Search results for: discrete element simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7943

Search results for: discrete element simulation

1373 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix.

Keywords: CMOS regulated cascode distributed amplifier, silicon transformer modeling with polynomial, low power consumption, distribute amplification technique

Procedia PDF Downloads 513
1372 3D Hybrid Multiphysics Lattice Boltzmann Model for Studying the Flow Behavior of Emulsions in Structured Rectangular Microchannels

Authors: Luma Al-Tamimi, Hassan Farhat, Wessam Hasan

Abstract:

A three-dimensional (3D) hybrid quasi-steady thermal lattice Boltzmann model is developed to couple the effects of surfactant, temperature, interfacial tension, and contact angle. This 3D model is an extended scheme of a previously introduced two-dimensional (2D) hybrid lattice Boltzmann model. The 3D model is used to study the combined multi-physics effects on emulsion systems flowing in rectangular microchannels with and without confinements, where the suspended phase is made of droplets, plugs, or a mixture of both. The simulation results show that emulsion systems with plugs as the suspended phase are more efficient than with droplets, whereas mixed systems that form large plugs through coalescence have even greater efficiency. The 3D contact angle model generates matching results to those of the 2D model, which were validated with experiments. Furthermore, the effects of various confinements on adhering single drop systems are investigated for delineating their influence on the power required for transporting the suspended phase through the channel. It is shown that the deeper the constriction is, the lower the system efficiency. Increasing the surfactant concentration or fluid temperature in a channel with confinement carries a substantial positive effect on oil droplet transportation.

Keywords: lattice Boltzmann method, thermal, contact angle, surfactants, high viscosity ratio, porous media

Procedia PDF Downloads 175
1371 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control

Authors: N. Smaoui, B. Chentouf

Abstract:

The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.

Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability

Procedia PDF Downloads 76
1370 Optimal Geothermal Borehole Design Guided By Dynamic Modeling

Authors: Hongshan Guo

Abstract:

Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.

Keywords: geothermal borehole, MPC, dynamic modeling, simulation

Procedia PDF Downloads 287
1369 Understanding the Effects of Lamina Stacking Sequence on Structural Response of Composite Laminates

Authors: Awlad Hossain

Abstract:

Structural weight reduction with improved functionality is one of the targeted desires of engineers, which drives materials and structures to be lighter. One way to achieve this objective is through the replacement of metallic structures with composites. The main advantages of composite materials are to be lightweight and to offer high specific strength and stiffness. Composite materials can be classified in various ways based on the fiber types and fiber orientations. Fiber reinforced composite laminates are prepared by stacking single sheet of continuous fibers impregnated with resin in different orientation to get the desired strength and stiffness. This research aims to understand the effects of Lamina Stacking Sequence (LSS) on the structural response of a symmetric composite laminate, defined by [0/60/-60]s. The Lamina Stacking Sequence (LSS) represents how the layers are stacked together in a composite laminate. The [0/60/-60]s laminate represents a composite plate consists of 6 layers of fibers, which are stacked at 0, 60, -60, -60, 60 and 0 degree orientations. This laminate is also called symmetric (defined by subscript s) as it consists of same material and having identical fiber orientations above and below the mid-plane. Therefore, the [0/60/-60]s, [0/-60/60]s, [60/-60/0]s, [-60/60/0]s, [60/0/-60]s, and [-60/0/60]s represent the same laminate but with different LSS. In this research, the effects of LSS on laminate in-plane and bending moduli was investigated first. The laminate moduli dictate the in-plane and bending deformations upon loading. This research also provided all the setup and techniques for measuring the in-plane and bending moduli, as well as how the stress distribution was assessed. Then, the laminate was subjected to in-plane force load and bending moment. The strain and stress distribution at each ply for different LSS was investigated using the concepts of Macro-Mechanics. Finally, several numerical simulations were conducted using the Finite Element Analysis (FEA) software ANSYS to investigate the effects of LSS on deformations and stress distribution. The FEA results were also compared to the Macro-Mechanics solutions obtained by MATLAB. The outcome of this research helps composite users to determine the optimum LSS requires to minimize the overall deformation and stresses. It would be beneficial to predict the structural response of composite laminates analytically and/or numerically before in-house fabrication.

Keywords: composite, lamina, laminate, lamina stacking sequence, laminate moduli, laminate strength

Procedia PDF Downloads 11
1368 Research on the Conservation Strategy of Territorial Landscape Based on Characteristics: The Case of Fujian, China

Authors: Tingting Huang, Sha Li, Geoffrey Griffiths, Martin Lukac, Jianning Zhu

Abstract:

Territorial landscapes have experienced a gradual loss of their typical characteristics during long-term human activities. In order to protect the integrity of regional landscapes, it is necessary to characterize, evaluate and protect them in a graded manner. The study takes Fujian, China, as an example and classifies the landscape characters of the site at the regional scale, middle scale, and detailed scale. A multi-scale approach combining parametric and holistic approaches is used to classify and partition the landscape character types (LCTs) and landscape character areas (LCAs) at different scales, and a multi-element landscape assessment approach is adopted to explore the conservation strategies of the landscape character. Firstly, multiple fields and multiple elements of geography, nature and humanities were selected as the basis of assessment according to the scales. Secondly, the study takes a parametric approach to the classification and partitioning of landscape character, Principal Component Analysis, and two-stage cluster analysis (K-means and GMM) in MATLAB software to obtain LCTs, combines with Canny Operator Edge Detection Algorithm to obtain landscape character contours and corrects LCTs and LCAs by field survey and manual identification methods. Finally, the study adopts the Landscape Sensitivity Assessment method to perform landscape character conservation analysis and formulates five strategies for different LCAs: conservation, enhancement, restoration, creation, and combination. This multi-scale identification approach can efficiently integrate multiple types of landscape character elements, reduce the difficulty of broad-scale operations in the process of landscape character conservation, and provide a basis for landscape character conservation strategies. Based on the natural background and the restoration of regional characteristics, the results of landscape character assessment are scientific and objective and can provide a strong reference in regional and national scale territorial spatial planning.

Keywords: parameterization, multi-scale, landscape character identify, landscape character assessment

Procedia PDF Downloads 99
1367 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 137
1366 Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky

Authors: Eman Mayah, Raid Hanna

Abstract:

This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South façades. The study’s approach presents an analysis of different façade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South façade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South façades, where orientation, obstructions and designed façade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North façade do not have a desirable quality of diffused northern light, due to the outside building’s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios.

Keywords: daylight levels, educational building, Façade fenestration, overcast weather

Procedia PDF Downloads 405
1365 Design and Modeling of Human Middle Ear for Harmonic Response Analysis

Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey

Abstract:

The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.

Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)

Procedia PDF Downloads 175
1364 Standard Essential Patents for Artificial Intelligence Hardware and the Implications For Intellectual Property Rights

Authors: Wendy de Gomez

Abstract:

Standardization is a critical element in the ability of a society to reduce uncertainty, subjectivity, misrepresentation, and interpretation while simultaneously contributing to innovation. Technological standardization is critical to codify specific operationalization through legal instruments that provide rules of development, expectation, and use. In the current emerging technology landscape Artificial Intelligence (AI) hardware as a general use technology has seen incredible growth as evidenced from AI technology patents between 2012 and 2018 in the United States Patent Trademark Office (USPTO) AI dataset. However, as outlined in the 2023 United States Government National Standards Strategy for Critical and Emerging Technology the codification through standardization of emerging technologies such as AI has not kept pace with its actual technological proliferation. This gap has the potential to cause significant divergent possibilities for the downstream outcomes of AI in both the short and long term. This original empirical research provides an overview of the standardization efforts around AI in different geographies and provides a background to standardization law. It quantifies the longitudinal trend of Artificial Intelligence hardware patents through the USPTO AI dataset. It seeks evidence of existing Standard Essential Patents from these AI hardware patents through a text analysis of the Statement of patent history and the Field of the invention of these patents in Patent Vector and examines their determination as a Standard Essential Patent and their inclusion in existing AI technology standards across the four main AI standards bodies- European Telecommunications Standards Institute (ETSI); International Telecommunication Union (ITU)/ Telecommunication Standardization Sector (-T); Institute of Electrical and Electronics Engineers (IEEE); and the International Organization for Standardization (ISO). Once the analysis is complete the paper will discuss both the theoretical and operational implications of F/Rand Licensing Agreements for the owners of these Standard Essential Patents in the United States Court and Administrative system. It will conclude with an evaluation of how Standard Setting Organizations (SSOs) can work with SEP owners more effectively through various forms of Intellectual Property mechanisms such as patent pools.

Keywords: patents, artifical intelligence, standards, F/Rand agreements

Procedia PDF Downloads 88
1363 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption

Authors: Robert Joseph M. Licup

Abstract:

The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.

Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption

Procedia PDF Downloads 109
1362 Comparative Analysis of Single Versus Multi-IRS Assisted Multi-User Wireless Communication System

Authors: Ayalew Tadese Kibret, Belayneh Sisay Alemu, Amare Kassaw Yimer

Abstract:

Intelligent reflecting surfaces (IRSs) are considered to be a key enabling technology for sixth-generation (6G) wireless networks. IRSs are electromagnetic (EM) surfaces that are fabricated and have integrated electronics, electronically controlled processes, and particularly wireless communication features. IRSs operate without the need for complex signal processing and the encoding and decoding steps that improve the signal quality at the receiver. Improving vital performance parameters such as energy efficiency (EE) and spectral efficiency (SE) have frequently been the primary goals of research in order to meet the increasing requirements for advanced services in the future 6G communications. In this research, we conduct a comparative analysis on single and multi-IRS wireless communication networks using energy and spectrum efficiency. The energy efficiency versus user distance, energy efficiency versus signal to noise ratio, and spectral efficiency versus user distance are the basis for our result with 1, 2, 4, and 6 IRSs. According to the results of our simulation, in terms of energy and spectral efficiency, six IRS perform better than four, two, and single IRS. Overall, our results suggest that multi-IRS-assisted wireless communication systems outperform single IRS systems in terms of communication performance.

Keywords: sixth-generation (6G), wireless networks, intelligent reflecting surfaces, energy efficiency, spectral efficiency

Procedia PDF Downloads 27
1361 The Investigate Relationship between Moral Hazard and Corporate Governance with Earning Forecast Quality in the Tehran Stock Exchange

Authors: Fatemeh Rouhi, Hadi Nassiri

Abstract:

Earning forecast is a key element in economic decisions but there are some situations, such as conflicts of interest in financial reporting, complexity and lack of direct access to information has led to the phenomenon of information asymmetry among individuals within the organization and external investors and creditors that appear. The adverse selection and moral hazard in the investor's decision and allows direct assessment of the difficulties associated with data by users makes. In this regard, the role of trustees in corporate governance disclosure is crystallized that includes controls and procedures to ensure the lack of movement in the interests of the company's management and move in the direction of maximizing shareholder and company value. Therefore, the earning forecast of companies in the capital market and the need to identify factors influencing this study was an attempt to make relationship between moral hazard and corporate governance with earning forecast quality companies operating in the capital market and its impact on Earnings Forecasts quality by the company to be established. Getting inspiring from the theoretical basis of research, two main hypotheses and sub-hypotheses are presented in this study, which have been examined on the basis of available models, and with the use of Panel-Data method, and at the end, the conclusion has been made at the assurance level of 95% according to the meaningfulness of the model and each independent variable. In examining the models, firstly, Chow Test was used to specify either Panel Data method should be used or Pooled method. Following that Housman Test was applied to make use of Random Effects or Fixed Effects. Findings of the study show because most of the variables are positively associated with moral hazard with earnings forecasts quality, with increasing moral hazard, earning forecast quality companies listed on the Tehran Stock Exchange is increasing. Among the variables related to corporate governance, board independence variables have a significant relationship with earnings forecast accuracy and earnings forecast bias but the relationship between board size and earnings forecast quality is not statistically significant.

Keywords: corporate governance, earning forecast quality, moral hazard, financial sciences

Procedia PDF Downloads 322
1360 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 117
1359 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 377
1358 Understanding the Complexities of Consumer Financial Spinning

Authors: Olivier Mesly

Abstract:

This research presents a conceptual framework termed “Consumer Financial Spinning” (CFS) to analyze consumer behavior in the financial/economic markets. This phenomenon occurs when consumers of high-stakes financial products accumulate unsustainable debt, leading them to detach from their initial financial hierarchy of needs, wealth-related goals, and preferences regarding their household portfolio of assets. The daring actions of these consumers, forming a dark financial triangle, are characterized by three behaviors: overconfidence, the use of rationed rationality, and deceitfulness. We show that we can incorporate CFS into the traditional CAPM and Markovitz’ portfolio optimization models to create a framework that explains such market phenomena as the global financial crisis, highlighting the antecedents and consequences of ill-conceived speculation. Because this is a conceptual paper, there is no methodology with respect to ground studies. However, we apply modeling principles derived from the data percolation methodology, which contains tenets explicating how to structure concepts. A simulation test of the proposed framework is conducted; it demonstrates the conditions under which the relationship between expected returns and risk may deviate from linearity. The analysis and conceptual findings are particularly relevant both theoretically and pragmatically as they shed light on the psychological conditions that drive intense speculation, which can lead to market turmoil. Armed with such understanding, regulators are better equipped to propose solutions before the economic problems become out of control.

Keywords: consumer financial spinning, rationality, deceitfulness, overconfidence, CAPM

Procedia PDF Downloads 48
1357 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 313
1356 Encoded Fiber Optic Sensors for Simultaneous Multipoint Sensing

Authors: C. Babu Rao, Pandian Chelliah

Abstract:

Owing to their reliability, a number of fluorescent spectra based fiber optic sensors have been developed for detection and identification of hazardous chemicals such as explosives, narcotics etc. In High security regions, such as airports, it is important to monitor simultaneously multiple locations. This calls for deployment of a portable sensor at each location. However, the selectivity and sensitivity of these techniques depends on the spectral resolution of the spectral analyzer. The better the resolution the larger the repertoire of chemicals that can be detected. A portable unit will have limitations in meeting these requirements. Optical fibers can be employed for collecting and transmitting spectral signal from the portable sensor head to a sensitive central spectral analyzer (CSA). For multipoint sensing, optical multiplexing of multiple sensor heads with CSA has to be adopted. However with multiplexing, when one sensor head is connected to CSA, the rest may remain unconnected for the turn-around period. The larger the number of sensor heads the larger this turn-around time will be. To circumvent this imitation, we propose in this paper, an optical encoding methodology to use multiple portable sensor heads connected to a single CSA. Each portable sensor head is assigned an unique address. Spectra of every chemical detected through this sensor head, are encoded by its unique address and can be identified at the CSA end. The methodology proposed is demonstrated through a simulation using Matlab SIMULINK.

Keywords: optical encoding, fluorescence, multipoint sensing

Procedia PDF Downloads 710
1355 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 57
1354 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM

Authors: Clement Leroy, Guillaume Boitel

Abstract:

This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.

Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery

Procedia PDF Downloads 205
1353 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine

Authors: Anas Rao, Hao Duan, Fanhua Ma

Abstract:

The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.

Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet

Procedia PDF Downloads 251
1352 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing

Authors: Maor Farid, Oleg Gendelman

Abstract:

Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 146
1351 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 140
1350 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 118
1349 Bioeconomic Modelling for Barramundi (Lates calcarifer) in Queensland: Implications for Recreational Fishing Following Recent Gill Netting Closures

Authors: Sabiha S. Marine, Nicole Flint, John Rolfe

Abstract:

The Queensland state government introduced commercial gill net fishing closures in Cairns, Mackay, and Rockhampton in November 2015 to increase the recreational fishing opportunities, nature-based tourism, and economic benefits in these three regional areas. This management change is likely to improve the potential for more desirable stock structures through natural recruitment. Barramundi (Lates calcarifer) is one of the popular target fish for recreational and commercial fishers in Northern Australia. This investigation examines the effects of reduced commercial fishing from both biological and economic perspectives, particularly on the local Barramundi population of the Fitzroy River in Rockhampton, the largest river catchment flowing to the eastern coast of Australia. Data on different parameters of biological and economic aspects have been collated from secondary sources for analysis through a system simulation approach to identify the effectiveness of the commercial netting closures on recreational fishing effort, especially for the Barramundi population. The results have the potential to explain certain consequences of the netting closures in Queensland, which could serve to inform future fisheries management decisions. The study output as a whole will help in the better management of fisheries resources by evaluating recreational fishing opportunities in Queensland, where the potential for increases in recreation is high.

Keywords: Barramundi, bioeconomic model, fishery management, recreational fishing

Procedia PDF Downloads 166
1348 A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection

Authors: Waddah Abdelbagi Talha, Mohammed Abdullah Elmaleeh, John Ojur Dennis

Abstract:

This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined.

Keywords: resonant frequency, sensitivity, Wheatstone bridge, UNO-microcontroller

Procedia PDF Downloads 127
1347 The Ethical Influence in the Political Configuration of Society: An Articulation between Phanomenologie Des Geistes and the Grundlinien Der Philosophie Des Rechts

Authors: Joao Gouveia

Abstract:

This is a study about Hegelian political and moral philosophy. Our aim is to understand the relevance that Hegel attributes to ethics in the concrete political configuration of society. But our analysis isn’t limited to Hegel’s most known political work (the Grundlinien der Philosophie des Rechts). Instead, we also analyze the Phänomenologie des Geistes and establish a comparison between them. In the Moralität of the Grundlinien der Philosophie des Rechts, consciousness acquires the disposition that allows it to see any determination as its own (the certainty about itself or Gewissen). This certainty is the essential disposition that makes itself felt throughout all Sittlichkeit –the dispositions of family member and citizen (Bürger) are only configurations of it. Although consciousness is alienated in these dispositions, it doesn’t lose the certainty about itself that it reached in the Moralität. As our major finding, we point out that it is the moral learning that allows consciousness to resist the temptation of focusing so intensely on specific content that it excludes all the others (a temptation that is stimulated by the very intensity with which each content presents itself to consciousness). As the world of Bildung of the Phänomenologie des Geistes isn’t preceded by a sphere of Moralität, consciousness is thrown into a frenzy of destruction of all the powers of objectivity, and it ends up having to withdraw from the concrete contents and to focus in an abstract whole, where it doesn’t find opposite determinacies. The evidence supporting our thesis is the fact that the transition from abstraction into particularity, that we see in the Grundlinien der Philosophie des Rechts, allows the preservation of abstraction (it isn’t lost as we penetrate in particularity). On the other hand, the transition we find in the Phänomenologie des Geistes is a transition from particularity to abstraction, which takes every particularity to be eliminated in the war with others. While in the Phänomenologie des Geistes, the state may only be seen as a moment or facet of the object (it is only Staatsmacht); in the Grundlinien der Philosophie des Rechts, it is seen as a whole that contains various moments in itself (Staat). Therefore, the element of the Phänomenologie des Geistes that is closer to the State of the Grundlinien der Philosophie des Rechts is language (or the language of perversion) –something that can’t be defined as an individuality. This way, we want to show that, between the Phänomenologie des Geistes and the Grundlinien der Philosophie des Rechts, there is truly no remarkable evolution to report in Hegel’s ethical thought. What the difference in the structure of the two works show is a specific thesis respecting the influence of ethics in the configuration of society, and this thesis has implications at various levels, including in the philosophy of history.

Keywords: Grundlinien der Philosophie des Rechts, Hegelian ethics, Hegelian politics, Phänomenologie des Geistes

Procedia PDF Downloads 97
1346 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 276
1345 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 442
1344 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode

Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya

Abstract:

Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.

Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry

Procedia PDF Downloads 117