Africa is identified as one of the five emerging waste management markets, globally. The waste sector in South Africa influences the areas of energy, water and food at an economic and social level. Recently, South African industries have focused on waste valorization and diversification of the current product offerings in an attempt to reduce industrial waste, target a zero waste-to-landfill initiative and recover energy. South Africa has a number of waste streams including industrial and agricultural biomass, municipal waste and marine waste. Large volumes of agricultural and forestry residues, in particular, are generated which provides significant opportunity for production of bio-based fuels and chemicals. This could directly impact development of a rural economy. One of the largest agricultural industries is the sugar industry, which contributes significantly to the country’s economy and job creation. However, the sugar industry is facing challenges due to fluctuations in sugar prices, increasing competition with low-cost global sugar producers, increasing energy and agricultural input costs, lower consumption and aging facilities. This study is aimed at technology development for the production of various bio-based chemicals using feedstock from the sugar refining process. Various indigenous bacteria and yeast species were assessed for the potential to produce platform chemicals in flask studies and at 30 L fermentation scale. Quantitative analysis of targeted bio-based chemicals was performed using either gas chromatography or high pressure liquid chromatography to assess production yields and techno-economics in order to compare performance to current commercial benchmark processes. The study also creates a decision platform for the research direction that is required for strain development using Industrial Synthetic Biology.

Keywords: bio-based chemicals, biorefinery, industrial synthetic biology, waste valorization

Procedia PDF Downloads 110
13224 Utilizing Minecraft Java Edition for the Application of Fire Disaster Procedures to Establish Fire Disaster Readiness for Grade 12 STEM students of DLSU-IS

Authors: Aravella Flores, Jose Rafael E. Sotelo, Luis Romulus Phillippe R. Javier, Josh Christian V. Nunez

Abstract:

This study focuses on analyzing the performance of Grade 12 STEM students of De La Salle University - Integrated School that has completed the Disaster Readiness and Risk Reduction course in handling fire hazards through Minecraft Java Edition. This platform is suitable because fire DRRR is challenging to learn in a practical setting as well as questionable with regard to supplementing the successful implementation of textbook knowledge into actual practice. The purpose of this study is to acknowledge whether Minecraft can be a suitable environment to familiarize oneself to fire DRRR. The objectives are achieved through utilizing Minecraft in simulating fire scenarios which allows the participants to freely act upon and practice fire DRRR. The experiment was divided into the grounding and validation phase, where researchers observed the performance of the participants in the simulation. A pre-simulation and post-simulation survey was given to acknowledge the change in participants’ perception of being able to utilize fire DRRR procedures and their vulnerabilities. The paired t-test was utilized, showing significant differences in the pre-simulation and post-simulation survey scores, thus, insinuating improved judgment of DRRR, lessening their vulnerabilities in the possibility of encountering a fire hazard. This research poses a model for future research which can gather more participants and dwell on more complex codes outside just command blocks and into the code lines of Minecraft itself.

Keywords: minecraft, DRRR, fire, disaster, simulation

Procedia PDF Downloads 118
13223 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 41
13222 Characterization of Volatile Compounds in Meat Lamb Fed in Different Algeria Pasture

Authors: Nabila Berrighi, Kaddour Bouderoua, Maria Khossif, Gema Nieto, Gaspar Ros

Abstract:

Ruminant meat is an important source of nutrients and is also of high sensory value. However, the importance and nature of these characteristics depend on ruminant nutrition. The objective of this study is to assess the effect of two Algerian feeding systems applied in the steppic rearing area of Djelfa and in the highlands one of Tiaret on the growth performance of lambs and on their meat quality, especially on their aroma compounds of meat. At the beginning of the experiment, lambs had an average body weight of 34.04 kg, and 35.40 kg for the group reared at Highland (0% concentrate) and Steppe (30% concentrate), respectively. The incorporation of the concentrated feed in Steppe had a significant effect on slaughter weight compared to lambs fed only on pasture (Highland) (49.72 Kg vs. 42.06 Kg, P<0.05). Beyond the first month, animals from the Steppe one showed better weight gains compared to those from Highland (14.32Kg vs. 8.02 Kg, respectively, P<0,05). After slaughter, samples from the Longissimus thoracis were removed and analyzed. The results point to significant differences in the amounts of many of the predominant volatile compounds between both groups (p<0.05), such as Hexanal, 2-methyl-3-furanthiol and nonanal (8.92 μg/kg vs. 4.57 μg/kg), (8.88 μg/kg vs. 7.45 μg/kg) and (2.09 μ/kg vs. 1.02 μg/kg) associated with smells of green, boiling meat and orange fruit, respectively. These compounds, measured by olfactometry, derived from the oxidation of lipids and appear to be responsible for the characteristic flavor of lamb meat in the steppe compared to that generated by meat from animals from the Highland pastures. The Algerian Steppe ecosystem is very interesting for outdoor sheep breeding, which allows to obtain attractive sensory quality and in the production of typical lamb meat that can be considered as a label.

Keywords: falvour, growth performance, lamb meat, steppe pasture

Procedia PDF Downloads 80