Search results for: efficient features selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10569

Search results for: efficient features selection

9909 Sludge Densification: Emerging and Efficient Way to Look at Biological Nutrient Removal Treatment

Authors: Raj Chavan

Abstract:

Currently, there are over 14,500 Water Resource Recovery Facilities (WRRFs) in the United States, with ~35% of them having some type of nutrient limits in place. These WRRFs account for about 1% of overall power demand and 2% of total greenhouse gas emissions (GHG) in the United States and contribute for 10 to 15% of the overall nutrient load to surface rivers in the United States. The evolution of densification technologies toward more compact and energy-efficient nutrient removal processes has been impacted by a number of factors. Existing facilities that require capacity expansion or biomass densification for higher treatability within the same footprint are being subjected to more stringent requirements relating to nutrient removal prior to surface water discharge. Densification of activated sludge has received recent widespread interest as a means for achieving process intensification and nutrient removal at WRRFs. At the core of the technology are the aerobic sludge granules where the biological processes occur. There is considerable interest in the prospect of producing granular sludge in continuous (or traditional) activated sludge processes (CAS) or densification of biomass by moving activated sludge flocs to a denser aggregate of biomass as a highly effective technique of intensification. This presentation will provide a fundamental understanding of densification by presenting insights and practical issues. The topics that will be discussed include methods used to generate and retain densified granules; the mechanisms that allow biological flocs to densify; the role that physical selectors play in the densification of biological flocs; some viable ways for managing biological flocs that have become densified; effects of physical selection design parameters on the retention of densified biological flocs and finally some operational solutions for customizing the flocs and granules required to meet performance and capacity targets. In addition, it will present some case studies where biological and physical parameters were used to generate aerobic granular sludge in the continuous flow system.

Keywords: densification, aerobic granular sludge, nutrient removal, intensification

Procedia PDF Downloads 193
9908 Physical, Iconographic and Symbolic Features of the Plectrum Some Reflections on Sound Production in Ancient Greek String Instruments

Authors: Felipe Aguirre

Abstract:

In this paper some of the relevant features of the πλῆκτρον within GrecoLatin tradition will be analyzed. Starting from the formal aspects (shape, materials, technical properties) and the archaeological evidence, some of its symbolic implications that emerge in the light of literary and iconographic analysis will be discussed. I shall expose that, in addition to fulfilling a purely physical function within the process of sound production, the πλῆκτρον was the object of a rich imaginery that provided it with an allegorical, metaphorical-poetic and even metaphysical dimension.

Keywords: musicology, ethnomusicology, ancient greek music, plectrum, stringed instruments

Procedia PDF Downloads 153
9907 Features in the Distribution of Fleas (Siphonaptera) in the Balkhash-Alakol Depression on the South-Eastern Kazakhstan

Authors: Nurtazin Sabir, Begon Michael, Yeszhanov Aidyn, Alexander Belyaev, Hughes Nelika, Bethany Levick, Salmurzauly Ruslan

Abstract:

This paper describes the features of the distribution of the most abundant species of fleas that are carriers of the most dangerous infections in the Balkhash-Alakol depression of Kazakhstan. We show that of 153 species of fleas described in the territory of the great gerbil (Rhombomys opimus Licht.), 35 species are parasitic. 21 of them are specific to gerbils species, and four species of fleas from the Xenopsylla genus are dominant in number and value of epizootic. We also describe the modern features of habitats of these species and their relationship with the great gerbil populations found in the South Balkhash region. It indicates the need for research on the population structure of the most abundant fleas species and their relationship with the structure of the populations of main carrier of transmission infections in the region-great gerbil.

Keywords: Balkhash-Alakol depression, natural foci of plague, species diversity and distribution of fleas, flea and great gerbil population structure, epizootic activity, mass species of fleas

Procedia PDF Downloads 450
9906 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory

Procedia PDF Downloads 122
9905 Highway Capacity and Level of Service

Authors: Kidist Mesfin Nguse

Abstract:

Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.

Keywords: capacity, level of service, traffic volume, free flow speed

Procedia PDF Downloads 54
9904 The Experience with SiC MOSFET and Buck Converter Snubber Design

Authors: Petr Vaculik

Abstract:

The newest semiconductor devices on the market are MOSFET transistors based on the silicon carbide – SiC. This material has exclusive features thanks to which it becomes a better switch than Si – silicon semiconductor switch. There are some special features that need to be understood to enable the device’s use to its full potential. The advantages and differences of SiC MOSFETs in comparison with Si IGBT transistors have been described in first part of this article. Second part describes driver for SiC MOSFET transistor and last part of article represents SiC MOSFET in the application of buck converter (step-down) and design of simple RC snubber.

Keywords: SiC, Si, MOSFET, IGBT, SBD, RC snubber

Procedia PDF Downloads 488
9903 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 418
9902 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment

Procedia PDF Downloads 206
9901 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.

Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant

Procedia PDF Downloads 415
9900 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion

Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong

Abstract:

The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor

Procedia PDF Downloads 235
9899 Latest Finding about Copper Sulfide Biomineralization and General Features of Metal Sulfide Biominerals

Authors: Yeseul Park

Abstract:

Biopolymers produced by organisms highly contribute to the production of metal sulfides, both in extracellular and intracellular biomineralization. We discovered a new type of intracellular biomineral composed of copper sulfide in the periplasm of a sulfate-reducing bacterium. We suggest that the structural features of biomineral composed of 1-2 nm subgrains are based on biopolymer-based capping agents and an organic compartment. We further compare with other types of metal sulfide biominerals.

Keywords: biomineralization, copper sulfide, metal sulfide, biopolymer, capping agent

Procedia PDF Downloads 115
9898 Comparison of Different Extraction Methods for the Determination of Polyphenols

Authors: Senem Suna

Abstract:

Extraction of bioactive compounds from several food/food products comes as an important topic and new trend related with health promoting effects. As a result of the increasing interest in natural foods, different methods are used for the acquisition of these components especially polyphenols. However, special attention has to be paid to the selection of proper techniques or several processing technologies (supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction, powdered extracts production) for each kind of food to get maximum benefit as well as the obtainment of phenolic compounds. In order to meet consumer’s demand for healthy food and the management of quality and safety requirements, advanced research and development are needed. In this review, advantages, and disadvantages of different extraction methods, their opportunities to be used in food industry and the effects of polyphenols are mentioned in details. Consequently, with the evaluation of the results of several studies, the selection of the most suitable food specific method was aimed.

Keywords: bioactives, extraction, powdered extracts, supercritical fluid extraction

Procedia PDF Downloads 243
9897 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 132
9896 Research on Planning Strategy of Characteristic Town from the Perspective of Ecological Concept: A Case Study on Hangzhou Dream Town in Zhejiang

Authors: Xiaohan Ye

Abstract:

Under the new normal situation, some urban spaces with the industrial base and regional features in Zhejiang, China have been selected to build a characteristic town, a kind of environmentally-friendly development platform with city-industry integrated, in an attempt to achieve the most optimized layout of productivity with the least space resource. After analysis on the connotation, mechanism and mode of characteristic town in Zhejiang, it is suggested in this paper that characteristic town should take improving the regional ecological environment as an important object in planning strategy from the perspective of ecological concept. Improved environmental quality, optimized resource allocation, and compact industrial distribution should be realized so as to drive the regional green and sustainable development. Finally, this paper analyzes location selection, industrial distribution, spatial organization and environment construction based on the exploration of the dream town of Zhejiang province, the first batch of provincial-level characteristic towns to demonstrate how to apply the ecological concept to the design of characteristic town.

Keywords: characteristic town, ecological concept, Hangzhou dream town, planning strategy

Procedia PDF Downloads 316
9895 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate

Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe

Abstract:

This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.

Keywords: ARIMA, error metrices, model selection, SETAR

Procedia PDF Downloads 248
9894 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)

Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor

Abstract:

There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.

Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms

Procedia PDF Downloads 308
9893 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm

Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh

Abstract:

this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.

Keywords: genetic algorithm, information retrieval, optimal queries, crossover

Procedia PDF Downloads 298
9892 Heuristic for Scheduling Correlated Parallel Machine to Minimize Maximum Lateness and Total Weighed Completion Time

Authors: Yang-Kuei Lin, Yun-Xi Zhang

Abstract:

This research focuses on the bicriteria correlated parallel machine scheduling problem. The two objective functions considered in this problem are to minimize maximum lateness and total weighted completion time. We first present a mixed integer programming (MIP) model that can find the entire efficient frontier for the studied problem. Next, we have proposed a bicriteria heuristic that can find non-dominated solutions for the studied problem. The performance of the proposed bicriteria heuristic is compared with the efficient frontier generated by solving the MIP model. Computational results indicate that the proposed bicriteria heuristic can solve the problem efficiently and find a set of diverse solutions that are uniformly distributed along the efficient frontier.

Keywords: bicriteria, correlated parallel machines, heuristic, scheduling

Procedia PDF Downloads 146
9891 Health as a Proxy for Labour Productivity: The Impact on Wages in Egypt’s Private Sector

Authors: Yasmine Ahmed Shemeis

Abstract:

Determining the impact of productivity increases on wage levels is often difficult due to the unavailability of individual-level productivity data. Accordingly, we proxy for productivity using a self-perceived measure of health based on the postulated positive relationship between better health and productivity improvements. Using Egypt’s labour market data for the years 2012 and 2018 and utilizing a Maximum Likelihood Estimation method, we address two issues: the endogeneity of health in the estimation of wages and a sample selection bias. Our findings indicate the great value that better health has in enhancing wage levels in Egypt’s private sector. Also, we find that overlooking the endogeneity of health underestimates its effect on wages. Thus, the improvement of health states is likely to be beneficial in improving labour market outcomes in terms of wages as well as labour productivity in Egypt.

Keywords: labour, Productivity, Wages, Endogeneity, Sample Selection

Procedia PDF Downloads 85
9890 Determining the Most Efficient Test Available in Software Testing

Authors: Qasim Zafar, Matthew Anderson, Esteban Garcia, Steven Drager

Abstract:

Software failures can present an enormous detriment to people's lives and cost millions of dollars to repair when they are unexpectedly encountered in the wild. Despite a significant portion of the software development lifecycle and resources are dedicated to testing, software failures are a relatively frequent occurrence. Nevertheless, the evaluation of testing effectiveness remains at the forefront of ensuring high-quality software and software metrics play a critical role in providing valuable insights into quantifiable objectives to assess the level of assurance and confidence in the system. As the selection of appropriate metrics can be an arduous process, the goal of this paper is to shed light on the significance of software metrics by examining a range of testing techniques and metrics as well as identifying key areas for improvement. Additionally, through this investigation, readers will gain a deeper understanding of how metrics can help to drive informed decision-making on delivering high-quality software and facilitate continuous improvement in testing practices.

Keywords: software testing, software metrics, testing effectiveness, black box testing, random testing, adaptive random testing, combinatorial testing, fuzz testing, equivalence partition, boundary value analysis, white box testing

Procedia PDF Downloads 92
9889 Artistic and Technological Features of Bukhara Copper Embossing in the 20th Century

Authors: Zebiniso Mukhsinova

Abstract:

This article discusses the dynamics of the historical development of the Bukhara school of copper-stamped products. Copper embossing is one of the leading crafts of Uzbek decorative and applied art. A critical and analytical assessment of innovative ideas, artistic and technological features, which arose as a result of the inter-regional synthesis of a local school, is presented. The article includes a detailed analysis of exhibits in museum collections, a research of the scientific papers of leading art critics and differs from previous studies in this area.

Keywords: applied art, copper embossing, metalwork, ewer, tray, Bukhara school

Procedia PDF Downloads 150
9888 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification

Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor

Abstract:

Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.

Keywords: additive parameter, angular softmax, speaker verification, PLDA

Procedia PDF Downloads 109
9887 Challenges and Opportunities of Cloud-Based E-Learning Systems

Authors: Kashif Laeeq, Zubair A. Shaikh

Abstract:

The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.

Keywords: cloud-based e-learning, e-learning, cloud computing application, smart learning

Procedia PDF Downloads 412
9886 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 155
9885 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 168
9884 Library Support for the Intellectually Disabled: Book Clubs and Universal Design

Authors: Matthew Conner, Leah Plocharczyk

Abstract:

This study examines the role of academic libraries in support of the intellectually disabled (ID) in post-secondary education. With the growing public awareness of the ID, there has been recognition of their need for post-secondary educational opportunities. This was an unforeseen result for a population that has been associated with elementary levels of education, yet the reasons are compelling. After aging out of the school system, the ID need and deserve educational and social support as much as anyone. Moreover, the commitment to diversity in higher education rings hollow if this group is excluded. Yet, challenges remain to integrating the ID into a college curriculum. This presentation focuses on the role of academic libraries. Neglecting this vital resource for the support of the ID is not to be thought of, yet the library’s contribution is not clear. Library collections presume reading ability and libraries already struggle to meet their traditional goals with the resources available. This presentation examines how academic libraries can support post-secondary ID. For context, the presentation first examines the state of post-secondary education for the ID with an analysis of data on the United States compiled by the ThinkCollege! Project. Geographic Information Systems (GIS) and statistical analysis will show regional and methodological trends in post-secondary support of the ID which currently lack any significant involvement by college libraries. Then, the presentation analyzes a case study of a book club at the Florida Atlantic University (FAU) libraries which has run for several years. Issues such as the selection of books, effective pedagogies, and evaluation procedures will be examined. The study has found that the instruction pedagogies used by libraries can be extended through concepts of Universal Learning Design (ULD) to effectively engage the ID. In particular, student-centered, participatory methodologies that accommodate different learning styles have proven to be especially useful. The choice of text is complex and determined not only by reading ability but familiarity of subject and features of the ID’s developmental trajectory. The selection of text is not only a necessity but also promises to give insight into the ID. Assessment remains a complex and unresolved subject, but the voluntary, sustained, and enthusiastic attendance of the ID is an undeniable indicator. The study finds that, through the traditional library vehicle of the book club, academic libraries can support ID students through training in both reading and socialization, two major goals of their post-secondary education.

Keywords: academic libraries, intellectual disability, literacy, post-secondary education

Procedia PDF Downloads 165
9883 A CORDIC Based Design Technique for Efficient Computation of DCT

Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder

Abstract:

A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.

Keywords: DCT, DFT, CORDIC, FFT

Procedia PDF Downloads 484
9882 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions

Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag

Abstract:

Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.

Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE

Procedia PDF Downloads 168
9881 Regional Variations in Spouse Selection Patterns of Women in India

Authors: Nivedita Paul

Abstract:

Marriages in India are part and parcel of kinship and cultural practices. Marriage practices differ in India because of cross-regional diversities in social relations which itself has evolved as a result of causal relationship between space and culture. As the place is important for the formation of culture and other social structures, therefore there is regional differentiation in cultural practices and marital customs. Based on the cultural practices some scholars have divided India into North and South kinship regions where women in the North get married early and have lesser autonomy compared to women in the South where marriages are mostly consanguineous. But, the emergence of new modes and alternative strategies such as matrimonial advertisements becoming popular, as well as the increase in women’s literacy and work force participation, matchmaking process in India has changed to some extent. The present study uses data from Indian Human Development Survey II (2011-12) which is a nationally representative multitopic survey that covers 41,554 households. Currently married women of age group 15-49 in their first marriage; whose year of marriage is from the 1970s to 2000s have been taken for the study. Based on spouse selection experiences, the sample of women has been divided into three marriage categories-self, semi and family arranged. Women in self-arranged or love marriage is the sole decision maker in choosing the partner, in semi-arranged marriage or arranged marriage with consent both parents and women together take the decision, whereas in family arranged or arranged marriage without consent only parents take the decision. The main aim of the study is to show the spatial and regional variations in spouse selection decision making. The basis for regionalization has been taken from Irawati Karve’s pioneering work on kinship studies in India called Kinship Organization in India. India is divided into four kinship regions-North, Central, South and East. Since this work was formulated in 1953, some of the states have experienced changes due to modernization; hence these have been regrouped. After mapping spouse selection patterns using GIS software, it is found that the northern region has mostly family arranged marriages (around 64.6%), the central zone shows a mixed pattern since family arranged marriages are less than north but more than south and semi-arranged marriages are more than north but less than south. The southern zone has the dominance of semi-arranged marriages (around 55%) whereas the eastern zone has more of semi-arranged marriage (around 53%) but there is also a high percentage of self-arranged marriage (around 42%). Thus, arranged marriage is the dominant form of marriage in all four regions, but with a difference in the degree of the involvement of the female and her parents and relatives.

Keywords: spouse selection, consent, kinship, regional pattern

Procedia PDF Downloads 172
9880 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network

Authors: Asmau Mukhtar Ahmed, Olga Duran

Abstract:

Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.

Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image

Procedia PDF Downloads 121