Search results for: spatial information network
15526 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment
Authors: Danladi Ali
Abstract:
In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signalKeywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model
Procedia PDF Downloads 38215525 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 44715524 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 3515523 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water
Authors: Manjie Li, Xiangju Cheng, Yongcan Chen
Abstract:
With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.Keywords: assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement
Procedia PDF Downloads 27615522 Distributed Energy Storage as a Potential Solution to Electrical Network Variance
Authors: V. Rao, A. Bedford
Abstract:
As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.Keywords: energy storage, electrical losses, national grid, renewable energy, variance
Procedia PDF Downloads 31715521 Establishment of a Test Bed for Integrated Map of Underground Space and Verification of GPR Exploration Equipment
Authors: Jisong Ryu, Woosik Lee, Yonggu Jang
Abstract:
The paper discusses the process of establishing a reliable test bed for verifying the usability of Ground Penetrating Radar (GPR) exploration equipment based on an integrated underground spatial map in Korea. The aim of this study is to construct a test bed consisting of metal and non-metal pipelines to verify the performance of GPR equipment and improve the accuracy of the underground spatial integrated map. The study involved the design and construction of a test bed for metal and non-metal pipe detecting tests. The test bed was built in the SOC Demonstration Research Center (Yeoncheon) of the Korea Institute of Civil Engineering and Building Technology, burying metal and non-metal pipelines up to a depth of 5m. The test bed was designed in both vehicle-type and cart-type GPR-mounted equipment. The study collected data through the construction of the test bed and conducting metal and non-metal pipe detecting tests. The study analyzed the reliability of GPR detecting results by comparing them with the basic drawings, such as the underground space integrated map. The study contributes to the improvement of GPR equipment performance evaluation and the accuracy of the underground spatial integrated map, which is essential for urban planning and construction. The study addressed the question of how to verify the usability of GPR exploration equipment based on an integrated underground spatial map and improve its performance. The study found that the test bed is reliable for verifying the performance of GPR exploration equipment and accurately detecting metal and non-metal pipelines using an integrated underground spatial map. The study concludes that the establishment of a test bed for verifying the usability of GPR exploration equipment based on an integrated underground spatial map is essential. The proposed Korean-style test bed can be used for the evaluation of GPR equipment performance and support the construction of a national non-metal pipeline exploration equipment performance evaluation center in Korea.Keywords: Korea-style GPR testbed, GPR, metal pipe detecting, non-metal pipe detecting
Procedia PDF Downloads 10015520 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.Keywords: biological pathway, gene identification, object detection, Siamese network
Procedia PDF Downloads 29215519 Undernutrition Among Children Below Five Years of Age in Uganda: A Deep Dive into Space and Time
Authors: Vallence Ngabo Maniragaba
Abstract:
This study aimed at examining the variations of undernutrition among children below 5 years of age in Uganda. The approach of spatial and spatiotemporal analysis helped in identifying cluster patterns, hot spots and emerging hot spots. Data from the 6 Uganda Demographic and Health Surveys spanning from 1990 to 2016 were used with the main outcome variable being undernutrition among children <5 years of age. All data that were relevant to this study were retrieved from the survey datasets and combined with the 214 shape files for the districts of Uganda to enable spatial and spatiotemporal analysis. Spatial maps with the spatial distribution of the prevalence of undernutrition, both in space and time, were generated using ArcGIS Pro version 2.8. Moran’s I, an index of spatial autocorrelation, rules out doubts of spatial randomness in order to identify spatially clustered patterns of hot or cold spot areas. Furthermore, space-time cubes were generated to establish the trend in undernutrition as well as to mirror its variations over time and across Uganda. Moreover, emerging hot spot analysis was done to help identify the patterns of undernutrition over time. The results indicate a heterogeneous distribution of undernutrition across Uganda and the same variations were also evident over time. Moran’s I index confirmed spatial clustered patterns as opposed to random distributions of undernutrition prevalence. Four hot spot areas, namely; the Karamoja, the Sebei, the West Nile and the Toro regions were significantly evident, most of the central parts of Uganda were identified as cold spot clusters, while most of Western Uganda, the Acholi and the Lango regions had no statistically significant spatial patterns by the year 2016. The spatio-temporal analysis identified the Karamoja and Sebei regions as clusters of persistent, consecutive and intensifying hot spots, West Nile region was identified as a sporadic hot spot area while the Toro region was identified with both sporadic and emerging hotspots. In conclusion, undernutrition is a silent pandemic that needs to be handled with both hands. At 31.2 percent, the prevalence is still very high and unpleasant. The distribution across the country is nonuniform with some areas such as the Karamoja, the West Nile, the Sebei and the Toro regions being epicenters of undernutrition in Uganda. Over time, the same areas have experienced and exhibited high undernutrition prevalence. Policymakers, as well as the implementers, should bear in mind the spatial variations across the country and prioritize hot spot areas in order to have efficient, timely and region-specific interventions.Keywords: undernutrition, spatial autocorrelation, hotspots analysis, geographically weighted regressions, emerging hotspots analysis, under-fives, Uganda
Procedia PDF Downloads 8615518 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.Keywords: artificial neural network, load estimation, regional survey, rural electrification
Procedia PDF Downloads 12315517 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 41815516 Optimization and Retrofitting for an Egyptian Refinery Water Network
Authors: Mohamed Mousa
Abstract:
Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction
Procedia PDF Downloads 23215515 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions
Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh
Abstract:
Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility
Procedia PDF Downloads 5115514 The Spatial Circuit of the Audiovisual Industry in Argentina: From Monopoly and Geographic Concentration to New Regionalization and Democratization Policies
Authors: André Pasti
Abstract:
Historically, the communication sector in Argentina is characterized by intense monopolization and geographical concentration in the city of Buenos Aires. In 2000, the four major media conglomerates in operation – Clarín, Telefónica, America and Hadad – controlled 84% of the national media market. By 2009, new policies were implemented as a result of civil society organizations demands. Legally, a new regulatory framework was approved: the law 26,522 of Audiovisual Communications Services. Supposedly, these policies intend to create new conditions for the development of the audiovisual economy in the territory of Argentina. The regionalization of audiovisual production and the democratization of channels and access to media were among the priorities. This paper analyses the main changes and continuities in the organization of the spatial circuit of the audiovisual industry in Argentina provoked by these new policies. These new policies aim at increasing the diversity of audiovisual producers and promoting regional audiovisual industries. For this purpose, a national program for the development of audiovisual centers within the country was created. This program fostered a federalized production network, based on nine audiovisual regions and 40 nodes. Each node has created technical, financial and organizational conditions to gather different actors in audiovisual production – such as SMEs, social movements and local associations. The expansion of access to technical networks was also a concern of other policies, such as ‘Argentina connected’, whose objective was to expand access to broadband Internet. The Open Digital Television network also received considerable investments. Furthermore, measures have been carried out in order to impose limits on the concentration of ownership as well as to eliminate the oligopolies and to ensure more competition in the sector. These actions intended to force a divide of the media conglomerates into smaller groups. Nevertheless, the corporations that compose these conglomerates resist strongly, making full use of their economic and judiciary power. Indeed, the absence of effective impact of such measures can be testified by the fact that the audiovisual industry remains strongly concentrated in Argentina. Overall, these new policies were designed properly to decentralize audiovisual production and expand the regional diversity of the audiovisual industry. However, the effective transformation of the organization of the audiovisual circuit in the territory faced several resistances. This can be explained firstly and foremost by the ideological and economic power of the media conglomerates. In the second place, there is an inherited inertia from the unequal distribution of the objects needed for the audiovisual production and consumption. Lastly, the resistance also relies on financial needs and in the excessive dependence of the state for the promotion of regional audiovisual production.Keywords: Argentina, audiovisual industry, communication policies, geographic concentration, regionalization, spatial circuit
Procedia PDF Downloads 21615513 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 15915512 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms
Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi
Abstract:
A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization
Procedia PDF Downloads 42815511 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 47115510 Improvement of Students’ Active Experience through the Provision of Foundational Architecture Pedagogy by Virtual Reality Tools
Authors: Mehdi Khakzand, Flora Fakourian
Abstract:
It has been seen in recent years that architects are using virtual modeling to help them visualize their projects. Research has indicated that virtual media, particularly virtual reality, enhances architects' comprehension of design and spatial perception. Creating a communal experience for active learning is an essential component of the design process in architecture pedagogy. It has been particularly challenging to replicate design principles as a critical teaching function, and this is a complex issue that demands comprehension. Nonetheless, the usage of simulation should be studied and limited as appropriate. In conjunction with extensive technology, 3D geometric illustration can bridge the gap between the real and virtual worlds. This research intends to deliver a pedagogical experience in the architecture basics course to improve the architectural design process utilizing virtual reality tools. This tool seeks to tackle current challenges in current ways of architectural illustration by offering building geometry illustration, building information (data from the building information model), and simulation results. These tools were tested over three days in a design workshop with 12 architectural students. This article provided an architectural VR-based course and explored its application in boosting students' active experiences. According to the research, this technology can improve students' cognitive skills from challenging simulations by boosting visual understanding.Keywords: active experience, architecture pedagogy, virtual reality, spatial perception
Procedia PDF Downloads 8715509 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling
Authors: Congping Lin
Abstract:
Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.Keywords: intracellular transport, stochastic process, molecular motors, spatial organization
Procedia PDF Downloads 13315508 Map UI Design of IoT Application Based on Passenger Evacuation Behaviors in Underground Station
Authors: Meng-Cong Zheng
Abstract:
When the public space is in an emergency, how to quickly establish spatial cognition and emergency shelter in the closed underground space is the urgent task. This study takes Taipei Station as the research base and aims to apply the use of Internet of things (IoT) application for underground evacuation mobility design. The first experiment identified passengers' evacuation behaviors and spatial cognition in underground spaces by wayfinding tasks and thinking aloud, then defined the design conditions of User Interface (UI) and proposed the UI design. The second experiment evaluated the UI design based on passengers' evacuation behaviors by wayfinding tasks and think aloud again as same as the first experiment. The first experiment found that the design conditions that the subjects were most concerned about were "map" and hoping to learn the relative position of themselves with other landmarks by the map and watch the overall route. "Position" needs to be accurately labeled to determine the location in underground space. Each step of the escape instructions should be presented clearly in "navigation bar." The "message bar" should be informed of the next or final target exit. In the second experiment with the UI design, we found that the "spatial map" distinguishing between walking and non-walking areas with shades of color is useful. The addition of 2.5D maps of the UI design increased the user's perception of space. Amending the color of the corner diagram in the "escape route" also reduces the confusion between the symbol and other diagrams. The larger volume of toilets and elevators can be a judgment of users' relative location in "Hardware facilities." Fire extinguisher icon should be highlighted. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. However, "Compass and return to present location" are less used in underground space.Keywords: evacuation behaviors, IoT application, map UI design, underground station
Procedia PDF Downloads 20715507 Aligning Cultural Practices through Information Exchange: A Taxonomy in Global Manufacturing Industry
Authors: Hung Nguyen
Abstract:
With the rise of global supply chain network, the choice of supply chain orientation is critical. The alignment between cultural similarity and supply chain information exchange could help identify appropriate supply chain orientations, which would differentiate the stronger competitors and performers from the weaker ones. Through developing a taxonomy, this study examined whether the choices of action programs and manufacturing performance differ depending on the levels of attainment cultural similarity and information exchange. This study employed statistical tests on a large-scale dataset consisting of 680 manufacturing plants from various cultures and industries. Firms need to align cultural practices with the level of information exchange in order to achieve good overall business performance. There appeared to be consistent three major orientations: the Proactive, the Initiative and the Reactive. Firms are experiencing higher payoffs from various improvements are the ones successful alignment in both information exchange and cultural similarity The findings provide step-by-step decision making for supply chain information exchange and offer guidance especially for global supply chain managers. In including both cultural similarity and information exchange, this paper adds greater comprehensiveness and richness to the supply chain literature.Keywords: culture, information exchange, supply chain orientation, similarity
Procedia PDF Downloads 35915506 The SEMONT Monitoring and Risk Assessment of Environmental EMF Pollution
Authors: Dragan Kljajic, Nikola Djuric, Karolina Kasas-Lazetic, Danka Antic
Abstract:
Wireless communications have been expanded very fast in recent decades. This technology relies on an extensive network of base stations and antennas, using radio frequency signals to transmit information. Devices that use wireless communication, while offering various services, basically act as sources of non-ionizing electromagnetic fields (EMF). Such devices are permanently present in the human vicinity and almost constantly radiate, causing EMF pollution of the environment. This fact has initiated development of modern systems for observation of the EMF pollution, as well as for risk assessment. This paper presents the Serbian electromagnetic field monitoring network – SEMONT, designed for automated, remote and continuous broadband monitoring of EMF in the environment. Measurement results of the SEMONT monitoring at one of the test locations, within the main campus of the University of Novi Sad, are presented and discussed, along with corresponding exposure assessment of the general population, regarding the Serbian legislation.Keywords: EMF monitoring, exposure assessment, sensor nodes, wireless network
Procedia PDF Downloads 26415505 Real Time Detection of Application Layer DDos Attack Using Log Based Collaborative Intrusion Detection System
Authors: Farheen Tabassum, Shoab Ahmed Khan
Abstract:
The brutality of attacks on networks and decisive infrastructures are on the climb over recent years and appears to continue to do so. Distributed Denial of service attack is the most prevalent and easy attack on the availability of a service due to the easy availability of large botnet computers at cheap price and the general lack of protection against these attacks. Application layer DDoS attack is DDoS attack that is targeted on wed server, application server or database server. These types of attacks are much more sophisticated and challenging as they get around most conventional network security devices because attack traffic often impersonate normal traffic and cannot be recognized by network layer anomalies. Conventional techniques of single-hosted security systems are becoming gradually less effective in the face of such complicated and synchronized multi-front attacks. In order to protect from such attacks and intrusion, corporation among all network devices is essential. To overcome this issue, a collaborative intrusion detection system (CIDS) is proposed in which multiple network devices share valuable information to identify attacks, as a single device might not be capable to sense any malevolent action on its own. So it helps us to take decision after analyzing the information collected from different sources. This novel attack detection technique helps to detect seemingly benign packets that target the availability of the critical infrastructure, and the proposed solution methodology shall enable the incident response teams to detect and react to DDoS attacks at the earliest stage to ensure that the uptime of the service remain unaffected. Experimental evaluation shows that the proposed collaborative detection approach is much more effective and efficient than the previous approaches.Keywords: Distributed Denial-of-Service (DDoS), Collaborative Intrusion Detection System (CIDS), Slowloris, OSSIM (Open Source Security Information Management tool), OSSEC HIDS
Procedia PDF Downloads 35415504 Developing a Spatial Decision Support System for Rationality Assessment of Land Use Planning Locations in Thai Binh Province, Vietnam
Authors: Xuan Linh Nguyen, Tien Yin Chou, Yao Min Fang, Feng Cheng Lin, Thanh Van Hoang, Yin Min Huang
Abstract:
In Vietnam, land use planning is the most important and powerful tool of the government for sustainable land use and land management. Nevertheless, many of land use planning locations are facing protests from surrounding households due to environmental impacts. In addition, locations are planned completely based on the subjective decisions of planners who are unsupported by tools or scientific methods. Hence, this research aims to assist the decision-makers in evaluating the rationality of planning locations by developing a Spatial Decision Support System (SDSS) using approaches of Geographic Information System (GIS)-based technology, Analytic Hierarchy Process (AHP) multi-criteria-based technique and Fuzzy set theory. An ArcGIS Desktop add-ins named SDSS-LUPA was developed to support users analyzing data and presenting results in friendly format. The Fuzzy-AHP method has been utilized as analytic model for this SDSS. There are 18 planned locations in Hung Ha district (Thai Binh province, Vietnam) as a case study. The experimental results indicated that the assessment threshold higher than 0.65 while the 18 planned locations were irrational because of close to residential areas or close to water sources. Some potential sites were also proposed to the authorities for consideration of land use planning changes.Keywords: analytic hierarchy process, fuzzy set theory, land use planning, spatial decision support system
Procedia PDF Downloads 37915503 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 50115502 Spatial Analysis of the Impact of City Developments Degradation of Green Space in Urban Fringe Eastern City of Yogyakarta Year 2005-2010
Authors: Pebri Nurhayati, Rozanah Ahlam Fadiyah
Abstract:
In the development of the city often use rural areas that can not be separated from the change in land use that lead to the degradation of urban green space in the city fringe. In the long run, the degradation of green open space this can impact on the decline of ecological, psychological and public health. Therefore, this research aims to (1) determine the relationship between the parameters of the degradation rate of urban development with green space, (2) develop a spatial model of the impact of urban development on the degradation of green open space with remote sensing techniques and Geographical Information Systems in an integrated manner. This research is a descriptive research with data collection techniques of observation and secondary data . In the data analysis, to interpret the direction of urban development and degradation of green open space is required in 2005-2010 ASTER image with NDVI. Of interpretation will generate two maps, namely maps and map development built land degradation green open space. Secondary data related to the rate of population growth, the level of accessibility, and the main activities of each city map is processed into a population growth rate, the level of accessibility maps, and map the main activities of the town. Each map is used as a parameter to map the degradation of green space and analyzed by non-parametric statistical analysis using Crosstab thus obtained value of C (coefficient contingency). C values were then compared with the Cmaximum to determine the relationship. From this research will be obtained in the form of modeling spatial map of the City Development Impact Degradation Green Space in Urban Fringe eastern city of Yogyakarta 2005-2010. In addition, this research also generate statistical analysis of the test results of each parameter to the degradation of green open space in the Urban Fringe eastern city of Yogyakarta 2005-2010.Keywords: spatial analysis, urban development, degradation of green space, urban fringe
Procedia PDF Downloads 31315501 On the Limits of Board Diversity: Impact of Network Effect on Director Appointments
Authors: Vijay Marisetty, Poonam Singh
Abstract:
Research on the effect of director's network connections on investor welfare is inconclusive. Some studies suggest that directors' connections are beneficial, in terms of, improving earnings information, firms valuation for new investors. On the other hand, adverse effects of directorial networks are also reported, in terms of higher earnings management, options back dating fraud, reduction in firm performance, lower board monitoring. From regulatory perspective, the role of directorial networks on corporate welfare is crucial. Cognizant of the possible ill effects associated with directorial networks, large investors, for better representation on the boards, are building their own database of prospective directors who are highly qualified, however, sourced from outside the highly connected directorial labor market. For instance, following Dodd-Frank Reform Act, California Public Employees' Retirement Systems (CalPERs) has initiated a database for registering aspiring and highly qualified directors to nominate them for board seats (proxy access). Our paper stems from this background and tries to explore the chances of outside directors getting directorships who lack established network connections. The paper is able to identify such aspiring directors' information by accessing a unique Indian data sourced from an online portal that aims to match the supply of registered aspirants with the growing demand for outside directors in India. The online portal's tie-up with stock exchanges ensures firms to access the new pool of directors. Such direct access to the background details of aspiring directors over a period of 10 years, allows us to examine the chances of aspiring directors without corporate network, to enter directorial network. Using this resume data of 16105 aspiring corporate directors in India, who have no prior board experience in the directorial labor market, the paper analyses the entry dynamics in corporate directors' labor market. The database also allows us to investigate the value of corporate network by comparing non-network new entrants with incumbent networked directors. The study develops measures of network centrality and network degree based on merit, i.e. network of individuals belonging to elite educational institutions, like Indian Institute of Management (IIM) or Indian Institute of Technology (IIT) and based on job or company, i.e. network of individuals serving in the same company. The paper then measures the impact of these networks on the appointment of first time directors and subsequent appointment of directors. The paper reports the following main results: 1. The likelihood of becoming a corporate director, without corporate network strength, is only 1 out 100 aspirants. This is inspite of comparable educational background and similar duration of corporate experience; 2. Aspiring non-network directors' elite educational ties help them to secure directorships. However, for post-board appointments, their newly acquired corporate network strength overtakes as their main determinant for subsequent board appointments and compensation. The results thus highlight the limitations in increasing board diversity.Keywords: aspiring corporate directors, board diversity, director labor market, director networks
Procedia PDF Downloads 31215500 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions
Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh
Abstract:
This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor
Procedia PDF Downloads 63815499 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)
Authors: Muazzam A. Khan, Muhammad Wasim
Abstract:
Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict
Procedia PDF Downloads 53215498 The Traffic Congestion in Biskra in Algeria
Authors: Selatnia Khaled Grine Ikram
Abstract:
The city of Biskra, like other Algerian cities, knows of urban traffic congestion. The concentration of investments especially in the secondary and tertiary sectors in the Wilaya has attracted a large rural population. The latter, combined with the high rate of natural growing, favored the imbalance of the spatial frame of wilayal system and consequently the traffic congestion of the primate city (Biskra). This urban disease is explained by a two-tier development. The capital of Wilaya growing faster than its others centers body and takes measurements of proportion to the whole. The consequences can only be negative. The pressure on the roads, the growth of the fleet, overloading of equipment and activities have become the characteristics of the city of Biskra, which can no longer meet the needs of its inhabitants. This research attempts to show the relationship between urban congestion of the primate city and the imbalance of the spatial structure of the micro-regional urban system.Keywords: traffic congestion, spatial structure, pressure on the roads, equipment and activities
Procedia PDF Downloads 67815497 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model
Authors: Wei Lu
Abstract:
With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model
Procedia PDF Downloads 153