Search results for: energy performance gap
12470 Delisting Wave: Corporate Financial Distress, Institutional Investors Perception and Performance of South African Listed Firms
Authors: Adebiyi Sunday Adeyanju, Kola Benson Ajeigbe, Fortune Ganda
Abstract:
In the past three decades, there has been a notable increase in the number of firms delisting from the Johannesburg Stock Exchange (JSE) in South Africa. The recent increasing rate of delisting waves of corporate listed firms motivated this study. This study aims to explore the influence of institutional investor perceptions on the financial distress experienced by delisted firms within the South African market. The study further examined the impact of financial distress on the corporate performance of delisted firms. Using the data of delisted firms spanning from 2000 to 2023 and the FGLS (Feasible Generalized Least Squares) for the short run and PCSE (Panel-Corrected Standard Errors) for the long run effects of the relationship. The finding indicated that a decline in institutional investors’ perceptions was associated with the corporate financial distress of the delisted firms, particularly during the delisting year and the few years preceding the announcement of the delisting. This study addressed the importance of investor recognition in corporate financial distress and the delisting wave among listed firms- a finding supporting the stakeholder theory. This study is an insight for companies’ managements, investors, governments, policymakers, stockbrokers, lending institutions, bankers, the stock market, and other stakeholders in their various decision-making endeavours. Based on the above findings, it was recommended that corporate managements should improve their governance strategies that can help companies’ financial performances. Accountability and transparency through governance must also be improved upon with government support through the introduction of policies and strategies and enabling an easy environment that can help companies perform better.Keywords: delisting wave, institutional investors, financial distress, corporate performance, investors’ perceptions
Procedia PDF Downloads 5112469 Computational Fluid Dynamics and Experimental Evaluation of Two Batch Type Electrocoagulation Stirred Tank Reactors Used in the Removal of Cr (VI) from Waste Water
Authors: Phanindra Prasad Thummala, Umran Tezcan Un
Abstract:
In this study, hydrodynamics analysis of two batch type electrocoagulation stirred tank reactors, used for the electrocoagulation treatment of Cr(VI) wastewater, was carried using computational fluid dynamics (CFD). The aim of the study was to evaluate the impact of mixing characteristics on overall performance of electrocoagulation reactor. The CFD simulations were performed using ANSYS FLUENT 14.4 software. The mixing performance of each reactor was evaluated by numerically modelling tracer dispersion in each reactor configuration. The uniformity in tracer dispersion was assumed when 90% of the ratio of the maximum to minimum concentration of the tracer was realized. In parallel, experimental evaluation of both the electrocoagulation reactors for removal of Cr(VI) from wastewater was also carried out. The results of CFD and experimental analysis clearly show that the reactor which can give higher uniformity in lesser time, will perform better as an electrocoagulation reactor for removal of Cr(VI) from wastewater.Keywords: CFD, stirred tank reactors, electrocoagulation, Cr(VI) wastewater
Procedia PDF Downloads 46412468 Indigo-Reducing Activity by Microorganisms from the Fermented Indigo Dyeing Solution
Authors: Yuta Tachibana, Ayuko Itsuki
Abstract:
The three strains of bacteria (Lysinibacillus xylanilyticus, Bacillus kochii, and Enterococcus sp.) were isolated from the fermented Indigo (Polygonum tinctorium) dyeing solution using the dilution plate method and some fermentation conditions were determined. High-Performance Liquid Chromatography (HPLC) was used to determine the indigo concentration. When the isolated bacteria were cultured in the indigo liquid culture containing various sugars, starch, and ethanol, the indigo culture solutions containing galactose, mannose, ribose, and ethanol were remarkably decreased. Comparison of decreasing indigo between three strains showed that Enterococcus sp. had the fastest growth and decrease of indigo. However, decreasing indigo per unit micro biomass did not correspond to the results of decreasing indigo―Bacillus kochii had higher indigo-reducing activity than Enterococcus sp. and Lysinibacillus xylanilyticus.Keywords: fermentation condition, high-performance liquid chromatography (HPLC), indigo dyeing solution, indigo-reducing activity
Procedia PDF Downloads 14612467 DSF Elements in High-Rise Timber Buildings
Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih
Abstract:
The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.Keywords: glass, high-rise buildings, numerical analysis, timber
Procedia PDF Downloads 5012466 Breeding Performance and Egg Quality of Red Jungle Fowl (Gallus Gallus L.) Mated with Native Hens (Gallus galus domesticus) in Selected Areas of Leyte under Confinement System
Authors: Francisco F. Buctot Jr.
Abstract:
This study was conducted to assess the breeding performance and egg quality traits of Red Jungle Fowls in selected areas of Leyte mated to Native hens under confinement system. A total of six Red Jungle Fowl roosters, two native roosters and 16 native hens were randomly assigned to four treatments with eight replications; each composed of one rooster and two hens randomly laid out in a Randomized Complete Block Design set up. Result on egg weight showed highly significant difference at p<0.01 and revealed heaviest weight (39.0 g) and lightest weight (35.75 g) on Native x Native and Baybay RJF x Native, respectively. While comparable number of eggs per clutch, fertility and hatchability rates, yolk and albumen weights, shell weight, egg length and width, egg shape index and yolk color score were obtained.Keywords: egg clutch, egg shape index, native chicken, hatchability rate
Procedia PDF Downloads 36912465 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 16712464 The Characteristics of the Operating Parameters of the Vertical Axis Wind Turbine for the Selected Wind Speed
Authors: Zdzislaw Kaminski, Zbigniew Czyz
Abstract:
The paper discusses the results of the research into a wind turbine with a vertical axis of rotation which was performed with the open return wind tunnel, Gunt HM 170, at the laboratory of the Department of Thermodynamics, Fluid Mechanics and Propulsion Aviation Systems of Lublin University of Technology. Wind tunnel experiments are a necessary step to construct any new type of wind turbine, to validate design assumptions and numerical results. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angle α increases, the working surface which absorbs wind kinetic energy also increases. The study was performed on scaled and geometrically similar models with the criteria of similarity relevant for the type of research preserved. The rotors with varied angular apertures of their blades were printed for the research with a powder 3D printer, ZPrinter® 450. This paper presents the research results for the selected flow speed of 6.5 m/s for the three angular apertures of the rotor blades, i.e. 30°, 60°, 90° at varied speeds. The test stand enables the turbine rotor to be braked to achieve the required speed and airflow speed and torque to be recorded. Accordingly, the torque and power as a function of airflow were plotted. The rotor with its adjustable blades enables turbine power to be adjusted within a wide range of wind speeds. A variable angular aperture of blade working surfaces α in a wind turbine enables us to control the speed of the turbine and consequently its output power. Reducing the angular aperture of working surfaces results in reduced speed, and if a special current generator applied, electrical output power is reduced, too. Speed adjusted by changing angle α enables the maximum load acting on rotor blades to be controlled. The solution under study is a kind of safety against a damage of a turbine due to possible high wind speed.Keywords: drive torque, renewable energy, power, wind turbine, wind tunnel
Procedia PDF Downloads 26112463 Sustainability in University buildings in the Kingdom of Saudi Arabia
Authors: Sahl Abdullah Waheeb
Abstract:
The Ministry of Higher Education is currently developing and executing a large number of university buildings and campuses Al around Saudi Arabia annually due to the increased number of students. This is carried out through high international standards. Energy and environmental issues have been given a lot of consideration so the operation will be economical, environmentally and socially efficient enough. This paper will shed light on the application of building sustainability standards on buildings and university campuses during the design and construction stage. University campuses and buildings are currently under major construction development. In this research, data for green building standards were collected and a building sustainability methodology was appointed for applying sustainable standards, recommend to all is inserted imparting a guidelines standards for university buildings. Architecture design and construction imparting were assisted by environmental criteria. This paper highly recommends applying an environmental and sustainable building measurement tool in Saudi Arabia. Special attention should be paid to university building and similar project organizers due to the high energy demand in such project organizers. Moreover, a national environmental programme should be created to set the related standards to the local architecture to be applied to measuring green building and sustainable architecture design in Saudi Arabia.Keywords: sustainable universities, university buildings, sustainability in Saudi Arabia, green buildings, sustainable building
Procedia PDF Downloads 52312462 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications
Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar
Abstract:
Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.Keywords: boron nitride nanotube, radiation shielding, young modulus, atomistic modeling
Procedia PDF Downloads 30312461 Social Business Process Management and Business Process Management Maturity
Authors: Dalia Suša Vugec, Vesna Bosilj Vukšić, Ljubica Milanović Glavan
Abstract:
Business process management (BPM) is a well-known holistic discipline focused on managing business processes with the intention of achieving higher level of BPM maturity and better organizational performance. In recent period, traditional BPM faced some of its limitations like model-reality divide and lost innovation. Following latest trends, as an attempt to overcome the issues of traditional BPM, there has been an introduction of applying the principles of social software in managing business processes which led to the development of social BPM. However, there are not many authors or studies dealing with this topic so this study aims to contribute to that literature gap and to examine the link between the level of BPM maturity and the usage of social BPM. To meet these objectives, a survey within the companies with more than 50 employees has been conducted. The results reveal that the usage of social BPM is higher within the companies which achieved higher level of BPM maturity. This paper provides an overview, analysis and discussion of collected data regarding BPM maturity and social BPM within the observed companies and identifies the main social BPM principles.Keywords: business process management, BPM maturity, process performance index, social BPM
Procedia PDF Downloads 32712460 Optimizing the Window Geometry Using Fractals
Authors: K. Geetha Ramesh, A. Ramachandraiah
Abstract:
In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper.Keywords: daylighting, fractal geometry, fractal window, optimization
Procedia PDF Downloads 30412459 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System
Authors: Iman Janghorban Esfahani
Abstract:
Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy
Procedia PDF Downloads 14112458 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features
Authors: Asmaa Shehata
Abstract:
Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning
Procedia PDF Downloads 26212457 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 25412456 US Track And Field System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport
Authors: Peter Smolianov, Steven Dion, Christopher Schoen, Jaclyn Norberg, Nicholas Stone, Soufiane Rafi
Abstract:
This study assessed the micro-level elements of track and field development in the US against a model for integrating high-performance sport with mass participation. This investigation is important for the country’s international sport performance, which declined relative to other countries and wellbeing, which in its turn deteriorated as over half of the US population became overweight. A questionnaire was designed for the following elements of the model: talent identification and development as well as advanced athlete support. Survey questions were validated by 12 experts, including academics, executives from sport governing bodies, coaches, and administrators. To determine the areas for improvement, the questionnaires were completed by 102 US track and field coaches representing the country’s regions and coaching levels. Possible advancements were further identified through semi-structured discussions with 10 US track and field administrators. The study found that talent search and development is a critically important area for improvement: 49 percent of respondents had overall negative perceptions, and only 16 percent were positive regarding these US track and field practices. Both quantitative survey results and open responses revealed that the key reason for the inadequate athlete development was a shortage of well-educated and properly paid coaches: 77 percent of respondents indicated that coach expertise is never or rarely high across all participant ages and levels. More than 40 percent of the respondents were uncertain of or not familiar with world’s best talent identification and development practices, particularly methods of introducing children to track and field from outside the sport’s participation base. Millions more could be attracted to the sport by adopting best international practices. First, physical education should be offered a minimum three times a week in all school grades, and track and field together with other healthy sports, should be taught at school to all children. Second, multi-sport events, including track and field disciplines, should be organized for everyone within and among all schools, cities and regions. Three, Australian and Eastern European methods of talent search at schools should be utilized and tailored to the US conditions. Four, comprehensive long term athlete development guidelines should be used for the advancement of the American Development Model, particularly track and field tests and guidelines as part of both school education and high-performance athlete development for every age group from six to over 70 years old. These world’s best practices are to improve the country’s international performance while increasing national sport participation and positively influencing public health.Keywords: high performance, mass participation, sport development, track and field, USA
Procedia PDF Downloads 14712455 Uncertainty Estimation in Neural Networks through Transfer Learning
Authors: Ashish James, Anusha James
Abstract:
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.Keywords: uncertainty estimation, neural networks, transfer learning, regression
Procedia PDF Downloads 14512454 Towards the Rapid Synthesis of High-Quality Monolayer Continuous Film of Graphene on High Surface Free Energy Existing Plasma Modified Cu Foil
Authors: Maddumage Don Sandeepa Lakshad Wimalananda, Jae-Kwan Kim, Ji-Myon Lee
Abstract:
Graphene is an extraordinary 2D material that shows superior electrical, optical, and mechanical properties for the applications such as transparent contacts. Further, chemical vapor deposition (CVD) technique facilitates to synthesizing of large-area graphene, including transferability. The abstract is describing the use of high surface free energy (SFE) and nano-scale high-density surface kinks (rough) existing Cu foil for CVD graphene growth, which is an opposite approach to modern use of catalytic surfaces for high-quality graphene growth, but the controllable rough morphological nature opens new era to fast synthesis (less than the 50s with a short annealing process) of graphene as a continuous film over conventional longer process (30 min growth). The experiments were shown that high SFE condition and surface kinks on Cu(100) crystal plane existing Cu catalytic surface facilitated to synthesize graphene with high monolayer and continuous nature because it can influence the adsorption of C species with high concentration and which can be facilitated by faster nucleation and growth of graphene. The fast nucleation and growth are lowering the diffusion of C atoms to Cu-graphene interface, which is resulting in no or negligible formation of bilayer patches. High energy (500W) Ar plasma treatment (inductively Coupled plasma) was facilitated to form rough and high SFE existing (54.92 mJm-2) Cu foil. This surface was used to grow the graphene by using CVD technique at 1000C for 50s. The introduced kink-like high SFE existing point on Cu(100) crystal plane facilitated to faster nucleation of graphene with a high monolayer ratio (I2D/IG is 2.42) compared to another different kind of smooth morphological and low SFE existing Cu surfaces such as Smoother surface, which is prepared by the redeposit of Cu evaporating atoms during the annealing (RRMS is 13.3nm). Even high SFE condition was favorable to synthesize graphene with monolayer and continuous nature; It fails to maintain clean (surface contains amorphous C clusters) and defect-free condition (ID/IG is 0.46) because of high SFE of Cu foil at the graphene growth stage. A post annealing process was used to heal and overcome previously mentioned problems. Different CVD atmospheres such as CH4 and H2 were used, and it was observed that there is a negligible change in graphene nature (number of layers and continuous condition) but it was observed that there is a significant difference in graphene quality because the ID/IG ratio of the graphene was reduced to 0.21 after the post-annealing with H2 gas. Addition to the change of graphene defectiveness the FE-SEM images show there was a reduction of C cluster contamination of the surface. High SFE conditions are favorable to form graphene as a monolayer and continuous film, but it fails to provide defect-free graphene. Further, plasma modified high SFE existing surface can be used to synthesize graphene within 50s, and a post annealing process can be used to reduce the defectiveness.Keywords: chemical vapor deposition, graphene, morphology, plasma, surface free energy
Procedia PDF Downloads 24712453 Smart Interior Design: A Revolution in Modern Living
Authors: Fatemeh Modirzare
Abstract:
Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design
Procedia PDF Downloads 7512452 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India
Authors: Palash Bandyopadhyay
Abstract:
Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.Keywords: financial performance, crude oil and natural gas companies, India, linear regression
Procedia PDF Downloads 33212451 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications
Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan
Abstract:
High performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from electromagnetic (EM) simulations is often times cumbersome leading to large storage requirement. This paper proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. This paper solves this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.Keywords: RADAR, RCS, high performance computing, point scatterer model
Procedia PDF Downloads 19412450 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning
Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya
Abstract:
Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment
Procedia PDF Downloads 44512449 Optimizing PelletPAVE Rubberized Asphalt MIX Design Using Gyratory Compaction and Volumetrics
Authors: Hussain Al-Baghli
Abstract:
In comparison to hot mix asphalt (HMAs) composed of non-modified bitumens, the superior performance of rubberized HMAs is very well documented, and numerous trials in the USA and elsewhere have demonstrated excellent performance in terms of creep, fatigue, and durability. In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high-temperature rutting and moisture-induced raveling. Pelletpave additive was selected as the preferred technology since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.Keywords: modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties
Procedia PDF Downloads 18612448 Development of Equivalent Inelastic Springs to Model C-Devices
Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda
Abstract:
'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests
Procedia PDF Downloads 15312447 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation
Procedia PDF Downloads 29312446 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay
Authors: H. S. Youm, S. G. Hong
Abstract:
This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay
Procedia PDF Downloads 26312445 The Role of Environmental Analysis in Managing Knowledge in Small and Medium Sized Enterprises
Authors: Liu Yao, B. T. Wan Maseri, Wan Mohd, B. T. Nurul Izzah, Mohd Shah, Wei Wei
Abstract:
Effectively managing knowledge has become a vital weapon for businesses to survive or to succeed in the increasingly competitive market. But do they perform environmental analysis when managing knowledge? If yes, how is the level and significance? This paper established a conceptual framework covering the basic knowledge management activities (KMA) to examine their contribution towards organizational performance (OP). Environmental analysis (EA) was then investigated from both internal and external aspects, to identify its effects on that contribution. Data was collected from 400 Chinese SMEs by questionnaires. Cronbach's α and factor analysis were conducted. Regression results show that the external analysis presents higher level than internal analysis. However, the internal analysis mediates the effects of external analysis on the KMA-OP relation and plays more significant role in the relation comparing with the external analysis. Thus, firms shall improve environmental analysis especially the internal analysis to enhance their KM practices.Keywords: knowledge management, environmental analysis, performance, mediating, small sized enterprises, medium sized enterprises
Procedia PDF Downloads 62112444 Degradation Model for UK Railway Drainage System
Authors: Yiqi Wu, Simon Tait, Andrew Nichols
Abstract:
Management of UK railway drainage assets is challenging due to the large amounts of historical assets with long asset life cycles. A major concern for asset managers is to maintain the required performance economically and efficiently while complying with the relevant regulation and legislation. As the majority of the drainage assets are buried underground and are often difficult or costly to examine, it is important for asset managers to understand and model the degradation process in order to foresee the upcoming reduction in asset performance and conduct proactive maintenance accordingly. In this research, a Markov chain approach is used to model the deterioration process of rail drainage assets. The study is based on historical condition scores and characteristics of drainage assets across the whole railway network in England, Scotland, and Wales. The model is used to examine the effect of various characteristics on the probabilities of degradation, for example, the regional difference in probabilities of degradation, and how material and shape can influence the deterioration process for chambers, channels, and pipes.Keywords: deterioration, degradation, markov models, probability, railway drainage
Procedia PDF Downloads 23012443 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials
Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová
Abstract:
Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.Keywords: biocorrosion, concrete, leaching, bacteria
Procedia PDF Downloads 45512442 Tribological Properties of Non-Stick Coatings Used in Bread Baking Process
Authors: Maurice Brogly, Edwige Privas, Rajesh K. Gajendran, Sophie Bistac
Abstract:
Anti-sticky coatings based on perfluoroalkoxy (PFA) coatings are widely used in food processing industry especially for bread making. Their tribological performance, such as low friction coefficient, low surface energy and high heat resistance, make them an appropriate choice for anti-sticky coating application in moulds for food processing industry. This study is dedicated to evidence the transfer of contaminants from the coating due to wear and thermal ageing of the mould. The risk of contamination is induced by the damage of the coating by bread crust during the demoulding stage. The study focuses on the wear resistance and potential transfer of perfluorinated polymer from the anti-sticky coating. Friction between perfluorinated coating and bread crust is modeled by a tribological pin-on-disc test. The cellular nature of the bread crust is modeled by a polymer foam. FTIR analysis of the polymer foam after friction allow the evaluation of the transfer from the perfluorinated coating to polymer foam. Influence of thermal ageing on the physical, chemical and wear properties of the coating are also investigated. FTIR spectroscopic results show that the increase of PFA transfer onto the foam counterface is associated to the decrease of the friction coefficient. Increasing lubrication by film transfer results in the decrease of the friction coefficient. Moreover increasing the friction test parameters conditions (load, speed and sliding distance) also increase the film transfer onto the counterface. Thermal ageing increases the hydrophobic character of the PFA coating and thus also decreases the friction coefficient.Keywords: fluorobased polymer coatings, FTIR spectroscopy, non-stick food moulds, wear and friction
Procedia PDF Downloads 33812441 The Comparison of Joint Simulation and Estimation Methods for the Geometallurgical Modeling
Authors: Farzaneh Khorram
Abstract:
This paper endeavors to construct a block model to assess grinding energy consumption (CCE) and pinpoint blocks with the highest potential for energy usage during the grinding process within a specified region. Leveraging geostatistical techniques, particularly joint estimation, or simulation, based on geometallurgical data from various mineral processing stages, our objective is to forecast CCE across the study area. The dataset encompasses variables obtained from 2754 drill samples and a block model comprising 4680 blocks. The initial analysis encompassed exploratory data examination, variography, multivariate analysis, and the delineation of geological and structural units. Subsequent analysis involved the assessment of contacts between these units and the estimation of CCE via cokriging, considering its correlation with SPI. The selection of blocks exhibiting maximum CCE holds paramount importance for cost estimation, production planning, and risk mitigation. The study conducted exploratory data analysis on lithology, rock type, and failure variables, revealing seamless boundaries between geometallurgical units. Simulation methods, such as Plurigaussian and Turning band, demonstrated more realistic outcomes compared to cokriging, owing to the inherent characteristics of geometallurgical data and the limitations of kriging methods.Keywords: geometallurgy, multivariate analysis, plurigaussian, turning band method, cokriging
Procedia PDF Downloads 74