Search results for: network user rules
749 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 518748 Multimedia Container for Autonomous Car
Authors: Janusz Bobulski, Mariusz Kubanek
Abstract:
The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.Keywords: an autonomous car, image processing, lidar, obstacle detection
Procedia PDF Downloads 226747 Crafting Robust Business Model Innovation Path with Generative Artificial Intelligence in Start-up SMEs
Authors: Ignitia Motjolopane
Abstract:
Small and medium enterprises (SMEs) play an important role in economies by contributing to economic growth and employment. In the fourth industrial revolution, the convergence of technologies and the changing nature of work created pressures on economies globally. Generative artificial intelligence (AI) may support SMEs in exploring, exploiting, and transforming business models to align with their growth aspirations. SMEs' growth aspirations fall into four categories: subsistence, income, growth, and speculative. Subsistence-oriented firms focus on meeting basic financial obligations and show less motivation for business model innovation. SMEs focused on income, growth, and speculation are more likely to pursue business model innovation to support growth strategies. SMEs' strategic goals link to distinct business model innovation paths depending on whether SMEs are starting a new business, pursuing growth, or seeking profitability. Integrating generative artificial intelligence in start-up SME business model innovation enhances value creation, user-oriented innovation, and SMEs' ability to adapt to dynamic changes in the business environment. The existing literature may lack comprehensive frameworks and guidelines for effectively integrating generative AI in start-up reiterative business model innovation paths. This paper examines start-up business model innovation path with generative artificial intelligence. A theoretical approach is used to examine start-up-focused SME reiterative business model innovation path with generative AI. Articulating how generative AI may be used to support SMEs to systematically and cyclically build the business model covering most or all business model components and analyse and test the BM's viability throughout the process. As such, the paper explores generative AI usage in market exploration. Moreover, market exploration poses unique challenges for start-ups compared to established companies due to a lack of extensive customer data, sales history, and market knowledge. Furthermore, the paper examines the use of generative AI in developing and testing viable value propositions and business models. In addition, the paper looks into identifying and selecting partners with generative AI support. Selecting the right partners is crucial for start-ups and may significantly impact success. The paper will examine generative AI usage in choosing the right information technology, funding process, revenue model determination, and stress testing business models. Stress testing business models validate strong and weak points by applying scenarios and evaluating the robustness of individual business model components and the interrelation between components. Thus, the stress testing business model may address these uncertainties, as misalignment between an organisation and its environment has been recognised as the leading cause of company failure. Generative AI may be used to generate business model stress-testing scenarios. The paper is expected to make a theoretical and practical contribution to theory and approaches in crafting a robust business model innovation path with generative artificial intelligence in start-up SMEs.Keywords: business models, innovation, generative AI, small medium enterprises
Procedia PDF Downloads 71746 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)
Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini
Abstract:
Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria
Procedia PDF Downloads 103745 Multi-Criterial Analysis: Potential Regions and Height of Wind Turbines, Rio de Janeiro, Brazil
Authors: Claudio L. M. Souza, Milton Erthal, Aldo Shimoya, Elias R. Goncalves, Igor C. Rangel, Allysson R. T. Tavares, Elias G. Figueira
Abstract:
The process of choosing a region for the implementation of wind farms involves factors such as the wind regime, economic viability, land value, topography, and accessibility. This work presents results obtained by multi-criteria decision analysis, and it establishes a hierarchy, regarding the installation of wind farms, among geopolicy regions in the state of ‘Rio de Janeiro’, Brazil: ‘Regiao Norte-RN’, ‘Regiao dos Lagos-RL’ and ‘Regiao Serrana-RS’. The wind regime map indicates only these three possible regions with an average annual wind speed of above of 6.0 m/s. The method applied was the Analytical Hierarchy Process-AHP, designed to prioritize and rank the three regions based on four criteria as follows: 1) potential of the site and average wind speeds of above 6.0 ms-¹, 2) average land value, 3) distribution and interconnection to electric network with the highest number of electricity stations, and 4) accessibility with proximity and quality of highways and flat topography. The values of energy generation were calculated for wind turbines 50, 75, and 100 meters high, considering the production of site (GWh/Km²) and annual production (GWh). The weight of each criterion was attributed by six engineers and by analysis of Road Map, the Map of the Electric System, the Map of Wind Regime and the Annual Land Value Report. The results indicated that in 'RS', the demand was estimated at 2,000 GWh, so a wind farm can operate efficiently in 50 m turbines. This region is mainly mountainous with difficult access and lower land value. With respect to ‘RL’, the wind turbines have to be installed at a height of 75 m high to reach a demand of 6,300 GWh. This region is very flat, with easy access, and low land value. Finally, the ‘NR’ was evaluated as very flat and with expensive lands. In this case, wind turbines with 100 m can reach an annual production of 19,000 GWh. In this Region, the coast area was classified as of greater logistic, productivity and economic potential.Keywords: AHP, renewable energy, wind energy
Procedia PDF Downloads 151744 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change
Authors: Ermias A. Tegegn, Million Meshesha
Abstract:
Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model
Procedia PDF Downloads 142743 Verification of a Simple Model for Rolling Isolation System Response
Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly
Abstract:
Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system
Procedia PDF Downloads 250742 LHCII Proteins Phosphorylation Changes Involved in the Dark-Chilling Response in Plant Species with Different Chilling Tolerance
Authors: Malgorzata Krysiak, Anna Wegrzyn, Maciej Garstka, Radoslaw Mazur
Abstract:
Under constantly fluctuating environmental conditions, the thylakoid membrane protein network evolved the ability to dynamically respond to changing biotic and abiotic factors. One of the most important protective mechanism is rearrangement of the chlorophyll-protein (CP) complexes, induced by protein phosphorylation. In a temperate climate, low temperature is one of the abiotic stresses that heavily affect plant growth and productivity. The aim of this study was to determine the role of LHCII antenna complex phosphorylation in the dark-chilling response. The study included an experimental model based on dark-chilling at 4 °C of detached chilling sensitive (CS) runner bean (Phaseolus coccineus L.) and chilling tolerant (CT) garden pea (Pisum sativum L.) leaves. This model is well described in the literature as used for the analysis of chilling impact without any additional effects caused by light. We examined changes in thylakoid membrane protein phosphorylation, interactions between phosphorylated LHCII (P-LHCII) and CP complexes, and their impact on the dynamics of photosystem II (PSII) under dark-chilling conditions. Our results showed that the dark-chilling treatment of CS bean leaves induced a substantial increase of phosphorylation of LHCII proteins, as well as changes in CP complexes composition and their interaction with P-LHCII. The PSII photochemical efficiency measurements showed that in bean, PSII is overloaded with light energy, which is not compensated by CP complexes rearrangements. On the contrary, no significant changes in PSII photochemical efficiency, phosphorylation pattern and CP complexes interactions were observed in CT pea. In conclusion, our results indicate that different responses of the LHCII phosphorylation to chilling stress take place in CT and CS plants, and that kinetics of LHCII phosphorylation and interactions of P-LHCII with photosynthetic complexes may be crucial to chilling stress response. Acknowledgments: presented work was financed by the National Science Centre, Poland grant No.: 2016/23/D/NZ3/01276Keywords: LHCII, phosphorylation, chilling stress, pea, runner bean
Procedia PDF Downloads 140741 Polymer Impregnated Sulfonated Carbon Composite as a Solid Acid Catalyst for the Dehydration of Xylose to Furfural
Authors: Praveen K. Khatri, Neha Karanwal, Savita Kaul, Suman L. Jain
Abstract:
Conversion of biomass through green chemical routes is of great industrial importance as biomass is considered to be most widely available inexpensive renewable resource that can be used as a raw material for the production of bio fuel and value-added organic products. In this regard, acid catalyzed dehydration of biomass derived pentose sugar (mainly D-xylose) to furfural is a process of tremendous research interest in current scenario due to the wider industrial applications of furfural. Furfural is an excellent organic solvent for refinement of lubricants and separation of butadiene from butene mixture in synthetic rubber fabrication. In addition it also serve as a promising solvent for many organic materials, such as resins, polymers and also used as a building block for synthesis of various valuable chemicals such as furfuryl alcohol, furan, pharmaceutical, agrochemicals and THF. Here in a sulfonated polymer impregnated carbon composite solid acid catalyst (P-C-SO3H) was prepared by the pyrolysis of a polymer matrix impregnated with glucose followed by its sulfonation and used for the dehydration of xylose to furfural. The developed catalyst exhibited excellent activity and provided almost quantitative conversion of xylose with the selective synthesis of furfural. The higher catalytic activity of P-C-SO3H may be due to the more even distribution of polycyclic aromatic hydrocarbons generated from incomplete carbonization of glucose along the polymer matrix network, leading to more available sites for sulfonation which resulted in greater sulfonic acid density in P-C-SO3H as compared to sulfonated carbon catalyst (C-SO3H). In conclusion, we have demonstrated sulfonated polymer impregnated carbon composite (P-C-SO3H) as an efficient and selective solid acid catalyst for the dehydration of xylose to furfural. After completion of the reaction, the catalyst was easily recovered and reused for several runs without noticeable loss in its activity and selectivity.Keywords: Solid acid , Biomass conversion, Xylose Dehydration, Heterogeneous catalyst
Procedia PDF Downloads 409740 Integrated Mass Rapid Transit System for Smart City Project in Western India
Authors: Debasis Sarkar, Jatan Talati
Abstract:
This paper is an attempt to develop an Integrated Mass Rapid Transit System (MRTS) for a smart city project in Western India. Integrated transportation is one of the enablers of smart transportation for providing a seamless intercity as well as regional level transportation experience. The success of a smart city project at the city level for transportation is providing proper integration to different mass rapid transit modes by way of integrating information, physical, network of routes fares, etc. The methodology adopted for this study was primary data research through questionnaire survey. The respondents of the questionnaire survey have responded on the issues about their perceptions on the ways and means to improve public transport services in urban cities. The respondents were also required to identify the factors and attributes which might motivate more people to shift towards the public mode. Also, the respondents were questioned about the factors which they feel might restrain the integration of various modes of MRTS. Furthermore, this study also focuses on developing a utility equation for respondents with the help of multiple linear regression analysis and its probability to shift to public transport for certain factors listed in the questionnaire. It has been observed that for shifting to public transport, the most important factors that need to be considered were travel time saving and comfort rating. Also, an Integrated MRTS can be obtained by combining metro rail with BRTS, metro rail with monorail, monorail with BRTS and metro rail with Indian railways. Providing a common smart card to transport users for accessing all the different available modes would be a pragmatic solution towards integration of the available modes of MRTS.Keywords: mass rapid transit systems, smart city, metro rail, bus rapid transit system, multiple linear regression, smart card, automated fare collection system
Procedia PDF Downloads 271739 The Future Control Rooms for Sustainable Power Systems: Current Landscape and Operational Challenges
Authors: Signe Svensson, Remy Rey, Anna-Lisa Osvalder, Henrik Artman, Lars Nordström
Abstract:
The electric power system is undergoing significant changes. Thereby, the operation and control are becoming partly modified, more multifaceted and automated, and thereby supplementary operator skills might be required. This paper discusses developing operational challenges in future power system control rooms, posed by the evolving landscape of sustainable power systems, driven in turn by the shift towards electrification and renewable energy sources. A literature review followed by interviews and a comparison to other related domains with similar characteristics, a descriptive analysis was performed from a human factors perspective. Analysis is meant to identify trends, relationships, and challenges. A power control domain taxonomy includes a temporal domain (planning and real-time operation) and three operational domains within the power system (generation, switching and balancing). Within each operational domain, there are different control actions, either in the planning stage or in the real-time operation, that affect the overall operation of the power system. In addition to the temporal dimension, the control domains are divided in space between a multitude of different actors distributed across many different locations. A control room is a central location where different types of information are monitored and controlled, alarms are responded to, and deviations are handled by the control room operators. The operators’ competencies, teamwork skills, team shift patterns as well as control system designs are all important factors in ensuring efficient and safe electricity grid management. As the power system evolves with sustainable energy technologies, challenges are found. Questions are raised regarding whether the operators’ tacit knowledge, experience and operation skills of today are sufficient to make constructive decisions to solve modified and new control tasks, especially during disturbed operations or abnormalities. Which new skills need to be developed in planning and real-time operation to provide efficient generation and delivery of energy through the system? How should the user interfaces be developed to assist operators in processing the increasing amount of information? Are some skills at risk of being lost when the systems change? How should the physical environment and collaborations between different stakeholders within and outside the control room develop to support operator control? To conclude, the system change will provide many benefits related to electrification and renewable energy sources, but it is important to address the operators’ challenges with increasing complexity. The control tasks will be modified, and additional operator skills are needed to perform efficient and safe operations. Also, the whole human-technology-organization system needs to be considered, including the physical environment, the technical aids and the information systems, the operators’ physical and mental well-being, as well as the social and organizational systems.Keywords: operator, process control, energy system, sustainability, future control room, skill
Procedia PDF Downloads 95738 Augmented Reality Enhanced Order Picking: The Potential for Gamification
Authors: Stavros T. Ponis, George D. Plakas-Koumadorakis, Sotiris P. Gayialis
Abstract:
Augmented Reality (AR) can be defined as a technology, which takes the capabilities of computer-generated display, sound, text and effects to enhance the user's real-world experience by overlaying virtual objects into the real world. By doing that, AR is capable of providing a vast array of work support tools, which can significantly increase employee productivity, enhance existing job training programs by making them more realistic and in some cases introduce completely new forms of work and task executions. One of the most promising AR industrial applications, as literature shows, is the use of Head Worn, monocular or binocular Displays (HWD) to support logistics and production operations, such as order picking, part assembly and maintenance. This paper presents the initial results of an ongoing research project for the introduction of a dedicated AR-HWD solution to the picking process of a Distribution Center (DC) in Greece operated by a large Telecommunication Service Provider (TSP). In that context, the proposed research aims to determine whether gamification elements should be integrated in the functional requirements of the AR solution, such as providing points for reaching objectives and creating leaderboards and awards (e.g. badges) for general achievements. Up to now, there is a an ambiguity on the impact of gamification in logistics operations since gamification literature mostly focuses on non-industrial organizational contexts such as education and customer/citizen facing applications, such as tourism and health. To the contrary, the gamification efforts described in this study focus in one of the most labor- intensive and workflow dependent logistics processes, i.e. Customer Order Picking (COP). Although introducing AR in COP, undoubtedly, creates significant opportunities for workload reduction and increased process performance the added value of gamification is far from certain. This paper aims to provide insights on the suitability and usefulness of AR-enhanced gamification in the hard and very demanding environment of a logistics center. In doing so, it will utilize a review of the current state-of-the art regarding gamification of production and logistics processes coupled with the results of questionnaire guided interviews with industry experts, i.e. logisticians, warehouse workers (pickers) and AR software developers. The findings of the proposed research aim to contribute towards a better understanding of AR-enhanced gamification, the organizational change it entails and the consequences it potentially has for all implicated entities in the often highly standardized and structured work required in the logistics setting. The interpretation of these findings will support the decision of logisticians regarding the introduction of gamification in their logistics processes by providing them useful insights and guidelines originating from a real life case study of a large DC operating more than 300 retail outlets in Greece.Keywords: augmented reality, technology acceptance, warehouse management, vision picking, new forms of work, gamification
Procedia PDF Downloads 150737 Inkjet Printed Silver Nanowire Network as Semi-Transparent Electrode for Organic Photovoltaic Devices
Authors: Donia Fredj, Marie Parmentier, Florence Archet, Olivier Margeat, Sadok Ben Dkhil, Jorg Ackerman
Abstract:
Transparent conductive electrodes (TCEs) or transparent electrodes (TEs) are a crucial part of many electronic and optoelectronic devices such as touch panels, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), solar cells, and transparent heaters. The indium tin oxide (ITO) electrode is the most widely utilized transparent electrode due to its excellent optoelectrical properties. However, the drawbacks of ITO, such as the high cost of this material, scarcity of indium, and the fragile nature, limit the application in large-scale flexible electronic devices. Importantly, flexibility is becoming more and more attractive since flexible electrodes have the potential to open new applications which require transparent electrodes to be flexible, cheap, and compatible with large-scale manufacturing methods. So far, several materials as alternatives to ITO have been developed, including metal nanowires, conjugated polymers, carbon nanotubes, graphene, etc., which have been extensively investigated for use as flexible and low-cost electrodes. Among them, silver nanowires (AgNW) are one of the promising alternatives to ITO thanks to their excellent properties, high electrical conductivity as well as desirable light transmittance. In recent years, inkjet printing became a promising technique for large-scale printed flexible and stretchable electronics. However, inkjet printing of AgNWs still presents many challenges. In this study, a synthesis of stable AgNW that could compete with ITO was developed. This material was printed by inkjet technology directly on a flexible substrate. Additionally, we analyzed the surface microstructure, optical and electrical properties of the printed AgNW layers. Our further research focused on the study of all inkjet-printed organic modules with high efficiency.Keywords: transparent electrodes, silver nanowires, inkjet printing, formulation of stable inks
Procedia PDF Downloads 222736 Communicating Safety: A Digital Ethnography Investigating Social Media Use for Workplace Safety
Authors: Kelly Jaunzems
Abstract:
Social media is a powerful instrument of communication, enabling the presentation of information in multiple forms and modes, amplifying the interactions between people, organisations, and stakeholders, and increasing the range of communication channels available. Younger generations are highly engaged with social media and more likely to use this channel than any other to seek information. Given this, it may appear extraordinary that occupational safety and health professionals have yet to seriously engage with social media for communicating safety messages to younger audiences who, in many industries, might be statistically more likely to encounter more workplace harm or injury. Millennials, defined as those born between 1981-2000, have distinctive characteristics that also impact their interaction patterns rendering many traditional occupational safety and health communication channels sub-optimal or near obsolete. Used to immediate responses, 280-character communication, shares, likes, and visual imagery, millennials struggle to take seriously the low-tech, top-down communication channels such as safety noticeboards, toolbox meetings, and passive tick-box online inductions favoured by traditional OSH professionals. This paper draws upon well-established communication findings, which argue that it is important to know a target audience and reach them using their preferred communication pathways, particularly if the aim is to impact attitudes and behaviours. Health practitioners have adopted social media as a communication channel with great success, yet safety practitioners have failed to follow this lead. Using a digital ethnography approach, this paper examines seven organisations’ Facebook posts from two one-month periods one year apart, one in 2018 and one in 2019. Each of the years informs organisation-based case studies. Comparing, contrasting, and drawing upon these case studies, the paper discusses and evaluates the (non) use of social media communication of safety information in terms of user engagement, shareability, and overall appeal. The success of health practitioners’ use of social media provides a compelling template for the implementation of social media into organisations’ safety communication strategies. Highly visible content such as that found on social media allows an organization to become more responsive and engage in two-way conversations with their audience, creating more engaged and participatory conversations around safety. Further, using social media to address younger audiences with a range of tonal qualities (for example, the use of humour) can achieve cut through in a way that grim statistics fail to do. On the basis of 18 months of interviews, filed work, and data analysis, the paper concludes with recommendations for communicating safety information via social media. It proposes exploration of the social media communication formula that, when utilised by safety practitioners, may create an effective social media presence. It is anticipated that such social media use will increase engagement, expand the number of followers and reduce the likelihood and severity of safety-related incidents. The tools offered may provide a path for safety practitioners to reach a disengaged generation of workers to build a cohesive and inclusive conversation around ways to keep people safe at work.Keywords: social media, workplace safety, communication strategies, young workers
Procedia PDF Downloads 117735 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 108734 Blockchain Is Facilitating Intercultural Entrepreneurship: Memoir of a Persian Non-Fungible Tokens Collection
Authors: Mohammad Afkhami, Saeid Reza Ameli Ranani
Abstract:
Since the bitcoin invention in 2008, blockchain technology surpassed so many innovations that the pioneer networks such as Ethereum are adaptable to host a decentral bunch of information containing pictures, audio, video, domains, etc., or even a metaverse versatile avatar. Transformation of tangible goods into virtual assets, known as AR-utility of luxury products, and the intermixture of reality and virtuality organized a worldwide, semi-regulated, and decentralized marketplace for digital goods. Non-fungible tokens (NFTs) are doing a great help to artists worldwide, sharing diverse cultural outlooks by setting up a remote cross-cultural corporation potential and, at the same time, metamorphosizing the middleman role and ceasing the necessity of having a SWIFT-connected bank account. Under critical sanctions, a group of artists in Tehran did not take for granted such an opportunity to show off their artworks undisturbed, offering an introspective attitude, exerting Iranian motifs while intermingling westernized symbols. The cryptocurrency market has already acquired allocation, and interest in the global domain, paving the way for a flourishing enthusiasm among entrepreneurs who have been preoccupied with high-tech start-ups before. In a project found by Iranian female artists, we decipher the ups and downs of the new cyberculture and the environment it provides to fairly promote the artwork and obstacles it put forward in the way of interested entrepreneurs as we get through the details of starting up an NFT collection. An in-depth interview and empirical encounters with diverse Social Network Sites (SNS) and the strategies that other successful projects deploy to sell their artworks in an international and, at the same time, an anonymous market is the main focus, which shapes the paper fieldwork perspective. In conclusion, we discuss strategies for promoting an NFT project.Keywords: NFT, metaverse, intercultural, art, illustration, start-up, entrepreneurship
Procedia PDF Downloads 101733 Patients' Out-Of-Pocket Expenses-Effectiveness Analysis of Presurgical Teledermatology
Authors: Felipa De Mello-Sampayo
Abstract:
Background: The aim of this study is to undertake, from a patient perspective, an economic analysis of presurgical teledermatology, comparing it with a conventional referral system. Store-and-forward teledermatology allows surgical planning, saving both time and number of visits involving travel, thereby reducing patients’ out-of-pocket expenses, i.e., costs that patients incur when traveling to and from health providers for treatment, visits’ fees, and the opportunity cost of time spent in visits. Method: Patients’ out-of-pocket expenses-effectiveness of presurgical teledermatology were analyzed in the setting of a public hospital during two years. The mean delay in surgery was used to measure effectiveness. The teledermatology network covering the area served by the Hospital Garcia da Horta (HGO), Portugal, linked the primary care centers of 24 health districts with the hospital’s dermatology department. The patients’ opportunity cost of visits, travel costs, and visits’ fee of each presurgical modality (teledermatology and conventional referral), the cost ratio between the most and least expensive alternative, and the incremental cost-effectiveness ratio were calculated from initial primary care visit until surgical intervention. Two groups of patients: those with squamous cell carcinoma and those with basal cell carcinoma were distinguished in order to compare the effectiveness according to the dermatoses. Results: From a patient perspective, the conventional system was 2.15 times more expensive than presurgical teledermatology. Teledermatology had an incremental out-of-pocket expenses-effectiveness ratio of €1.22 per patient and per day of delay avoided. This saving was greater in patients with squamous cell carcinoma than in patients with basal cell carcinoma. Conclusion: From a patient economic perspective, teledermatology used for presurgical planning and preparation is the dominant strategy in terms of out-of-pocket expenses-effectiveness than the conventional referral system, especially for patients with severe dermatoses.Keywords: economic analysis, out-of-pocket expenses, opportunity cost, teledermatology, waiting time
Procedia PDF Downloads 140732 Research on Evaluation of Renewable Energy Technology Innovation Strategy Based on PMC Index Model
Abstract:
Renewable energy technology innovation is an important way to realize the energy transformation. Our government has issued a series of policies to guide and support the development of renewable energy. The implementation of these policies will affect the further development, utilization and technological innovation of renewable energy. In this context, it is of great significance to systematically sort out and evaluate the renewable energy technology innovation policy for improving the existing policy system. Taking the 190 renewable energy technology innovation policies issued during 2005-2021 as a sample, from the perspectives of policy issuing departments and policy keywords, it uses text mining and content analysis methods to analyze the current situation of the policies and conduct a semantic network analysis to identify the core issuing departments and core policy topic words; A PMC (Policy Modeling Consistency) index model is built to quantitatively evaluate the selected policies, analyze the overall pros and cons of the policy through its PMC index, and reflect the PMC value of the model's secondary index The core departments publish policies and the performance of each dimension of the policies related to the core topic headings. The research results show that Renewable energy technology innovation policies focus on synergy between multiple departments, while the distribution of the issuers is uneven in terms of promulgation time; policies related to different topics have their own emphasis in terms of policy types, fields, functions, and support measures, but It still needs to be improved, such as the lack of policy forecasting and supervision functions, the lack of attention to product promotion, and the relatively single support measures. Finally, this research puts forward policy optimization suggestions in terms of promoting joint policy release, strengthening policy coherence and timeliness, enhancing the comprehensiveness of policy functions, and enriching incentive measures for renewable energy technology innovation.Keywords: renewable energy technology innovation, content analysis, policy evaluation, PMC index model
Procedia PDF Downloads 64731 Metal-Organic Frameworks for Innovative Functional Textiles
Authors: Hossam E. Emam
Abstract:
Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications
Procedia PDF Downloads 145730 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 20729 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks
Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions
Procedia PDF Downloads 82728 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 12727 Aerial Survey and 3D Scanning Technology Applied to the Survey of Cultural Heritage of Su-Paiwan, an Aboriginal Settlement, Taiwan
Authors: April Hueimin Lu, Liangj-Ju Yao, Jun-Tin Lin, Susan Siru Liu
Abstract:
This paper discusses the application of aerial survey technology and 3D laser scanning technology in the surveying and mapping work of the settlements and slate houses of the old Taiwanese aborigines. The relics of old Taiwanese aborigines with thousands of history are widely distributed in the deep mountains of Taiwan, with a vast area and inconvenient transportation. When constructing the basic data of cultural assets, it is necessary to apply new technology to carry out efficient and accurate settlement mapping work. In this paper, taking the old Paiwan as an example, the aerial survey of the settlement of about 5 hectares and the 3D laser scanning of a slate house were carried out. The obtained orthophoto image was used as an important basis for drawing the settlement map. This 3D landscape data of topography and buildings derived from the aerial survey is important for subsequent preservation planning as well as building 3D scan provides a more detailed record of architectural forms and materials. The 3D settlement data from the aerial survey can be further applied to the 3D virtual model and animation of the settlement for virtual presentation. The information from the 3D scanning of the slate house can also be used for further digital archives and data queries through network resources. The results of this study show that, in large-scale settlement surveys, aerial surveying technology is used to construct the topography of settlements with buildings and spatial information of landscape, as well as the application of 3D scanning for small-scale records of individual buildings. This application of 3D technology, greatly increasing the efficiency and accuracy of survey and mapping work of aboriginal settlements, is much helpful for further preservation planning and rejuvenation of aboriginal cultural heritage.Keywords: aerial survey, 3D scanning, aboriginal settlement, settlement architecture cluster, ecological landscape area, old Paiwan settlements, slat house, photogrammetry, SfM, MVS), Point cloud, SIFT, DSM, 3D model
Procedia PDF Downloads 170726 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders
Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi
Abstract:
Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers
Procedia PDF Downloads 66725 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 62724 An Analysis of the Representation of the Translator and Translation Process into Brazilian Social Networking Groups
Authors: Érica Lima
Abstract:
In the digital era, in which we have an avalanche of information, it is not new that the Internet has brought new modes of communication and knowledge access. Characterized by the multiplicity of discourses, opinions, beliefs and cultures, the web is a space of political-ideological dimensions where people (who often do not know each other) interact and create representations, deconstruct stereotypes, and redefine identities. Currently, the translator needs to be able to deal with digital spaces ranging from specific software to social media, which inevitably impact on his professional life. One of the most impactful ways of being seen in cyberspace is the participation in social networking groups. In addition to its ability to disseminate information among participants, social networking groups allow a significant personal and social exposure. Such exposure is due to the visibility of each participant achieved not only on its personal profile page, but also in each comment or post the person makes in the groups. The objective of this paper is to study the representations of translators and translation process on the Internet, more specifically in publications in two Brazilian groups of great influence on the Facebook: "Translators/Interpreters" and "Translators, Interpreters and Curious". These chosen groups represent the changes the network has brought to the profession, including the way translators are seen and see themselves. The analyzed posts allowed a reading of what common sense seems to think about the translator as opposed to what the translators seem to think about themselves as a professional class. The results of the analysis lead to the conclusion that these two positions are antagonistic and sometimes represent conflict of interests: on the one hand, the society in general consider the translator’s work something easy, therefore it is not necessary to be well remunerated; on the other hand, the translators who know how complex a translation process is and how much it takes to be a good professional. The results also reveal that social networking sites such as Facebook provide more visibility, but it takes a more active role from the translator to achieve a greater appreciation of the profession and more recognition of the role of the translator, especially in face of increasingly development of automatic translation programs.Keywords: Facebook, social representation, translation, translator
Procedia PDF Downloads 148723 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges
Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch
Abstract:
Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.Keywords: big data interpretation, datathon, systems toxicology, verification
Procedia PDF Downloads 278722 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification
Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas
Abstract:
Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles
Procedia PDF Downloads 232721 Slave Museums and a Site of Democratic Pedagogy: Engagement, Healing and Tolerance
Authors: Elaine Stavro
Abstract:
In our present world where acts of incivility, intolerance and anger towards minority communities is on the rise, the ways museum practices cultivate ethical generosity is of interest. Democratic theorists differ as to how they believe respect can be generated through active participation. Allowing minority communities a role in determining what artifacts will be displayed and how they will be displayed has been an important step in generating respect. In addition, the rise of indigenous museums, slave museums and curators who represent these communities, contribute to the communication of their history of oppression. These institutional practices have been supplemented by the handling of objects, recognition stories and multisensory exhibitions. Psychoanalysis, object relations theorists believe that the handling of objects: amenable objects and responsive listeners will trigger the expression of anomie, alienation and traumatizing experiences. Not only memorializing but engaging with one’s lose in a very personal way can facilitate the process of mourning. Manchester Museum (UK) gathered together Somalian refugees, who in the process of handling their own objects and those offered at the museum, began to tell their stories. Democratic theorists (especially affect theorists or vital materialists or Actor Network theorists) believe that things can be social actants- material objects have agentic capacities that humans should align with. In doing so, they challenge social constructivism that attributes power to interpreted things, but like them they assume an openness or responsiveness to Otherness can be cultivated. Rich sensory experiences, corporeal engagement (devices that involve bodily movement or objects that involve handling) auditory experiences (songs) all contribute to improve one’s responsiveness and openness to Others. This paper will focus specifically on slave museums/ and exhibits in the U.K, the USA., South Africa to explore and evaluate their democratic strategies in cultivating tolerant practices via the various democratic avenues outlined above.Keywords: democratic pedagogy, slave exhibitions, affect/emotion, object handling
Procedia PDF Downloads 460720 Numerical Simulation of a Single Cell Passing through a Narrow Slit
Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu
Abstract:
Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration
Procedia PDF Downloads 334