Search results for: reduced resource burden
263 Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle
Authors: Vita Krungleviciute, Rasa Zelvyte, Ingrida Monkeviciene, Jone Kantautaite, Rolandas Stankevicius, Modestas Ruzauskas, Elena Bartkiene
Abstract:
The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action.Keywords: barley/wheat bran, dairy cattle, fermented feed, milk, pediococcus
Procedia PDF Downloads 307262 Exploring the Carer Gender Support Gap: Results from Freedom of Information Requests to Adult Social Services in England
Authors: Stephen Bahooshy
Abstract:
Our understanding of gender inequality has advanced in recent years. Differences in pay and societal gendered behaviour expectations have been emphasized. It is acknowledged globally that gender shapes everyone’s experiences of health and social care, including access to care, use of services and products, and the interaction with care providers. NHS Digital in England collects data from local authorities on the number of carers and people with support needs and the services they access. This data does not provide a gender breakdown. Caring can have many positive and negative impacts on carers’ health and wellbeing. For example, caring can improve physical health, provide a sense of pride and purpose, and reduced stress levels for those who undertake a caring role by choice. Negatives of caring include financial concerns, social isolation, a reduction in earnings, and not being recognized as a carer or involved and consulted by health and social care professionals. Treating male and female carers differently is by definition unequitable and precludes one gender from receiving the benefits of caring whilst potentially overburdening the other with the negatives of caring. In order to explore the issue on a preliminary basis, five local authorities who provide statutory adult social care services in England were sent Freedom of Information requests in 2019. The authorities were selected to include county councils and London boroughs. The authorities were asked to provide data on the amount of money spent on care at home packages to people over 65 years, broken down by gender and carer gender for each financial year between 2013 and 2019. Results indicated that in each financial year, female carers supporting someone over 65 years received less financial support for care at home support packages than male carers. Over the six-year period, this difference equated to a £9.5k deficit in financial support received on average per female carer when compared to male carers. An example of a London borough with the highest disparity presented an average weekly spend on care at home for people over 65 with a carer of £261.35 for male carers and £165.46 for female carers. Consequently, female carers in this borough received on average £95.89 less per week in care at home support than male carers. This highlights a real and potentially detrimental disparity in the care support received to female carers in order to support them to continue to care in parts of England. More research should be undertaken in this area to better explore this issue and to understand if these findings are unique to these social care providers or part of a wider phenomenon. NHS Digital should request local authorities collect data on gender in the same way that large employers in the United Kingdom are required by law to provide data on staff salaries by gender. People who allocate social care packages of support should consider the impact of gender when allocating support packages to people with support needs and who have carers to reduce any potential impact of gender bias on their decision-making.Keywords: caregivers, carers, gender equality, social care
Procedia PDF Downloads 165261 Reading Comprehension in Profound Deaf Readers
Authors: S. Raghibdoust, E. Kamari
Abstract:
Research show that reduced functional hearing has a detrimental influence on the ability of an individual to establish proper phonological representations of words, since the phonological representations are claimed to mediate the conceptual processing of written words. Word processing efficiency is expected to decrease with a decrease in functional hearing. In other words, it is predicted that hearing individuals would be more capable of word processing than individuals with hearing loss, as their functional hearing works normally. Studies also demonstrate that the quality of the functional hearing affects reading comprehension via its effect on their word processing skills. In other words, better hearing facilitates the development of phonological knowledge, and can promote enhanced strategies for the recognition of written words, which in turn positively affect higher-order processes underlying reading comprehension. The aims of this study were to investigate and compare the effect of deafness on the participants’ abilities to process written words at the lexical and sentence levels through using two online and one offline reading comprehension tests. The performance of a group of 8 deaf male students (ages 8-12) was compared with that of a control group of normal hearing male students. All the participants had normal IQ and visual status, and came from an average socioeconomic background. None were diagnosed with a particular learning or motor disability. The language spoken in the homes of all participants was Persian. Two tests of word processing were developed and presented to the participants using OpenSesame software, in order to measure the speed and accuracy of their performance at the two perceptual and conceptual levels. In the third offline test of reading comprehension which comprised of semantically plausible and semantically implausible subject relative clauses, the participants had to select the correct answer out of two choices. The data derived from the statistical analysis using SPSS software indicated that hearing and deaf participants had a similar word processing performance both in terms of speed and accuracy of their responses. The results also showed that there was no significant difference between the performance of the deaf and hearing participants in comprehending semantically plausible sentences (p > 0/05). However, a significant difference between the performances of the two groups was observed with respect to their comprehension of semantically implausible sentences (p < 0/05). In sum, the findings revealed that the seriously impoverished sentence reading ability characterizing the profound deaf subjects of the present research, exhibited their reliance on reading strategies that are based on insufficient or deviant structural knowledge, in particular in processing semantically implausible sentences, rather than a failure to efficiently process written words at the lexical level. This conclusion, of course, does not mean to say that deaf individuals may never experience deficits at the word processing level, deficits that impede their understanding of written texts. However, as stated in previous researches, it sounds reasonable to assume that the more deaf individuals get familiar with written words, the better they can recognize them, despite having a profound phonological weakness.Keywords: deafness, reading comprehension, reading strategy, word processing, subject and object relative sentences
Procedia PDF Downloads 338260 Evaluating the Impact of Early Maternal Incarceration on Male Delinquent Behavior during Emerging Adulthood through the Mediating Mechanism of Mastery
Authors: Richard Abel
Abstract:
In the United States, increased incarceration rates have caused many adolescents to feel the strain of parental absence. This absence is then manifest through adolescent feelings of parental rejection. Additionally, upon reentry maternal incarceration may be related to adolescents experienced perceived excessive disciple. It is possible parents engage in this manner of discipline attempting to prevent the child from taking the same path to incarceration as the parent. According to General Strain Theory, adolescents encountering strain are likely to experience negative emotions. The emotion that is most likely to lead to delinquency is anger through reduced inhibitions and motivation to act. Additionally, males are more likely to engage in delinquent behavior, regardless of experiencing strain. This is not the case for every male who experiences maternal incarceration, parental rejection, excessive discipline, or anger. There are protective factors that enable agency within individuals. One such protective factor is mastery, or the perception that one is in control of his or her own future. The model proposed in this research suggests maternal incarceration is associated with increased parental rejection and excessive discipline in males. Males experiencing parental rejection and excessive discipline are likely to experience increased anger, which is then associated with increases in delinquent behavior. This model explores whether agency, in the form of mastery, mediates the relationship between strains and negative emotions, or between negative emotions and delinquent behavior. The Kaplan Longitudinal and Multigenerational Study (KLAMS) dataset is uniquely situated to analyze this model providing longitudinal data collected from both parents and their offspring. Maternal incarceration is constructed using parental responses such that the mother was incarcerated after the child’s birth, and any incarceration that happened prior to birth is excluded. The remaining variables of the study are all constructed from varying waves of the adolescent survey. Parental rejection, along with control variables for age, race, parental socioeconomic status, neighborhood effects, delinquent peers, and prior delinquent behavior are all constructed using Wave I data. To increase causal inference, the negative emotion of anger and the mediating variable of mastery are measured during Wave II. Lastly, delinquent behavior is measured at Wave III. Results of the analysis show expected relationships such that adolescent males encountering maternal incarceration show increased perception of parental rejection and excessive discipline. Additionally, there is a positive relationship between parental rejection and excessive discipline at Wave I and feelings of anger at Wave II for males. For males experiencing either of these strains in Wave I, feelings of anger in Wave II are found to be associated with increased delinquent behavior in Wave III. Mastery was found to mediate the relationship between both parental rejection and excessive discipline and anger, but no such mediation occurs in the relationship between anger and delinquency, regardless of the strain being experienced. These findings suggest adolescent males who feel they are in control of their own lives are less likely to experience negative emotions produced by the occurrence of strain, thereby decreasing male engagement in delinquent behavior later in life.Keywords: delinquency, mastery, maternal incarceration, strain
Procedia PDF Downloads 133259 A Case of Borderline Personality Disorder: An Explanatory Study of Unconscious Conflicts through Dream-Analysis
Authors: Mariam Anwaar, Kiran B. Ahmad
Abstract:
Borderline Personality Disorder (BPD) is an invasive presence of affect instability, disturbance in self-concept and attachment in relationships. The profound indicator is the dichotomous approach of the world in which the ego categorizes individuals, especially their significant others, into secure or threatful beings, leaving little room for a complex combination of characteristics in one person. This defense mechanism of splitting their world has been described through the explanatory model of unconscious conflict theorized by Sigmund Freud’s Electra Complex in the Phallic Stage. The central role is of the father with whom the daughter experiences penis envy, thus identifying with the mother’s characteristics to receive the father’s attention. However, Margret Mahler, an object relation theorist, elucidates the central role of the mother and that the split occurs during the pre-Electra complex stage. Amid the 14 and 24 months of the infant, it acknowledges the world away from the mother as they have developed milestones such as crawling. In such novelty, the infant crawls away from the mother creating a sense of independence (individuation). On the other hand, being distant causes anxiety, making them return to their original object of security (separation). In BPD, the separation-individuation stage is disrupted, due to contradictory actions of the caregiver, which results in splitting the object into negative and positive aspects, repressing the former and adhering to the latter for survival. Thus, with time, the ego distorts the reality into dichotomous categories, using the splitting defenses, and the mental representation of the self is distorted due to the internalization of the negative objects. The explanatory model was recognized in the case study of Fizza, at 21-year-old Pakistani female, residing in Karachi. Her marital status is single with an occupation being a dental student. Fizza lives in a nuclear family but is surrounded by her extended family as they all are in close vicinity. She came with the complaints of depressive symptoms for two-years along with self-harm due to severe family conflicts. Through the intervention of Dialectical Behavior Therapy (DBT), the self-harming actions were reduced, however, this libidinal energy transformed into claustrophobic symptoms and, along with this, Fizza has always experienced vivid dreams. A retrospective method of Jungian dream-analysis was applied to locate the origins of the splitting in the unconscious. The result was the revelation of a sexual harassment trauma at the age of six-years which was displaced in the form of self-harm. In addition to this, the presence of a conflict at the separation-individuation stage was detected during the dream-analysis, and it was the underlying explanation of the claustrophobic symptoms. This qualitative case study implicates the use of a patient’s subjective experiences, such as dreams, to journey through the spiral of the unconscious in order to not only detect repressed memories but to use them in psychotherapy as a means of healing the patient.Keywords: borderline personality disorder, dream-analysis, Electra complex, separation-individuation, splitting, unconscious
Procedia PDF Downloads 153258 Improving Data Completeness and Timely Reporting: A Joint Collaborative Effort between Partners in Health and Ministry of Health in Remote Areas, Neno District, Malawi
Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Moses Banda Aron, Julia Higgins, Manuel Mulwafu, Kondwani Mpinga, Mwayi Chunga, Grace Momba, Enock Ndarama, Dickson Sumphi, Atupere Phiri, Fabien Munyaneza
Abstract:
Background: Data is key to supporting health service delivery as stakeholders, including NGOs rely on it for effective service delivery, decision-making, and system strengthening. Several studies generated debate on data quality from national health management information systems (HMIS) in sub-Saharan Africa. This limits the utilization of data in resource-limited settings, which already struggle to meet standards set by the World Health Organization (WHO). We aimed to evaluate data quality improvement of Neno district HMIS over a 4-year period (2018 – 2021) following quarterly data reviews introduced in January 2020 by the district health management team and Partners In Health. Methods: Exploratory Mixed Research was used to examine report rates, followed by in-depth interviews using Key Informant Interviews (KIIs) and Focus Group Discussions (FGDs). We used the WHO module desk review to assess the quality of HMIS data in the Neno district captured from 2018 to 2021. The metrics assessed included the completeness and timeliness of 34 reports. Completeness was measured as a percentage of non-missing reports. Timeliness was measured as the span between data inputs and expected outputs meeting needs. We computed T-Test and recorded P-values, summaries, and percentage changes using R and Excel 2016. We analyzed demographics for key informant interviews in Power BI. We developed themes from 7 FGDs and 11 KIIs using Dedoose software, from which we picked perceptions of healthcare workers, interventions implemented, and improvement suggestions. The study was reviewed and approved by Malawi National Health Science Research Committee (IRB: 22/02/2866). Results: Overall, the average reporting completeness rate was 83.4% (before) and 98.1% (after), while timeliness was 68.1% and 76.4 respectively. Completeness of reports increased over time: 2018, 78.8%; 2019, 88%; 2020, 96.3% and 2021, 99.9% (p< 0.004). The trend for timeliness has been declining except in 2021, where it improved: 2018, 68.4%; 2019, 68.3%; 2020, 67.1% and 2021, 81% (p< 0.279). Comparing 2021 reporting rates to the mean of three preceding years, both completeness increased from 88% to 99% (in 2021), while timeliness increased from 68% to 81%. Sixty-five percent of reports have maintained meeting a national standard of 90%+ in completeness while only 24% in timeliness. Thirty-two percent of reports met the national standard. Only 9% improved on both completeness and timeliness, and these are; cervical cancer, nutrition care support and treatment, and youth-friendly health services reports. 50% of reports did not improve to standard in timeliness, and only one did not in completeness. On the other hand, factors associated with improvement included improved communications and reminders using internal communication, data quality assessments, checks, and reviews. Decentralizing data entry at the facility level was suggested to improve timeliness. Conclusion: Findings suggest that data quality in HMIS for the district has improved following collaborative efforts. We recommend maintaining such initiatives to identify remaining quality gaps and that results be shared publicly to support increased use of data. These results can inform Ministry of Health and its partners on some interventions and advise initiatives for improving its quality.Keywords: data quality, data utilization, HMIS, collaboration, completeness, timeliness, decision-making
Procedia PDF Downloads 84257 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton
Authors: Bing Chen, Xiang Ni, Eric Li
Abstract:
With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton
Procedia PDF Downloads 107256 Evaluation of Correct Usage, Comfort and Fit of Personal Protective Equipment in Construction Work
Authors: Anna-Lisa Osvalder, Jonas Borell
Abstract:
There are several reasons behind the use, non-use, or inadequate use of personal protective equipment (PPE) in the construction industry. Comfort and accurate size support proper use, while discomfort, misfit, and difficulties to understand how the PPEs should be handled inhibit correct usage. The need for several protective equipments simultaneously might also create problems. The purpose of this study was to analyse the correct usage, comfort, and fit of different types of PPEs used for construction work. Correct usage was analysed as guessability, i.e., human perceptions of how to don, adjust, use, and doff the equipment, and if used as intended. The PPEs tested individually or in combinations were a helmet, ear protectors, goggles, respiratory masks, gloves, protective cloths, and safety harnesses. First, an analytical evaluation was performed with ECW (enhanced cognitive walkthrough) and PUEA (predictive use error analysis) to search for usability problems and use errors during handling and use. Then usability tests were conducted to evaluate guessability, comfort, and fit with 10 test subjects of different heights and body constitutions. The tests included observations during donning, five different outdoor work tasks, and doffing. The think-aloud method, short interviews, and subjective estimations were performed. The analytical evaluation showed that some usability problems and use errors arise during donning and doffing, but with minor severity, mostly causing discomfort. A few use errors and usability problems arose for the safety harness, especially for novices, where some could lead to a high risk of severe incidents. The usability tests showed that discomfort arose for all test subjects when using a combination of PPEs, increasing over time. For instance, goggles, together with the face mask, caused pressure, chafing at the nose, and heat rash on the face. This combination also limited sight of vision. The helmet, in combination with the goggles and ear protectors, did not fit well and caused uncomfortable pressure at the temples. No major problems were found with the individual fit of the PPEs. The ear protectors, goggles, and face masks could be adjusted for different head sizes. The guessability for how to don and wear the combination of PPE was moderate, but it took some time to adjust them for a good fit. The guessability was poor for the safety harness; few clues in the design showed how it should be donned, adjusted, or worn on the skeletal bones. Discomfort occurred when the straps were tightened too much. All straps could not be adjusted for somebody's constitutions leading to non-optimal safety. To conclude, if several types of PPEs are used together, discomfort leading to pain is likely to occur over time, which can lead to misuse, non-use, or reduced performance. If people who are not regular users should wear a safety harness correctly, the design needs to be improved for easier interpretation, correct position of the straps, and increased possibilities for individual adjustments. The results from this study can be a base for re-design ideas for PPE, especially when they should be used in combinations.Keywords: construction work, PPE, personal protective equipment, misuse, guessability, usability
Procedia PDF Downloads 87255 Development of Alternative Fuels Technologies for Transportation
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)
Procedia PDF Downloads 181254 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 195253 A Case Report on Cognitive-Communication Intervention in Traumatic Brain Injury
Authors: Nikitha Francis, Anjana Hoode, Vinitha George, Jayashree S. Bhat
Abstract:
The interaction between cognition and language, referred as cognitive-communication, is very intricate, involving several mental processes such as perception, memory, attention, lexical retrieval, decision making, motor planning, self-monitoring and knowledge. Cognitive-communication disorders are difficulties in communicative competencies that result from underlying cognitive impairments of attention, memory, organization, information processing, problem solving, and executive functions. Traumatic brain injury (TBI) is an acquired, non - progressive condition, resulting in distinct deficits of cognitive communication abilities such as naming, word-finding, self-monitoring, auditory recognition, attention, perception and memory. Cognitive-communication intervention in TBI is individualized, in order to enhance the person’s ability to process and interpret information for better functioning in their family and community life. The present case report illustrates the cognitive-communicative behaviors and the intervention outcomes of an adult with TBI, who was brought to the Department of Audiology and Speech Language Pathology, with cognitive and communicative disturbances, consequent to road traffic accident. On a detailed assessment, she showed naming deficits along with perseverations and had severe difficulty in recalling the details of the accident, her house address, places she had visited earlier, names of people known to her, as well as the activities she did each day, leading to severe breakdowns in her communicative abilities. She had difficulty in initiating, maintaining and following a conversation. She also lacked orientation to time and place. On administration of the Manipal Manual of Cognitive Linguistic Abilities (MMCLA), she exhibited poor performance on tasks related to visual and auditory perception, short term memory, working memory and executive functions. She attended 20 sessions of cognitive-communication intervention which followed a domain-general, adaptive training paradigm, with tasks relevant to everyday cognitive-communication skills. Compensatory strategies such as maintaining a dairy with reminders of her daily routine, names of people, date, time and place was also recommended. MMCLA was re-administered and her performance in the tasks showed significant improvements. Occurrence of perseverations and word retrieval difficulties reduced. She developed interests to initiate her day-to-day activities at home independently, as well as involve herself in conversations with her family members. Though she lacked awareness about her deficits, she actively involved herself in all the therapy activities. Rehabilitation of moderate to severe head injury patients can be done effectively through a holistic cognitive retraining with a focus on different cognitive-linguistic domains. Selection of goals and activities should have relevance to the functional needs of each individual with TBI, as highlighted in the present case report.Keywords: cognitive-communication, executive functions, memory, traumatic brain injury
Procedia PDF Downloads 347252 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System
Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold
Abstract:
In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber
Procedia PDF Downloads 147251 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter
Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic
Abstract:
To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow
Procedia PDF Downloads 118250 Quantitative Comparisons of Different Approaches for Rotor Identification
Authors: Elizabeth M. Annoni, Elena G. Tolkacheva
Abstract:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors
Procedia PDF Downloads 324249 Rumen Epithelium Development of Bovine Fetuses and Newborn Calves
Authors: Juliana Shimara Pires Ferrão, Letícia Palmeira Pinto, Francisco Palma Rennó, Francisco Javier Hernandez Blazquez
Abstract:
The ruminant stomach is a complex and multi-chambered organ. Although the true stomach (abomasum) is fully differentiated and functional at birth, the same does not occur with the rumen chamber. At this moment, rumen papillae are small or nonexistent. The papillae only fully develop after weaning and during calf growth. Papillae development and ruminal epithelium specialization during the fetus growth and at birth must be two interdependent processes that will prepare the rumen to adapt to ruminant adult feeding. The microscopic study of rumen epithelium at these early phases of life is important to understand how this structure prepares the rumen to deal with the following weaning processes and its functional activation. Samples of ruminal mucosa of bovine fetuses (110- and 150 day-old) and newborn calves were collected (dorsal and ventral portions) and processed for light and electron microscopy and immunohistochemistry. The basal cell layer of the stratified pavimentous epithelium present in different ruminal portions of the fetuses was thicker than the same portions of newborn calves. The superficial and intermediate epithelial layers of 150 day-old fetuses were thicker than those found in the other 2 studied ages. At this age (150 days), dermal papillae begin to invade the intermediate epithelial layer which gradually disappears in newborn calves. At birth, the ruminal papillae project from the epithelial surface, probably by regression of the epithelial cells (transitory cells) surrounding the dermal papillae. The PCNA cell proliferation index (%) was calculated for all epithelial samples. Fetuses 150 day-old showed increased cell proliferation in basal cell layer (Dorsal Portion: 84.2%; Ventral Portion: 89.8%) compared to other ages studied. Newborn calves showed an intermediate index (Dorsal Portion: 65.1%; Ventral Portion: 48.9%), whereas 110 day-old fetuses had the lowest proliferation index (Dorsal Portion: 57.2%; Ventral Portion: 20.6%). Regarding the transitory epithelium, 110 day-old fetuses showed the lowest proliferation index (Dorsal Portion: 44.6%; Ventral Portion: 20.1%), 150 day-old fetuses showed an intermediate proliferation index (Dorsal Portion: 57.5%; Ventral Portion: 71.1%) and newborn calves presented a higher proliferation index (Dorsal Portion: 75.1%; Ventral Portion: 19.6%). Under TEM, the 110- and 150 day-old fetuses presented thicker and poorly organized basal cell layer, with large nuclei and dense cytoplasm. In newborn calves, the basal cell layer was more organized and with fewer layers, but typically similar in both regions of the rumen. For the transitory epithelium, fetuses displayed larger cells than those found in newborn calves with less electrondense cytoplasm than that found in the basal cells. The ruminal dorsal portion has an overall higher cell proliferation rate than the ventral portion. Thus we can infer that the dorsal portion may have a higher cell activity than the ventral portion during ruminal development. Moreover, the basal cell layer is thicker in the 110- and 150 day-old fetuses than in the newborn calves. The transitory epithelium, which is much reduced, at birth may have a structural support function of the developing dermal papillae. When it regresses or is sheared off, the papillae are “carved out” from the surrounding epithelial layer.Keywords: bovine, calf, epithelium, fetus, hematoxylin-eosin, immunohistochemistry, TEM, Rumen
Procedia PDF Downloads 387248 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants
Authors: N. C. Shahi, Anupama Singh, E. Kate
Abstract:
Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying
Procedia PDF Downloads 313247 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel
Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer
Abstract:
Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber
Procedia PDF Downloads 127246 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation
Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim
Abstract:
Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl
Procedia PDF Downloads 394245 Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite
Authors: Fang Lian, Zefang Chenli, Laijun Ma, Lei Mao
Abstract:
Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work.Keywords: leaching, high purity, low-grade rhodochrosite, manganese oxide, purifying process, recovery ratio
Procedia PDF Downloads 248244 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer
Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang
Abstract:
Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network
Procedia PDF Downloads 322243 Effect of Polymer Coated Urea on Nutrient Efficiency and Nitrate Leaching Using Maize and Annual Ryegrass
Authors: Amrei Voelkner, Nils Peters, Thomas Mannheim
Abstract:
The worldwide exponential growth of the population and the simultaneous increasing food production requires the strategic realization of sustainable and improved cultivation systems to ensure the fertility of arable land and to guarantee the food supply for the whole world. To fulfill this target, large quantities of fertilizers have to be applied to the field, but the long-term environmental impacts remain uncertain. Thus, a combined system would be necessary to increase the nutrient availability for plants while reducing nutrient losses (e.g. NO3- by leaching) to the environment. To enhance the nutrient efficiency, polymer coated fertilizer with a controlled release behavior have been developed. This kind of fertilizer ensures a delayed release of nutrients to synchronize the nutrient supply with the demand of different crops. In the last decades, research focused primarily on semi-permeable polyurethane coatings, which remain in the soil for a long period after the complete solvation of the fertilizer core. Within the implementation of the new European Regulation Directive the replacement of non-degradable synthetic polymers by degradable coatings is necessary. It was, therefore, the objective of this study to develop a total biodegradable polymer (to CO2 and H2O) coating according to ISO 17556 and to compare the retarding effect of the biodegradable coatings with commercially available non-degradable products. To investigate the effect of ten selected coated urea fertilizer on the yield of annual ryegrass and maize, the fresh and dry mass, the percentage of total nitrogen and main nutrients were analyzed in greenhouse experiments in sixfold replications using near-infrared spectroscopy. For the experiments, a homogenized and air-dried loamy sand (Cambic Luvisol) was equipped with a basic fertilization of P, K, Mg and S. To investigate the effect of nitrogen level increase, three levels (80%, 100%, 120%) were established, whereas the impact of CRF granules was determined using a N-level of 100%. Additionally, leaching of NO3- from pots planted with annual ryegrass was examined to evaluate the retention capacity of urea by the polymer coating. For this, leachate from Kick-Brauckmann-Pots was collected daily and analyzed for total nitrogen, NO3- and NH4+ in twofold repetition once a week using near-infrared spectroscopy. We summarize from the results that the coated fertilizer have a clear impact on the yield of annual ryegrass and maize. Compared to the control, an increase of fresh and dry mass could be recognized. Partially, the non-degradable coatings showed a retarding effect for a longer period, which was however reflected by a lower fresh and dry mass. It was ascertained that the percentage of leached-out nitrate could be reduced markedly. As a conclusion, it could be pointed out that the impact of coated fertilizer of all polymer types might contribute to a reduction of negative environmental impacts in addition to their fertilizing effect.Keywords: biodegradable polymers, coating, enhanced efficiency fertilizers, nitrate leaching
Procedia PDF Downloads 270242 A Human Factors Approach to Workload Optimization for On-Screen Review Tasks
Authors: Christina Kirsch, Adam Hatzigiannis
Abstract:
Rail operators and maintainers worldwide are increasingly replacing walking patrols in the rail corridor with mechanized track patrols -essentially data capture on trains- and on-screen reviews of track infrastructure in centralized review facilities. The benefit is that infrastructure workers are less exposed to the dangers of the rail corridor. The impact is a significant change in work design from walking track sections and direct observation in the real world to sedentary jobs in the review facility reviewing captured data on screens. Defects in rail infrastructure can have catastrophic consequences. Reviewer performance regarding accuracy and efficiency of reviews within the available time frame is essential to ensure safety and operational performance. Rail operators must optimize workload and resource loading to transition to on-screen reviews successfully. Therefore, they need to know what workload assessment methodologies will provide reliable and valid data to optimize resourcing for on-screen reviews. This paper compares objective workload measures, including track difficulty ratings and review distance covered per hour, and subjective workload assessments (NASA TLX) and analyses the link between workload and reviewer performance, including sensitivity, precision, and overall accuracy. An experimental study was completed with eight on-screen reviewers, including infrastructure workers and engineers, reviewing track sections with different levels of track difficulty over nine days. Each day the reviewers completed four 90-minute sessions of on-screen inspection of the track infrastructure. Data regarding the speed of review (km/ hour), detected defects, false negatives, and false positives were collected. Additionally, all reviewers completed a subjective workload assessment (NASA TLX) after each 90-minute session and a short employee engagement survey at the end of the study period that captured impacts on job satisfaction and motivation. The results showed that objective measures for tracking difficulty align with subjective mental demand, temporal demand, effort, and frustration in the NASA TLX. Interestingly, review speed correlated with subjective assessments of physical and temporal demand, but to mental demand. Subjective performance ratings correlated with all accuracy measures and review speed. The results showed that subjective NASA TLX workload assessments accurately reflect objective workload. The analysis of the impact of workload on performance showed that subjective mental demand correlated with high precision -accurately detected defects, not false positives. Conversely, high temporal demand was negatively correlated with sensitivity and the percentage of detected existing defects. Review speed was significantly correlated with false negatives. With an increase in review speed, accuracy declined. On the other hand, review speed correlated with subjective performance assessments. Reviewers thought their performance was higher when they reviewed the track sections faster, despite the decline in accuracy. The study results were used to optimize resourcing and ensure that reviewers had enough time to review the allocated track sections to improve defect detection rates in accordance with the efficiency-thoroughness trade-off. Overall, the study showed the importance of a multi-method approach to workload assessment and optimization, combining subjective workload assessments with objective workload and performance measures to ensure that recommendations for work system optimization are evidence-based and reliable.Keywords: automation, efficiency-thoroughness trade-off, human factors, job design, NASA TLX, performance optimization, subjective workload assessment, workload analysis
Procedia PDF Downloads 121241 Adapting an Accurate Reverse-time Migration Method to USCT Imaging
Authors: Brayden Mi
Abstract:
Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation
Procedia PDF Downloads 74240 Gene Expression Profiling of Iron-Related Genes of Pasteurella multocida Serotype A Strain PMTB2.1
Authors: Shagufta Jabeen, Faez Jesse Firdaus Abdullah, Zunita Zakaria, Nurulfiza Mat Isa, Yung Chie Tan, Wai Yan Yee, Abdul Rahman Omar
Abstract:
Pasteurella multocida is associated with acute, as well as, chronic infections in avian and bovine such as pasteurellosis and hemorrhagic septicemia (HS) in cattle and buffaloes. Iron is one of the most important nutrients for pathogenic bacteria including Pasteurella and acts as a cofactor or prosthetic group in several essential enzymes and is needed for amino acid, pyrimidine, and DNA biosynthesis. In our recent study, we showed that 2% of Pasteurella multocida serotype A strain PMTB2.1 encode for iron regulating genes (Accession number CP007205.1). Genome sequencing of other Pasteurella multocida serotypes namely PM70 and HB01 also indicated up to 2.5% of the respective genome encode for iron regulating genes, suggesting that Pasteurella multocida genome comprises of multiple systems for iron uptake. Since P. multocida PMTB2.1 has more than 40 CDs out of 2097 CDs (approximately 2%), encode for iron-regulated. The gene expression profiling of four iron-regulating genes namely fbpb, yfea, fece and fur were characterized under iron-restricted environment. The P. multocida strain PMTB2.1 was grown in broth with and without iron chelating agent and samples were collected at different time points. Relative mRNA expression profile of these genes was determined using Taqman probe based real-time PCR assay. The data analysis, normalization with two house-keeping genes and the quantification of fold changes were carried out using Bio-Rad CFX manager software version 3.1. Results of this study reflect that iron reduced environment has significant effect on expression profile of iron regulating genes (p < 0.05) when compared to control (normal broth) and all evaluated genes act differently with response to iron reduction in media. The highest relative fold change of fece gene was observed at early stage of treatment indicating that PMTB2.1 may utilize its periplasmic protein at early stage to acquire iron. Furthermore, down-regulation expression of fece with the elevated expression of other genes at later time points suggests that PMTB2.1 control their iron requirements in response to iron availability by down-regulating the expression of iron proteins. Moreover, significantly high relative fold change (p ≤ 0.05) of fbpb gene is probably associated with the ability of P. multocida to directly use host iron complex such as hem, hemoglobin. In addition, the significant increase (p ≤ 0.05) in fbpb and yfea expressions also reflects the utilization of multiple iron systems in P. multocida strain PMTB2.1. The findings of this study are very much important as relative scarcity of free iron within hosts creates a major barrier to microbial growth inside host and utilization of outer-membrane proteins system in iron acquisition probably occurred at early stage of infection with P. multocida. In conclusion, the presence and utilization of multiple iron system in P. multocida strain PMTB2.1 revealed the importance of iron in the survival of P. multocida.Keywords: iron-related genes, real-time PCR, gene expression profiling, fold changes
Procedia PDF Downloads 460239 Solutions for Food-Safe 3D Printing
Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov
Abstract:
Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this studyKeywords: food safety, 3D printing, filaments, microbial, temperature
Procedia PDF Downloads 142238 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds
Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet
Abstract:
Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium
Procedia PDF Downloads 282237 Anticancer Potentials of Aqueous Tinospora cordifolia and Its Bioactive Polysaccharide, Arabinogalactan on Benzo(a)Pyrene Induced Pulmonary Tumorigenesis: A Study with Relevance to Blood Based Biomarkers
Authors: Vandana Mohan, Ashwani Koul
Abstract:
Aim: To evaluate the potential of Aqueous Tinospora cordifolia stem extract (Aq.Tc) and Arabinogalactan (AG) on pulmonary carcinogenesis and associated tumor markers. Background: Lung cancer is one of the most frequent malignancy with high mortality rate due to limitation of early detection resulting in low cure rates. Current research effort focuses on identifying some blood-based biomarkers like CEA, ctDNA and LDH which may have potential to detect cancer at an early stage, evaluation of therapeutic response and its recurrence. Medicinal plants and their active components have been widely investigated for their anticancer potentials. Aqueous preparation of T. Cordifolia extract is enriched in the polysaccharide fraction i.e., AG when compared with other types of extract. Moreover, reports are available of polysaccharide fraction of T. Cordifolia in in vitro lung cancer models which showed profound anti-metastatic activity against these cell lines. However, not much has been explored about its effect in in vivo lung cancer models and the underlying mechanism involved. Experimental Design: Mice were randomly segregated into six groups. Group I animals served as control. Group II animals were administered with Aq. Tc extract (200 mg/kg b.w.) p.o.on the alternate days. Group III animals were fed with AG (7.5 mg/kg b.w.) p.o. on the alternate days (thrice a week). Group IV animals were installed with Benzo(a)pyrene (50 mg/kg b.w.), i.p. twice within an interval of two weeks. Group V animals received Aq. Tc extract as in group II along with it B(a)P was installed after two weeks of Aq. Tc administration following the same protocol as for group IV. Group VI animals received AG as in group III along with it B(a)P was installed after two weeks of AG administration. Results: Administration of B(a)P to mice resulted in increased tumor incidence, multiplicity and pulmonary somatic index with concomitant increase in serum/plasma markers like CEA, ctDNA, LDH and TNF-α.Aq.Tc and AG supplementation significantly attenuated these alterations at different stages of tumorigenesis thereby showing potent anti-cancer effect in lung cancer. A pronounced decrease in serum/plasma markers were observed in animals treated with Aq.Tc as compared to those fed with AG. Also, extensive hyperproliferation of alveolar epithelium was prominent in B(a)P induced lung tumors. However, treatment of Aq.Tc and AG to lung tumor bearing mice exhibited reduced alveolar damage evident from decreased number of hyperchromatic irregular nuclei. A direct correlation between the concentration of tumor markers and the intensity of lung cancer was observed in animals bearing cancer co-treated with Aq.Tc and AG. Conclusion: These findings substantiate the chemopreventive potential of Aq.Tc and AG against lung tumorigenesis. Interestingly, Aq.Tc was found to be more effective in modulating the cancer as reflected by various observations which may be attributed to the synergism offered by various components of Aq.Tc. Further studies are in progress to understand the underlined mechanism in inhibiting lung tumorigenesis by Aq.Tc and AG.Keywords: Arabinogalactan, Benzo(a)pyrene B(a)P, carcinoembryonic antigen (CEA), circulating tumor DNA (ctDNA), lactate dehydrogenase (LDH), Tinospora cordifolia
Procedia PDF Downloads 185236 Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces
Authors: Saltanat Zhilkibayeva, Muratulla Utenov, Nurzhan Utenov
Abstract:
The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.Keywords: distributed inertial forces, internal forces, statically determinate mechanisms, statically indeterminate mechanisms
Procedia PDF Downloads 217235 Alternative Energy and Carbon Source for Biosurfactant Production
Authors: Akram Abi, Mohammad Hossein Sarrafzadeh
Abstract:
Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin
Procedia PDF Downloads 301234 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland
Authors: A. Sgobba, C. Meskell
Abstract:
The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources
Procedia PDF Downloads 129