Search results for: artificial intelligence in medicine
3426 Artificial Habitat Mapping in Adriatic Sea
Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi
Abstract:
The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder
Procedia PDF Downloads 2593425 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 973424 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1713423 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd
Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic
Abstract:
Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization
Procedia PDF Downloads 1083422 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 513421 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.Keywords: artificial neural network, cement, circular economy, concrete, by products
Procedia PDF Downloads 1143420 Reviews of Chief Complaints and Treatments [in an Early Street Medicine Program]
Authors: A. Hoppe, T. Kagele, B. Hall, A. Nichols, B. Messner
Abstract:
The Spokane Street Medicine (SSM) Program aims to deliver medical care to members of Spokane, Washington, experiencing homelessness. Street medicine is designed to function in a non-traditional setting to help deliver healthcare to the underserved homeless population. In this analysis, clinical charts from street and shelter encounters made by the Spokane Street Medicine Program in early 2021 were reviewed in order to better understand the healthcare inequities prevalent among people experiencing homelessness in Spokane, WA. Pain, wound-care, and follow-up efforts were predominant concerns among the homeless population. More than half of the conditions addressed were acute, and almost a quarter of all chief complaints involved chronic unmanaged conditions. This analysis gives reason for the priorities of the SSM Program to be focused on pain, wound-care, and follow-up efforts. Understanding the specific medical needs of this population will allow for better resource allocation and improved health outcomes among people experiencing homelessness.Keywords: equity issues in public health, health disparities, health services accessibility, medical public health, street medicine
Procedia PDF Downloads 1903419 A Drawing Software for Designers: AutoCAD
Authors: Mayar Almasri, Rosa Helmi, Rayana Enany
Abstract:
This report describes the features of AutoCAD software released by Adobe. It explains how the program makes it easier for engineers and designers and reduces their time and effort spent using AutoCAD. Moreover, it highlights how AutoCAD works, how some of the commands used in it, such as Shortcut, make it easy to use, and features that make it accurate in measurements. The results of the report show that most users of this program are designers and engineers, but few people know about it and find it easy to use. They prefer to use it because it is easy to use, and the shortcut commands shorten a lot of time for them. The feature got a high rate and some suggestions for improving AutoCAD in Aperture, but it was a small percentage, and the highest percentage was that they didn't need to improve the program, and it was good.Keywords: artificial intelligence, design, planning, commands, autodesk, dimensions
Procedia PDF Downloads 1313418 Development of Visual Working Memory Precision: A Cross-Sectional Study of Simultaneously Delayed Responses Paradigm
Authors: Yao Fu, Xingli Zhang, Jiannong Shi
Abstract:
Visual working memory (VWM) capacity is the ability to maintain and manipulate short-term information which is not currently available. It is well known for its significance to form the basis of numerous cognitive abilities and its limitation in holding information. VWM span, the most popular measurable indicator, is found to reach the adult level (3-4 items) around 12-13 years’ old, while less is known about the precision development of the VWM capacity. By using simultaneously delayed responses paradigm, the present study investigates the development of VWM precision among 6-18-year-old children and young adults, besides its possible relationships with fluid intelligence and span. Results showed that precision and span both increased with age, and precision reached the maximum in 16-17 age-range. Moreover, when remembering 3 simultaneously presented items, the probability of remembering target item correlated with fluid intelligence and the probability of wrap errors (misbinding target and non-target items) correlated with age. When remembering more items, children had worse performance than adults due to their wrap errors. Compared to span, VWM precision was effective predictor of intelligence even after controlling for age. These results suggest that unlike VWM span, precision developed in a slow, yet longer fashion. Moreover, decreasing probability of wrap errors might be the main reason for the development of precision. Last, precision correlated more closely with intelligence than span in childhood and adolescence, which might be caused by the probability of remembering target item.Keywords: fluid intelligence, precision, visual working memory, wrap errors
Procedia PDF Downloads 2763417 Navigating the Integration of AI in High School Assessment: Strategic Implementation and Ethical Practice
Authors: Loren Clarke, Katie Reed
Abstract:
The integration of artificial intelligence (AI) in high school education assessment offers transformative potential, providing more personalized, timely, and accurate evaluations of student performance. However, the successful adoption of AI-driven assessment systems requires robust change management strategies to navigate the complexities and resistance that often accompany such technological shifts. This presentation explores effective methods for implementing AI in high school assessment, emphasizing the need for strategic planning and stakeholder engagement. Focusing on a case study of a Victorian high school, it will examine the practical steps taken to integrate AI into teaching and learning. This school has developed innovative processes to support academic integrity and foster authentic cogeneration with AI, ensuring that the technology is used ethically and effectively. By creating comprehensive professional development programs for teachers and maintaining transparent communication with students and parents, the school has successfully aligned AI technologies with their existing curricula and assessment frameworks. The session will highlight how AI has enhanced both formative and summative assessments, providing real-time feedback that supports differentiated instruction and fosters a more personalized learning experience. Participants will learn about best practices for managing the integration of AI in high school settings while maintaining a focus on equity and student-centered learning. This presentation aims to equip high school educators with the insights and tools needed to effectively manage the integration of AI in assessment, ultimately improving educational outcomes and preparing students for future success. Methodologies: The research is a case study of a Victorian high school to examine AI integration in assessments, focusing on practical implementation steps, ethical practices, and change management strategies to enhance personalized learning and assessment. Outcomes: This research explores AI integration in high school assessments, focusing on personalized evaluations, ethical use, and change management. A Victorian school case study highlights best practices to enhance assessments and improve student outcomes. Main Contributions: This research contributes by outlining effective AI integration in assessments, showcasing a Victorian school's implementation, and providing best practices for ethical use, change management, and enhancing personalized learning outcomes.Keywords: artificial intelligence, assessment, curriculum design, teaching and learning, ai in education
Procedia PDF Downloads 213416 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 683415 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 4363414 Inspiring Woman: The Emotional Intelligence Leadership of Khadijah Bint Khuwaylid
Authors: Eman S. Soliman, Sana Hawamdeh, Najmus S. Mahfooz
Abstract:
Purpose: The purpose of this paper was to examine various components of applied emotional intelligence as demonstrated in the leadership style of Khadijah Bint Khuwaylid in pre and post-Islamic society. Methodology: The research used a qualitative research method, specifically historical and ethnographic techniques. Data collection included both primary and secondary sources. Data from sources were analyzed to document the use of emotional intelligent leadership behaviors throughout Khadijah Bint Khuwaylid leadership experience from 596 A.D. to 621 A.D. Findings: Demonstration of four cornerstones of emotional intelligence which are self-awareness, self-management, social awareness and relationship management. Apply them on khadejah Bint Khuwaylid leadership style reveal that she possess main behavioral competences in the form of emotionally self-aware, self-.confidence, adaptability, empathy and influence. Conclusions: Khadijah Bint Khuwaylid serves as a historical model of effective leadership that included the use of emotional intelligence in her leadership behavior. The inclusion of the effective portion of the brain created a successful leadership style that can be learned by present day and future leadership. The recommendations for future leaders are to include the use of emotionally self-aware and self-confidence, adaptability, empathy and influence as components of leadership. This will then demonstrate in a leadership a basic knowledge and understanding of feelings, the keenness to be emotionally open with others, the ability to prototype beliefs and values, and the use of emotions in future communications, vision and progress.Keywords: emotional intelligence, leadership, Khadijah Bint Khuwaylid, women
Procedia PDF Downloads 2763413 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs
Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers
Abstract:
High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling
Procedia PDF Downloads 1583412 Effectiveness of Homoeopathic Medicine Conium Maculatum 200 C for Management of Pyuria
Authors: Amir Ashraf
Abstract:
Homoeopathy is an alternative system of medicine discovered by German physician Samuel Hahnemann in 1796. It has been used by several people for various health conditions globally for more than last 200 years. In India, homoeopathy is considered as a major system of alternative medicine. Homoeopathy is found effective in various medical conditions including Pyuria. Pyuria is the condition in which pus cells are found in urine. Homoeopathy is very useful for reducing pus cells, and homeopathically potentized Conium Mac (Hemlock) is an important remedy commonly used for reducing pyuria. Aim: To reduce the amount pus cells found in urine using Conium Mac 200C. Methods: Design. Small N Design. Samples: Purposive Sampling with 5 cases diagnosed as pyuria. Tools: Personal Data Schedule and ICD-10 Criteria for Pyuria. Techniques: Potentized homoeopathic medicine, Conium Mac 200th potency is used. Statistical Analysis: The statistical analyses were done using non-parametric tests. Results: There is significant pre/post difference has been identified. Conclusion: Homoeopathic potency, Conium Mac 200 C is effective in reducing the increased level of pus cells found in urine samples.Keywords: homoeopathy, alternative medicine, Pyuria, Conim Mac, small N design, non-parametric tests, homeopathic physician, Ashirvad Hospital, Kannur
Procedia PDF Downloads 3353411 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1293410 Obstacle Detection and Path Tracking Application for Disables
Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir
Abstract:
Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence
Procedia PDF Downloads 5493409 The Effect of Emotional Intelligence on Performance and Motivation of Staff: A Case Study of East Azerbaijan Red Crescent
Authors: Bahram Asghari Aghdam, Ali Mahjoub
Abstract:
The purpose of this study is to evaluate the effect of emotional intelligence on the motivation and performance of East Azarbaijan the Red Crescent staff. In this study, EI is determined as the independent variable component of self awareness, self management, social awareness, and relations management, motivation and performance as dependent variables. The research method is descriptive-survey. In this study, simple random sampling method is used and research sample consists of 130 East Azarbaijan the Red Crescent staff that uses Cochran's formula 100 of them were selected and questionnaires were filled by them. Three types of questionnaires were used in this study for emotional intelligence, consisting of the Bradbury Travis and Jane Greaves standard questionnaire; and for motivation and performance a questionnaire is regulated by the researcher with help of professionals and experts in this field that consists of 33 questions about the motivation and 15 questions about performance and content validity were used to obtain the necessary credit. Reliability by using the Cronbach's alpha coefficient /948 was approved. Also, in this study to test the hypothesis of the Spearman correlation coefficient and linear regressions and determine fitness of variables' of structural equation modeling is used. The results show that emotional intelligence with coefficient /865, motivation and performance of in East Azerbaijan the Red Crescent employees has a positive effect. Based on Friedman Test ranking the most influence in motivation and performance of staff in respondents' opinion is in order of self-awareness, relations management, social awareness and self-management.Keywords: emotional intelligence, self-awareness, self-management, social awareness, relations management, motivation, performance
Procedia PDF Downloads 4853408 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 1053407 Detection of Autistic Children's Voice Based on Artificial Neural Network
Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono
Abstract:
In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform
Procedia PDF Downloads 4613406 Shared Decision-Making in Holistic Healthcare: Integrating Evidence-Based Medicine and Values-Based Medicine
Authors: Ling-Lang Huang
Abstract:
Research Background: Historically, the evolution of medicine has not only aimed to extend life but has also inadvertently introduced suffering in the process of maintaining life, presenting a contemporary challenge. We must carefully assess the conflict between the length of life and the quality of living. Evidence-Based Medicine (EBM) exists primarily to ensure the quality of cures. However, EBM alone does not fulfill our ultimate medical goals; we must also evaluate Value-Based Medicine (VBM) to find the best treatment for patients. Research Methodology: We can attempt to integrate EBM with VBM. Within the five steps of EBM, the first three steps (Ask—Acquire—Appraise) focus on the physical aspect of humans. However, in the fourth and fifth steps (Apply—Assess), the focus shifts from the physical to applying evidence-based treatment to the patient and assessing its effectiveness, considering a holistic approach to the individual. To consider VBM for patients, we can divide the process into three steps: The first step is "awareness," recognizing that each patient inhabits a different life-world and possesses unique differences. The second step is "integration," akin to the hermeneutic concept of the Fusion of Horizons. This means being aware of differences and also understanding the origins of these patient differences. The third step is "respect," which involves setting aside our adherence to medical objectivity and scientific rigor to respect the ultimate healthcare decisions made by individuals regarding their lives. Discussion and Conclusion: After completing these three steps of VBM, we can return to the fifth step of EBM: Assess. Our assessment can now transcend the physical treatment focus of the initial steps to align with a holistic care philosophy.Keywords: shared decision-making, evidence-based medicine, values-based medicine, holistic healthcare
Procedia PDF Downloads 523405 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6563404 The Integration of Fintech Technologies in Crowdfunding: A Catalyst for Financial Inclusion and Responsible Finance
Authors: Badrane Hasnaa, Bouzahir Brahim
Abstract:
This article examines the impact of fintech technologies on crowdfunding, particularly their potential to enhance financial inclusion and promote responsible finance. It explores how the adoption of blockchain, artificial intelligence, and other fintech innovations is transforming crowdfunding by making it more accessible, transparent, and ethical. By analyzing case studies and recent data, the article illustrates how these technologies help overcome traditional barriers to financing while promoting sustainable financial practices. The findings suggest that integrating fintech into crowdfunding can not only broaden access to funding for marginalized populations but also encourage more responsible management of financial resources, contributing to a fairer and more resilient economy.Keywords: crowdfunding, fintech, inclusion financière, finance responsible, blockchain, resilience financière
Procedia PDF Downloads 223403 An Overview and Analysis of ChatGPT 3.5/4.0
Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas
Abstract:
This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.Keywords: artificial intelligence, chat GPT, analysis, education
Procedia PDF Downloads 503402 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis
Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab
Abstract:
Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.Keywords: artificial kidney, home dialysis, renal failure, wearable kidney
Procedia PDF Downloads 2353401 Autonomous Quantum Competitive Learning
Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally
Abstract:
Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.Keywords: competitive learning, quantum gates, quantum gates, winner-take-all
Procedia PDF Downloads 4723400 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector
Authors: Aron Witkowski, Andrzej Wodecki
Abstract:
Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing
Procedia PDF Downloads 493399 Emerging Technology for 6G Networks
Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily
Abstract:
Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)
Procedia PDF Downloads 943398 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3423397 Terraria AI: YOLO Interface for Decision-Making Algorithms
Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado
Abstract:
This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5
Procedia PDF Downloads 96