Search results for: decision to choose
3947 Supply Chain Coordination under Carbon Trading Mechanism in Case of Conflict
Authors: Fuqiang Wang, Jun Liu, Liyan Cai
Abstract:
This paper investigates the coordination of the conflicting two-stage low carbon supply chain consisting of upstream and downstream manufacturers. The conflict means that the upstream manufacturer takes action for carbon emissions reduction under carbon trading mechanism while the downstream manufacturer’s production cost rises. It assumes for the Stackelberg game that the upstream manufacturer plays as a leader and the downstream manufacturer does as a follower. Four kinds of the situation of decentralized decision making, centralized decision-making, the production cost sharing contract and the carbon emissions reduction revenue sharing contract under decentralized decision making are considered. The backward induction approach is adopted to solve the game. The results show that the more intense the conflict is, the lower the efficiency of carbon emissions reduction and the higher the retail price is. The optimal investment of the decentralized supply chain under the two contracts is unchanged and still lower than that of the centralized supply chain. Both the production cost sharing contract and the carbon emissions reduction revenue sharing contract cannot coordinate the supply chain, because that the sharing cost or carbon emissions reduction sharing revenue will transfer through the wholesale price mechanism. As a result, it requires more complicated contract forms to coordinate such a supply chain.Keywords: cap-and-trade mechanism, carbon emissions reduction, conflict, supply chain coordination
Procedia PDF Downloads 3403946 Educational Leadership and Artificial Intelligence
Authors: Sultan Ghaleb Aldaihani
Abstract:
- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.Keywords: Education, Leadership, Technology, Artificial Intelligence
Procedia PDF Downloads 433945 Effective Planning of Public Transportation Systems: A Decision Support Application
Authors: Ferdi Sönmez, Nihal Yorulmaz
Abstract:
Decision making on the true planning of the public transportation systems to serve potential users is a must for metropolitan areas. To take attraction of travelers to projected modes of transport, adequately fair overall travel times should be provided. In this fashion, other benefits such as lower traffic congestion, road safety and lower noise and atmospheric pollution may be earned. The congestion which comes with increasing demand of public transportation is becoming a part of our lives and making residents’ life difficult. Hence, regulations should be done to reduce this congestion. To provide a constructive and balanced regulation in public transportation systems, right stations should be located in right places. In this study, it is aimed to design and implement a Decision Support System (DSS) Application to determine the optimal bus stop places for public transport in Istanbul which is one of the biggest and oldest cities in the world. Required information is gathered from IETT (Istanbul Electricity, Tram and Tunnel) Enterprises which manages all public transportation services in Istanbul Metropolitan Area. By using the most real-like values, cost assignments are made. The cost is calculated with the help of equations produced by bi-level optimization model. For this study, 300 buses, 300 drivers, 10 lines and 110 stops are used. The user cost of each station and the operator cost taken place in lines are calculated. Some components like cost, security and noise pollution are considered as significant factors affecting the solution of set covering problem which is mentioned for identifying and locating the minimum number of possible bus stops. Preliminary research and model development for this study refers to previously published article of the corresponding author. Model results are represented with the intent of decision support to the specialists on locating stops effectively.Keywords: operator cost, bi-level optimization model, user cost, urban transportation
Procedia PDF Downloads 2463944 Adult Attachment Security as a Predictor of Career Decision-Making Self-Efficacy among College Students in the United States
Authors: Mai Kaneda, Sarah Feeney
Abstract:
This study examined the association between adult attachment security and career decision-making self-efficacy (CDMSE) among college students in the United States. Previous studies show that attachment security is associated with levels of CDMSE among college students. Given that a majority of studies examining career development variables have used parental attachment measures, this study adds to understanding of this phenomenon by utilizing a broader measure of attachment. The participants included 269 college students (76% female) between the ages of 19-29. An anonymous survey was distributed online via social media as well as in hard copy format in classrooms. Multiple regression analyses were conducted to determine the relationship between anxious and avoidant attachment and CDMSE. Results revealed anxious attachment was a significant predictor of CDMSE (B = -.13, p = .01), such that greater anxiety in attachment was associated with lower levels of CDMSE. When accounting for anxious attachment, avoidant attachment was no longer significant as a predictor of CDMSE (B = -.12, p = .10). The variance in college CDMSE explained by the model was 7%, F(2,267) = 9.51, p < .001. Results for anxious attachment are consistent with existing literature that finds insecure attachment to be related to lower levels of CDMSE, however the non-significant results for avoidant attachment as a predictor of CDMSE suggest not all types of attachment insecurity are equally related to CDMSE. Future research is needed to explore the nature of the relationship between different dimensions of attachment insecurity and CDMSE.Keywords: attachment, career decision-making, college students, self-efficacy
Procedia PDF Downloads 2213943 Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm
Authors: S. Niamkaeo, O. Robert, O. Chaowalit
Abstract:
In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.Keywords: decision tree, drug smuggling, Geographic Information System, GIS knowledge discovery, rule-based system
Procedia PDF Downloads 1693942 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 673941 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class
Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha
Abstract:
This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting
Procedia PDF Downloads 4303940 Consumer Choice Determinants in Context of Functional Food
Authors: E. Grochowska-Niedworok, K. Brukało, M. Kardas
Abstract:
The aim of this study was to analyze and evaluate the consumption of functional food by consumers by: age, sex, formal education level, place of residence and diagnosed diseases. The study employed an ad hoc questionnaire in a group of 300 inhabitants of Upper Silesia voivodship. Knowledge of functional food among the group covered in the study was far from satisfactory. The choice of functional food was of intuitive character. In addition, the group covered was more likely to choose pharmacotherapy instead of diet-related prevention then, which can be associated with presumption of too distant effects and a long period of treatment.Keywords: consumer choice, functional food, healthy lifestyle, consumer knowledge
Procedia PDF Downloads 2563939 Approaching the Spatial Multi-Objective Land Use Planning Problems at Mountain Areas by a Hybrid Meta-Heuristic Optimization Technique
Authors: Konstantinos Tolidis
Abstract:
The mountains are amongst the most fragile environments in the world. The world’s mountain areas cover 24% of the Earth’s land surface and are home to 12% of the global population. A further 14% of the global population is estimated to live in the vicinity of their surrounding areas. As urbanization continues to increase in the world, the mountains are also key centers for recreation and tourism; their attraction is often heightened by their remarkably high levels of biodiversity. Due to the fact that the features in mountain areas vary spatially (development degree, human geography, socio-economic reality, relations of dependency and interaction with other areas-regions), the spatial planning on these areas consists of a crucial process for preserving the natural, cultural and human environment and consists of one of the major processes of an integrated spatial policy. This research has been focused on the spatial decision problem of land use allocation optimization which is an ordinary planning problem on the mountain areas. It is a matter of fact that such decisions must be made not only on what to do, how much to do, but also on where to do, adding a whole extra class of decision variables to the problem when combined with the consideration of spatial optimization. The utility of optimization as a normative tool for spatial problem is widely recognized. However, it is very difficult for planners to quantify the weights of the objectives especially when these are related to mountain areas. Furthermore, the land use allocation optimization problems at mountain areas must be addressed not only by taking into account the general development objectives but also the spatial objectives (e.g. compactness, compatibility and accessibility, etc). Therefore, the main research’s objective was to approach the land use allocation problem by utilizing a hybrid meta-heuristic optimization technique tailored to the mountain areas’ spatial characteristics. The results indicates that the proposed methodological approach is very promising and useful for both generating land use alternatives for further consideration in land use allocation decision-making and supporting spatial management plans at mountain areas.Keywords: multiobjective land use allocation, mountain areas, spatial planning, spatial decision making, meta-heuristic methods
Procedia PDF Downloads 3473938 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach
Authors: Ravi Patel, Krishna K. Krishnan
Abstract:
In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS
Procedia PDF Downloads 1703937 Decision Support System for Examination Selection
Authors: Katejarinporn Chaiya, Jarumon Nookong, Nutthapat Kaewrattanapat
Abstract:
The purposes of this research were to develop and find users’ satisfaction after using the Decision Support System for Examination Selection. This research presents the design of information systems. In order to find the necessary examination of the statistics. Based on the examination of the candidate and then taking the easy difficulty setting statistics applied to the test. In addition, research has also made performance appraisals from experts and user satisfaction. By results of analysis showed that the performance appraisals from experts on the system as a whole and at a good level. mean was 3.44 and S.D. was 0.55 and user satisfaction per system as a whole and the good level mean was 3.37 and S.D. was 0.42 can conclude that effective systems are in a good level. Work has been completed in accordance with the scope of work. The website used developing this project is PHP, MySQL.5.0.45 for database.Keywords: secision support system, examination, PHP, information systems
Procedia PDF Downloads 4523936 Component Lifecycle and Concurrency Model in Usage Control (UCON) System
Authors: P. Ghann, J. Shiguang, C. Zhou
Abstract:
Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: Authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.Keywords: access control, concurrency, digital container, usage control
Procedia PDF Downloads 3213935 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes
Authors: Ipek Kivanc, Demet Ozgur-Unluakin
Abstract:
Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes
Procedia PDF Downloads 1353934 Analyzing Students’ Preferences for Academic Advising: Cases of Two Institutions in Greater Tokyo in Japan
Authors: Megumi Yamasaki, Eiko Shimizu
Abstract:
The term academic advisor system first appeared in 2012 in Japan. After ten years, it is not yet functioning. One of Japanese college students’ characteristics is that they choose an institution but may not be interested in a major and want to earn a degree for a career. When the university encourages students to develop competencies as well as students to set personal goals during college life, it is critical to support students develop self-directed attitudes and advocacy skills. This paper will analyze the students’ current stage and how academic advising supports their development.Keywords: academic advising, student development, self-directed, self-advocacy
Procedia PDF Downloads 1013933 Routing Metrics and Protocols for Wireless Mesh Networks
Authors: Samira Kalantary, Zohre Saatzade
Abstract:
Wireless Mesh Networks (WMNs) are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Thus, routing metrics and protocols are evolving by designing algorithms that consider link quality to choose the best routes. In this work, we analyse the state of the art in WMN metrics and propose taxonomy for WMN routing protocols. Performance measurements of a wireless mesh network deployed using various routing metrics are presented and corroborate our analysis.Keywords: wireless mesh networks, routing protocols, routing metrics, bioinformatics
Procedia PDF Downloads 4543932 Retrospective Interview with Amateur Soccer Officials Using Eye Tracker Footage
Authors: Lee Waters, Itay Basevitch, Matthew Timmis
Abstract:
Objectives: Eye tracking technology is a valuable method of assessing individuals gaze behaviour, but it does not unveil why they are engaging in certain practices. To address limitations in sport eye tracking research the present paper aims to investigate the gaze behaviours soccer officials engage in during successful and unsuccessful offside decisions, but also why. Methods: 20 male active amateur qualified (Level 4-7) soccer officials (Mage 22.5 SD 4.61 yrs) with an average experience of 41-50 games wore eye tracking technology during an applied attack versus defence drill. While reviewing the eye tracking footage, retrospective semi-structured interviews were conducted (M=20.4 min; SD=6.2; Range 11.7 – 26.8 min) and once transcribed inductive thematic analysis was performed. Findings and Discussion: To improve the understanding of gaze behaviours and how officials make sense of the environment, during the interview’s key constructs of offside, decision making, obstacles and emotions were summarised as the higher order themes while making offside decisions. Gaze anchoring was highlighted to be a successful technique to allow officials to see all relevant information, whereas the type of offside was emphasised to be a key factor in correct interpretation. Furthermore, specific decision-making training was outlined to be inconsistent and not always applicable. Conclusions: Key constructs have been identified and explained, which can be shared with soccer officials through training regimes. Eye tracking technology has also been shown to be a useful and innovative reflective tool to assist in the understanding of individuals gaze behaviours.Keywords: eye tracking, gaze behvaiour, decision making, reflection
Procedia PDF Downloads 1293931 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development
Authors: Jiahui Yang, John Quigley, Lesley Walls
Abstract:
In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management
Procedia PDF Downloads 2883930 Women Empowerment in Cassava Production: A Case Study of Southwest Nigeria
Authors: Adepoju A. A., Olapade-Ogunwole F., Ganiyu M. O.
Abstract:
This study examined women's empowerment in cassava production in southwest Nigeria. The contributions of the five domains namely decision about agricultural production, decision-making power over productive resources, control of the use of income, leadership and time allocation to women disempowerment, profiled the women based on their socio-economics features and determined factors influencing women's disempowerment. Primary data were collected from the women farmers and processors through the use of structured questionnaires. Purposive sampling was used to select the LGAs and villages based on a large number of cassava farmers and processors, while cluster sampling was used to select 360 respondents in the study area. Descriptive statistics such as bar charts and percentages, Women Empowerment in Agriculture (WEAI), and the Logit regression model were used to analyze the data collected. The results revealed that 63.88% of the women were disempowered. Lack of decision-making power over productive resources; 36.47% and leadership skills; 33.26% contributed mostly to the disempowerment of the women. About 85% of the married women were disempowered, while 76.92% of the women who participated in social group activities were more empowered than their disempowered counterparts. The findings showed that women with more years of processing experience have the probability of being disempowered while those who engage in farming as a primary livelihood activity, and participate in social groups among others have the tendency to be empowered. In view of this, it was recommended that women should be encouraged to farm and contribute to social group activities.Keywords: cassava, production, empowerment, southwest, Nigeria
Procedia PDF Downloads 583929 Innovation in Information Technology Services: Framework to Improve the Effectiveness and Efficiency of Information Technology Service Management Processes, Projects and Decision Support Management
Authors: Pablo Cardozo Herrera
Abstract:
In a dynamic market of Information Technology (IT) Service and with high quality demands and high performance requirements in decreasing costs, it is imperative that IT companies invest organizational effort in order to increase the effectiveness of their Information Technology Service Management (ITSM) processes through the improvement of ITSM project management and through solid support to the strategic decision-making process of IT directors. In this article, the author presents an analysis of common issues of IT companies around the world, with strategic needs of information unmet that provoke their ITSM processes and projects management that do not achieve the effectiveness and efficiency expected of their results. In response to the issues raised, the author proposes a framework consisting of an innovative theoretical framework model of ITSM management and a technological solution aligned to the Information Technology Infrastructure Library (ITIL) good practices guidance and ISO/IEC 20000-1 requirements. The article describes a research that proves the proposed framework is able to integrate, manage and coordinate in a holistic way, measurable and auditable, all ITSM processes and projects of IT organization and utilize the effectiveness assessment achieved for their strategic decision-making process increasing the process maturity level and improving the capacity of an efficient management.Keywords: innovation in IT services, ITSM processes, ITIL and ISO/IEC 20000-1, IT service management, IT service excellence
Procedia PDF Downloads 3973928 Landfill Site Selection Using Multi-Criteria Decision Analysis A Case Study for Gulshan-e-Iqbal Town, Karachi
Authors: Javeria Arain, Saad Malik
Abstract:
The management of solid waste is a crucial and essential aspect of urban environmental management especially in a city with an ever increasing population such as Karachi. The total amount of municipal solid waste generated from Gulshan e Iqbal town on average is 444.48 tons per day and landfill sites are a widely accepted solution for final disposal of this waste. However, an improperly selected site can have immense environmental, economical and ecological impacts. To select an appropriate landfill site a number of factors should be kept into consideration to minimize the potential hazards of solid waste. The purpose of this research is to analyse the study area for the construction of an appropriate landfill site for disposal of municipal solid waste generated from Gulshan e-Iqbal Town by using geospatial techniques considering hydrological, geological, social and geomorphological factors. This was achieved using analytical hierarchy process and fuzzy analysis as a decision support tool with integration of geographic information sciences techniques. Eight most critical parameters, relevant to the study area, were selected. After generation of thematic layers for each parameter, overlay analysis was performed in ArcGIS 10.0 software. The results produced by both methods were then compared with each other and the final suitability map using AHP shows that 19% of the total area is Least Suitable, 6% is Suitable but avoided, 46% is Moderately Suitable, 26% is Suitable, 2% is Most Suitable and 1% is Restricted. In comparison the output map of fuzzy set theory is not in crisp logic rather it provides an output map with a range of 0-1, where 0 indicates least suitable and 1 indicates most suitable site. Considering the results it is deduced that the northern part of the city is appropriate for constructing the landfill site though a final decision for an optimal site could be made after field survey and considering economical and political factors.Keywords: Analytical Hierarchy Process (AHP), fuzzy set theory, Geographic Information Sciences (GIS), Multi-Criteria Decision Analysis (MCDA)
Procedia PDF Downloads 5043927 Parameter Interactions in the Cumulative Prospect Theory: Fitting the Binary Choice Experiment Data
Authors: Elzbieta Babula, Juhyun Park
Abstract:
Tversky and Kahneman’s cumulative prospect theory assumes symmetric probability cumulation with regard to the reference point within decision weights. Theoretically, this model should be invariant under the change of the direction of probability cumulation. In the present study, this phenomenon is being investigated by creating a reference model that allows verifying the parameter interactions in the cumulative prospect theory specifications. The simultaneous parametric fitting of utility and weighting functions is applied to binary choice data from the experiment. The results show that the flexibility of the probability weighting function is a crucial characteristic allowing to prevent parameter interactions while estimating cumulative prospect theory.Keywords: binary choice experiment, cumulative prospect theory, decision weights, parameter interactions
Procedia PDF Downloads 2153926 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 913925 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant
Procedia PDF Downloads 4123924 Examining the Level of Career Maturity on Cultural Aspect among Undergraduate Foreign Students in A Public University in Malaysia
Authors: Mustafa Tekke, Nurullah Kurt
Abstract:
This study examined the level of career maturity of undergraduate foreign students in a public university in Malaysia by examining on cultural aspect by using the Career Maturity Inventory. Two hundred and twenty nine (Male = 106, Female = 123) foreign students studying in various majors completed the Career Maturity Inventory and the scores of the foreign students on the CMI suggested that they had slightly higher levels than the mean level of maturity in career. Result was also supported by testing the feeling about major, consideration of changing major and planning after graduation, which indicated that foreign students had their own career decision making. However, this result should be viewed with caution within ethnic difference.Keywords: career maturity, foreign students, career decision making, feeling about major, knowledge about major
Procedia PDF Downloads 3073923 The Influence of Advertising Captions on the Internet through the Consumer Purchasing Decision
Authors: Suwimol Apapol, Punrapha Praditpong
Abstract:
The objectives of the study were to find out the frequencies of figures of speech in fragrance advertising captions as well as the types of figures of speech most commonly applied in captions. The relation between figures of speech and fragrance was also examined in order to analyze how figures of speech were used to represent fragrance. Thirty-five fragrance advertisements were randomly selected from the Internet. Content analysis was applied in order to consider the relation between figures of speech and fragrance. The results showed that figures of speech were found in almost every fragrance advertisement except one advertisement of several Goods service. Thirty-four fragrance advertising captions used at least one kind of figure of speech. Metaphor was most frequently found and also most frequently applied in fragrance advertising captions, followed by alliteration, rhyme, simile and personification, and hyperbole respectively which is in harmony with the research hypotheses as well.Keywords: advertising captions, captions on internet, consumer purchasing decision, e-commerce
Procedia PDF Downloads 2703922 A Fuzzy Multi-Criteria Model for Sustainable Development of Community-Based Tourism through the Homestay Program in Malaysia
Authors: Azizah Ismail, Zainab Khalifah, Abbas Mardani
Abstract:
Sustainable community-based tourism through homestay programme is a growing niche market that has impacted destinations in many countries including Malaysia. With demand predicted to continue increasing, the importance of the homestay product will grow in the tourism industry. This research examines the sustainability criteria for homestay programme in Malaysia covering economic, socio-cultural and environmental dimensions. This research applied a two-stage methodology for data analysis. Specifically, the researcher implements a hybrid method which combines two multi-criteria decision making approaches. In the first stage of the methodology, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is applied. Then, Analytical Network Process (ANP) is employed for the achievement of the objective of the current research. After factors identification and problem formulation, DEMATEL is used to detect complex relationships and to build a Network Relation Map (NRM). Then ANP is used to prioritize and find the weights of the criteria and sub-criteria of the decision model. The research verifies the framework of multi-criteria for sustainable community-based tourism from the perspective of stakeholders. The result also provides a different perspective on the importance of sustainable criteria from the view of multi-stakeholders. Practically, this research gives the framework model and helps stakeholders to improve and innovate the homestay programme and also promote community-based tourism.Keywords: community-based tourism, homestay programme, sustainable tourism criteria, sustainable tourism development
Procedia PDF Downloads 1303921 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: data mining, digital libraries, digital preservation, file format
Procedia PDF Downloads 4993920 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017
Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey
Abstract:
The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART
Procedia PDF Downloads 2093919 The Characteristics of Withhold Resuscitation in Out-Of-Hospital Cardiac Arrest
Authors: An-Yi Wang, Wei-Fong Kao, Shin-Han Tsai
Abstract:
Introduction: Information as patient characteristics, resuscitation scene, resuscitation provider perspectives and families wish affects on resuscitation decision-making for out-of-hospital cardiac arrest (OHCA). There is no consistency consensus on how families and emergency physicians approach this decision. The main purpose of our study is to evaluate the characteristics of withholding resuscitation efforts arrival at the hospital. Methods: We retrospectively analyzed patients with OHCA without pre-hospital return-of-spontaneous circulation (ROSC) who was sent to our emergency department (ED) between January 2014 and December 2015. Baseline characteristics, pre-hospital course, and causes of the cardiopulmonary arrest among patients were compared. Results: In 2 years, total 155 arrest patients without pre-hospital ROSC was included. 33(21.3%) patients withhold the resuscitation efforts in ED with mean resuscitation duration 4.45 ± 7.04 minutes after ED arrival. In withholding group, the initial rhythm of arrests was all non-shockable. 9 of them received endotracheal intubation before decision-making. None of the patients in withhold resuscitation group survived to discharge. There was no significant difference among gender, underlying cardiovascular disease, malignancy, chronic renal disease, nor witness collapse between withhold and continue resuscitation groups. Univariate analysis showed there was lower percentage of bystander resuscitation (32.3% vs. 50.4%, p=0.071), and the lower percentage of transport via emergency medical service (EMS) (78.8% vs. 91.8%, p=0.054) in withholding group. Multivariate analysis showed old age (adjusted odds ratio=1.06, 95% C.I.=[1.02-1.11], p<0.05), with underlying respiratory insufficiency (adjusted odds ratio=12.16, 95% C.I.=[3.34-44.29], p<0.05), living at home compared with nursing home (adjusted odds ratio=37.75, 95% C.I.=[1.09-1110.70], p<0.05) were more likely to withhold resuscitation. Transport via EMS was more likely to continue resuscitation (adjusted odds ratio=0.11, 95% C.I.=[0.02-0.71], p<0.05). Conclusion: The decision-making for families and emergency physicians to withhold or continue resuscitation for out-of-hospital cardiac arrest is complex and multi-factorial. Continue resuscitation efforts in nursing home residents is high, and further study among this population is warranted.Keywords: cardiopulmonary resuscitation, out-of-hospital cardiac arrest, termination resuscitation, withhold resuscitation
Procedia PDF Downloads 2533918 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios
Procedia PDF Downloads 324