Search results for: correction factors for axisymmetric models
16230 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates
Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai
Abstract:
GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections
Procedia PDF Downloads 31716229 An Exploration of Cross-culture Consumer Behaviour - The Characteristics of Chinese Consumers’ Decision Making in Europe
Authors: Yongsheng Guo, Xiaoxian Zhu, Mandella Osei-Assibey Bonsu
Abstract:
This study explores the effects of national culture on consumer behaviour by identifying the characteristics of Chinese consumers’ decision making in Europe. It offers a better understanding of how cultural factors affect consumers’ behaviour, and how consumers make decisions in other nations with different culture. It adopted a grounded theory approach and conducted twenty-four in-depth interviews. Grounded theory models are developed to link the causal conditions, process and consequences. Results reveal that some cultural factors including conservatism, emotionality, acquaintance community, long-term orientation and principles affect Chinese consumers when making purchase decisions in Europe. Most Chinese consumers plan and prepare their expenditure and stay in Europe as cultural learners, and purchase durable products or assets as investment, and share their experiences within a community. This study identified potential problems such as political and social environment, complex procedures, and restrictions. This study found that external factors influence on internal factors and then internal characters determine consumer behaviour. This study proposes that cultural traits developed in convergence evolution through social selection and Chinese consumers persist most characters but adapt some perceptions and actions overtime in other countries. This study suggests that cultural marketing could be adopted by companies to reflect consumers’ preferences. Agencies, shops, and the authorities could take actions to reduce the complexity and restrictions.Keywords: national culture, consumer behaviour, decision making, cultural marketing
Procedia PDF Downloads 9416228 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data
Authors: M. A. Meslem
Abstract:
For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.Keywords: quasigeoid, gravity aomalies, covariance, GGM
Procedia PDF Downloads 13716227 Factors Impeding Learners’ Use of the Blackboard System in Kingdom of Saudi Arabia
Authors: Omran Alharbi, Victor Lally
Abstract:
In recent decades, a number of educational institutions around the world have come to depend on technology such as the Blackboard system to improve their educational environment. On the other hand, there are many factors that delay the usage of this technology, especially in developing nations such as Saudi Arabia. The goal of this study was to investigate learner’s views of the use of Blackboard in one Saudi university in order to gain a comprehensive view of the factors that delay the implementation of technology in Saudi institutions. This study utilizes a qualitative approach, with data being collected through semi-structured interviews. Six participants from different disciplines took part in this study. The findings indicated that there are two levels of factors that affect students’ use of the Blackboard system. These are factors at the institutional level, such as lack of technical support and lack of training support, which lead to insufficient training related to the Blackboard system. The second level of factors is at the individual level, for example, a lack of teacher motivation and encouragement. In addition, students do not have sufficient levels of skills or knowledge related to how to use the Blackboard in their learning. Conclusion: learners confronted and faced two main types of factors (at the institution level and individual level) that delayed and impeded their learning. Institutions in KSA should take steps and implement strategies to remove or reduce these factors in order to allow students to benefit from the latest technology in their learning.Keywords: blackboard, factors, KSA, learners
Procedia PDF Downloads 21416226 Clinician's Perspective of Common Factors of Change in Family Therapy: A Cross-National Exploration
Authors: Hassan Karimi, Fred Piercy, Ruoxi Chen, Ana L. Jaramillo-Sierra, Wei-Ning Chang, Manjushree Palit, Catherine Martosudarmo, Angelito Antonio
Abstract:
Background: The two psychotherapy camps, the randomized clinical trials (RCTs) and the common factors model, have competitively claimed specific explanations for therapy effectiveness. Recently, scholars called for empirical evidence to show the role of common factors in therapeutic outcome in marriage and family therapy. Purpose: This cross-national study aims to explore how clinicians, across different nations and theoretical orientations, attribute the contribution of common factors to therapy outcome. Method: A brief common factors questionnaire (CFQ-with a Cronbach’s Alpha, 0.77) was developed and administered in seven nations. A series of statistical analyses (paired-samples t-test, independent sample t-test, ANOVA) were conducted: to compare clinicians perceived contribution of total common factors versus model-specific factors, to compare each pair of common factors’ categories, and to compare clinicians from collectivistic nations versus clinicians from individualistic nation. Results: Clinicians across seven nations attributed 86% to common factors versus 14% to model-specific factors. Clinicians attributed 34% of therapeutic change to client’s factors, 26% to therapist’s factors, 26% to relationship factors, and 14% to model-specific techniques. The ANOVA test indicated each of the three categories of common factors (client 34%, therapist 26%, relationship 26%) showed higher contribution in therapeutic outcome than the category of model specific factors (techniques 14%). Clinicians with psychology degree attributed more contribution to model-specific factors than clinicians with MFT and counseling degrees who attributed more contribution to client factors. Clinicians from collectivistic nations attributed larger contributions to therapist’s factors (M=28.96, SD=12.75) than the US clinicians (M=23.22, SD=7.73). The US clinicians attributed a larger contribution to client’s factors (M=39.02, SD=1504) than clinicians from the collectivistic nations (M=28.71, SD=15.74). Conclusion: The findings indicate clinicians across the globe attributed more than two thirds of therapeutic change to CFs, which emphasize the training of the common factors model in the field. CFs, like model-specific factors, vary in their contribution to therapy outcome in relation to specific client, therapist, problem, treatment model, and sociocultural context. Sociocultural expectations and norms should be considered as a context in which both CFs and model-specific factors function toward therapeutic goals. Clinicians need to foster a cultural competency specifically regarding the divergent ways that CFs can be activated due to specific sociocultural values.Keywords: common factors, model-specific factors, cross-national survey, therapist cultural competency, enhancing therapist efficacy
Procedia PDF Downloads 28716225 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 10316224 Estimation of Stress Intensity Factors from near Crack Tip Field
Authors: Zhuang He, Andrei Kotousov
Abstract:
All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region.Keywords: digital image correlation, stress intensity factors, three-dimensional effects, transverse displacement
Procedia PDF Downloads 61516223 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 11116222 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models
Authors: A. B. M. Rezaul Islam, Ernur Karadogan
Abstract:
Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis
Procedia PDF Downloads 14416221 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 17516220 Jensen's Inequality and M-Convex Functions
Authors: Yamin Sayyari
Abstract:
In this paper, we generalized the Jensen's inequality for m-convex functions and also we present a correction of Jensen's inequality which is a better than the generalization of this inequality for m-convex functions. Finally, we have found new lower and new upper bounds for Jensen's discrete inequality.Keywords: Jensen's inequality, m-convex function, Convex function, Inequality
Procedia PDF Downloads 14416219 Measuring Environmental Efficiency of Energy in OPEC Countries
Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani
Abstract:
Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.Keywords: energy efficiency, undesirable outputs, data envelopment analysis
Procedia PDF Downloads 73616218 Enhancing Model Interoperability and Reuse by Designing and Developing a Unified Metamodel Standard
Authors: Arash Gharibi
Abstract:
Mankind has always used models to solve problems. Essentially, models are simplified versions of reality, whose need stems from having to deal with complexity; many processes or phenomena are too complex to be described completely. Thus a fundamental model requirement is that it contains the characteristic features that are essential in the context of the problem to be solved or described. Models are used in virtually every scientific domain to deal with various problems. During the recent decades, the number of models has increased exponentially. Publication of models as part of original research has traditionally been in in scientific periodicals, series, monographs, agency reports, national journals and laboratory reports. This makes it difficult for interested groups and communities to stay informed about the state-of-the-art. During the modeling process, many important decisions are made which impact the final form of the model. Without a record of these considerations, the final model remains ill-defined and open to varying interpretations. Unfortunately, the details of these considerations are often lost or in case there is any existing information about a model, it is likely to be written intuitively in different layouts and in different degrees of detail. In order to overcome these issues, different domains have attempted to implement their own approaches to preserve their models’ information in forms of model documentation. The most frequently cited model documentation approaches show that they are domain specific, not to applicable to the existing models and evolutionary flexibility and intrinsic corrections and improvements are not possible with the current approaches. These issues are all because of a lack of unified standards for model documentation. As a way forward, this research will propose a new standard for capturing and managing models’ information in a unified way so that interoperability and reusability of models become possible. This standard will also be evolutionary, meaning members of modeling realm could contribute to its ongoing developments and improvements. In this paper, the current 3 of the most common metamodels are reviewed and according to pros and cons of each, a new metamodel is proposed.Keywords: metamodel, modeling, interoperability, reuse
Procedia PDF Downloads 19816217 Implied Adjusted Volatility by Leland Option Pricing Models: Evidence from Australian Index Options
Authors: Mimi Hafizah Abdullah, Hanani Farhah Harun, Nik Ruzni Nik Idris
Abstract:
With the implied volatility as an important factor in financial decision-making, in particular in option pricing valuation, and also the given fact that the pricing biases of Leland option pricing models and the implied volatility structure for the options are related, this study considers examining the implied adjusted volatility smile patterns and term structures in the S&P/ASX 200 index options using the different Leland option pricing models. The examination of the implied adjusted volatility smiles and term structures in the Australian index options market covers the global financial crisis in the mid-2007. The implied adjusted volatility was found to escalate approximately triple the rate prior the crisis.Keywords: implied adjusted volatility, financial crisis, Leland option pricing models, Australian index options
Procedia PDF Downloads 37916216 A Study on Relationships between Authenticity of Transactions, Quality of Relationships, and Transaction Performances
Authors: Chan Kwon Park, Chae-Bogk Kim, Sung-Min Park
Abstract:
This study is a research on the authenticity of transactions between corporations and quality of their relationships and transaction performances. As the factors of authenticity of transactions, honesty, transparency, customer orientation and consistency were selected; as the factors of quality of relationships, trust and commitment were selected, and as the factors of transactions performances, intention of repeat transactions and switching intention were selected, and on these relationships a hypothesis was established, and verification was conducted. First, the factors of the authenticity of transactions positively influenced the factors of quality of relationships. Thus, a higher level of authenticity of transactions can lead to higher level of trust and commitment. Second, the factors of quality of relationships made a positive influence on the intention of repeat transactions, while a negative influence in the switching intention. Third, it showed that trust and commitment as the factors of quality of relationships functioned partly as the parameter between the authenticity of transactions and transaction performances. Finally, it proved that the factors of the authenticity of transactions improved trust and commitment in transactions between corporations and further improved the intention of repeat transactions while they decreased the switching intention.Keywords: authenticity of transactions, trust, commitment, intention of repeat transactions, switching intention
Procedia PDF Downloads 37316215 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.Keywords: additive manufacturing, decision-makings, environmental impact, predictive models
Procedia PDF Downloads 13116214 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology
Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen
Abstract:
Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient
Procedia PDF Downloads 20616213 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 19416212 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five
Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz
Abstract:
Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.Keywords: hydroxyl, global model, model maintenance, near infrared, polyol
Procedia PDF Downloads 13516211 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13216210 Supporting Factors and Barriers to Implementing Eco-Efficiency of Automotive Industry: A Case of Thailand
Authors: Angkawinijwong Sasiwan, Setthasakko Watchaneeporn
Abstract:
This paper aims to gain an understanding of supporting factors and barriers to implementing eco-efficiency of automotive industry in Thailand. It employs in-depth interviews with key involved informants, including environmental managers, plant managers and environmental officers of six leading companies. It is found that board of directors, legislation and customers’ need are three main supporting factors in implementing eco-efficiency. Data collection and lack of awareness and knowledge about eco-efficiency are identified as barriers.Keywords: eco-efficiency, supporting factors, barriers, automotive industry, Thailand
Procedia PDF Downloads 42716209 Modeling Socioeconomic and Political Dynamics of Terrorism in Pakistan
Authors: Syed Toqueer, Omer Younus
Abstract:
Terrorism, today, has emerged as a global menace with Pakistan being the most adversely affected state. Therefore, the motive behind this study is to empirically establish the linkage of terrorism with socio-economic (uneven income distribution, poverty and unemployment) and political nexuses so that a policy recommendation can be put forth to better approach this issue in Pakistan. For this purpose, the study employs two competing models, namely, the distributed lag model and OLS, so that findings of the model may be consolidated comprehensively, over the reference period of 1984-2012. The findings of both models are indicative of the fact that uneven income distribution of Pakistan is rather a contributing factor towards terrorism when measured through GDP per capita. This supports the hypothesis that immiserizing modernization theory is applicable for the state of Pakistan where the underprivileged are marginalized. Results also suggest that other socio-economic variables (poverty, unemployment and consumer confidence) can condense the brutality of terrorism once these conditions are catered to and improved. The rational of opportunity cost is at the base of this argument. Poor conditions of employment and poverty reduces the opportunity cost for individuals to be recruited by terrorist organizations as economic returns are considerably low and thus increasing the supply of volunteers and subsequently increasing the intensity of terrorism. The argument of political freedom as a means of lowering terrorism stands true. The more the people are politically repressed the more alternative and illegal means they will find to make their voice heard. Also, the argument that politically transitioning economy faces more terrorism is found applicable for Pakistan. Finally, the study contributes to an ongoing debate on which of the two set of factors are more significant with relation to terrorism by suggesting that socio-economic factors are found to be the primary causes of terrorism for Pakistan.Keywords: terrorism, socioeconomic conditions, political freedom, distributed lag model, ordinary least square
Procedia PDF Downloads 32116208 Factors Influencing the Housing Price: Developers’ Perspective
Authors: Ernawati Mustafa Kamal, Hasnanywati Hassan, Atasya Osmadi
Abstract:
The housing industry is crucial for sustainable development of every country. Housing is a basic need that can enhance the quality of life. Owning a house is therefore the main aim of individuals. However, affordability has become a critical issue towards homeownership. In recent years, housing price in the main cities has increased tremendously to unaffordable level. This paper investigates factors influencing the housing price from developer’s perspective and provides recommendation on strategies to tackle this issue. Online and face-to-face survey was conducted on housing developers operating in Penang, Malaysia. The results indicate that (1) location; (2) macroeconomics factor; (3) demographic factors; (4) land/zoning and; (5) industry factors are the main factors influencing the housing price. This paper contributes towards better understanding on developers’ view on how the housing price is determined and form a basis for government to help tackle the housing affordability issue.Keywords: factors influence, house price, housing developers, Malaysia
Procedia PDF Downloads 39616207 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 17516206 A Socio-Technical Approach to Cyber-Risk Assessment
Authors: Kitty Kioskli, Nineta Polemi
Abstract:
Evaluating the levels of cyber-security risks within an enterprise is most important in protecting its information system, services and all its digital assets against security incidents (e.g. accidents, malicious acts, massive cyber-attacks). The existing risk assessment methodologies (e.g. eBIOS, OCTAVE, CRAMM, NIST-800) adopt a technical approach considering as attack factors only the capability, intention and target of the attacker, and not paying attention to the attacker’s psychological profile and personality traits. In this paper, a socio-technical approach is proposed in cyber risk assessment, in order to achieve more realistic risk estimates by considering the personality traits of the attackers. In particular, based upon principles from investigative psychology and behavioural science, a multi-dimensional, extended, quantifiable model for an attacker’s profile is developed, which becomes an additional factor in the cyber risk level calculation.Keywords: attacker, behavioural models, cyber risk assessment, cybersecurity, human factors, investigative psychology, ISO27001, ISO27005
Procedia PDF Downloads 16516205 Exploring Non-Governmental Organizations’ Performance Management: Bahrain Athletics Association as a Case Study
Authors: Nooralhuda Aljlas
Abstract:
In the ever-growing field of non-governmental organizations, the enhancement of performance management and measurement systems has been increasingly acknowledged by political, economic, social, legal, technological and environmental factors. Within Bahrain Athletics Association, such enhancement results from the key factors leading performance management including collaboration, feedback, human resource management, leadership and participative management. The exploratory, qualitative research conducted reviewed performance management theory. As reviewed, the key factors leading performance management were identified. Drawing on a non-governmental organization case study, the key factors leading Bahrain Athletics Association’s performance management were explored. By exploring the key factors leading Bahrain Athletics Association’s performance management, the research study proposed a theoretical framework of the key factors leading performance management in non-governmental organizations in general. The research study recommended further investigation of the role of the two key factors of command and control and leadership, combining military and civilian approaches to enhancing non-governmental organizations’ performance management.Keywords: Bahrain athletics association, exploratory, key factor, performance management
Procedia PDF Downloads 36416204 Investigating the Demand of Short-Shelf Life Food Products for SME Wholesalers
Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Alistair Duffy, Ashley Hopwell
Abstract:
Accurate prediction of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. Current research in this area focused on limited number of factors specific to a single product or a business type. This paper gives an overview of the current literature on the variability factors used to predict demand and the existing forecasting techniques of short shelf life products. It then extends it by adding new factors and investigating if there is a time lag and possibility of noise in the orders. It also identifies the most important factors using correlation and Principal Component Analysis (PCA).Keywords: demand forecasting, deteriorating products, food wholesalers, principal component analysis, variability factors
Procedia PDF Downloads 52016203 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 16816202 The Development of an Accident Causation Model Specific to Agriculture: The Irish Farm Accident Causation Model
Authors: Carolyn Scott, Rachel Nugent
Abstract:
The agricultural industry in Ireland and worldwide is one of the most dangerous occupations with respect to occupational health and safety accidents and fatalities. Many accident causation models have been developed in safety research to understand the underlying and contributory factors that lead to the occurrence of an accident. Due to the uniqueness of the agricultural sector, current accident causation theories cannot be applied. This paper presents an accident causation model named the Irish Farm Accident Causation Model (IFACM) which has been specifically tailored to the needs of Irish farms. The IFACM is a theoretical and practical model of accident causation that arranges the causal factors into a graphic representation of originating, shaping, and contributory factors that lead to accidents when unsafe acts and conditions are created that are not rectified by control measures. Causes of farm accidents were assimilated by means of a thorough literature review and were collated to form a graphical representation of the underlying causes of a farm accident. The IFACM was validated retrospectively through case study analysis and peer review. Participants in the case study (n=10) identified causes that led to a farm accident in which they were involved. A root cause analysis was conducted to understand the contributory factors surrounding the farm accident, traced back to the ‘root cause’. Experts relevant to farm safety accident causation in the agricultural industry have peer reviewed the IFACM. The accident causation process is complex. Accident prevention requires a comprehensive understanding of this complex process because to prevent the occurrence of accidents, the causes of accidents must be known. There is little research on the key causes and contributory factors of unsafe behaviours and accidents on Irish farms. The focus of this research is to gain a deep understanding of the causality of accidents on Irish farms. The results suggest that the IFACM framework is helpful for the analysis of the causes of accidents within the agricultural industry in Ireland. The research also suggests that there may be international applicability if further research is carried out. Furthermore, significant learning can be obtained from considering the underlying causes of accidents.Keywords: farm safety, farm accidents, accident causation, root cause analysis
Procedia PDF Downloads 7816201 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 84