Search results for: shared parameter model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18873

Search results for: shared parameter model

18243 The Role of Social Influences and Cultural Beliefs on Perceptions of Postpartum Depression among Mexican Origin Mothers in San Diego

Authors: Mireya Mateo Gomez

Abstract:

The purpose of this study was to examine the perceptions first-generation Mexican origin mothers living in San Diego have on postpartum depression (PPD), with a special focus on social influences and cultural beliefs towards those meanings. This study also aimed to examine possible PPD help-seeking behaviors that first-generation Mexican origin mothers can perform. The Health Belief Model (HBM) and Social Ecological Model (SEM) were the guiding theoretical frameworks for this study. Data for this study were collected from three focus groups, four in-depth interviews, and the distribution of an acculturation survey (ARSMA II). There were a total of 15 participants, in which participant’s mean age was 45, and the mean age migrated to the United States being 22. Most participants identified as being married, born in Southern or Western Mexico, and with a strong Mexican identity in relation to the ARSMA survey. Participants identified four salient PPD perceptions corresponding to the interpersonal level of SEM. These four main perceptions were: 1) PPD affecting the identity of motherhood; 2) PPD being a natural part of a mother’s experience but mitigated by networks; 3) PPD being a U.S. phenomenon due to family and community breakdown; and 4) natural remedies as a preferred PPD treatment. In regard to themes relating to help seeking behaviors, participants identified seven being: 1) seeking help from immediate family members; 2) practicing home remedies; 3) seeking help from a medical professional; 4) obtaining help from a clinic or organization; 5) seeking help from God; 6) participating in PPD support groups; and 7) talking to a friend. It was evident in this study that postpartum depression is not a well discussed topic within the Mexican immigrant population. In relation to the role culture and social influences have on PPD perceptions, most participants shared hearing or learning about PPD from their family members or friends. Participants also stated seeking help from family members if diagnosed with PPD and seeking out home remedies. This study as well provides suggestions to increase the awareness of PPD among the Mexican immigrant community.

Keywords: cultural beliefs, health belief model, Mexican origin mothers, perceptions, postpartum depression social ecological model

Procedia PDF Downloads 151
18242 Modeling of Timing in a Cyber Conflict to Inform Critical Infrastructure Defense

Authors: Brian Connett, Bryan O'Halloran

Abstract:

Systems assets within critical infrastructures were seemingly safe from the exploitation or attack by nefarious cyberspace actors. Now, critical infrastructure is a target and the resources to exploit the cyber physical systems exist. These resources are characterized in terms of patience, stealth, replication-ability and extraordinary robustness. System owners are obligated to maintain a high level of protection measures. The difficulty lies in knowing when to fortify a critical infrastructure against an impending attack. Models currently exist that demonstrate the value of knowing the attacker’s capabilities in the cyber realm and the strength of the target. The shortcomings of these models are that they are not designed to respond to the inherent fast timing of an attack, an impetus that can be derived based on open-source reporting, common knowledge of exploits of and the physical architecture of the infrastructure. A useful model will inform systems owners how to align infrastructure architecture in a manner that is responsive to the capability, willingness and timing of the attacker. This research group has used an existing theoretical model for estimating parameters, and through analysis, to develop a decision tool for would-be target owners. The continuation of the research develops further this model by estimating the variable parameters. Understanding these parameter estimations will uniquely position the decision maker to posture having revealed the vulnerabilities of an attacker’s, persistence and stealth. This research explores different approaches to improve on current attacker-defender models that focus on cyber threats. An existing foundational model takes the point of view of an attacker who must decide what cyber resource to use and when to use it to exploit a system vulnerability. It is valuable for estimating parameters for the model, and through analysis, develop a decision tool for would-be target owners.

Keywords: critical infrastructure, cyber physical systems, modeling, exploitation

Procedia PDF Downloads 192
18241 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: antenna array, signal detection, ToA, AoA estimation

Procedia PDF Downloads 497
18240 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation

Authors: Yongjian Gu

Abstract:

Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.

Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ

Procedia PDF Downloads 196
18239 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)

Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa

Abstract:

The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.

Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect

Procedia PDF Downloads 320
18238 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 285
18237 A Numerical Study on Micromechanical Aspects in Short Fiber Composites

Authors: I. Ioannou, I. M. Gitman

Abstract:

This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.

Keywords: effective properties, homogenization, representative volume element, short fiber reinforced composites

Procedia PDF Downloads 268
18236 Optimization-Based Design Improvement of Synchronizer in Transmission System for Efficient Vehicle Performance

Authors: Sanyka Banerjee, Saikat Nandi, P. K. Dan

Abstract:

Synchronizers as an integral part of gearbox is a key element in the transmission system in automotive. The performance of synchronizer affects transmission efficiency and driving comfort. Synchronizing mechanism as a major component of transmission system must be capable of preventing vibration and noise in the gears. Gear shifting efficiency improvement with an aim to achieve smooth, quick and energy efficient power transmission remains a challenge for the automotive industry. Performance of the synchronizer is dependent on the features and characteristics of its sub-components and therefore analysis of the contribution of such characteristics is necessary. An important exercise involved is to identify all such characteristics or factors which are associated with the modeling and analysis and for this purpose the literature was reviewed, rather extensively, to study the mathematical models, formulated considering such. It has been observed that certain factors are rather common across models; however, there are few factors which have specifically been selected for individual models, as reported. In order to obtain a more realistic model, an attempt here has been made to identify and assimilate practically all possible factors which may be considered in formulating the model more comprehensively. A simulation study, formulated as a block model, for such analysis has been carried out in a reliable environment like MATLAB. Lower synchronization time is desirable and hence, it has been considered here as the output factors in the simulation modeling for evaluating transmission efficiency. An improved synchronizer model requires optimized values of sub-component design parameters. A parametric optimization utilizing Taguchi’s design of experiment based response data and their analysis has been carried out for this purpose. The effectiveness of the optimized parameters for the improved synchronizer performance has been validated by the simulation study of the synchronizer block model with improved parameter values as input parameters for better transmission efficiency and driver comfort.

Keywords: design of experiments, modeling, parametric optimization, simulation, synchronizer

Procedia PDF Downloads 312
18235 Antioxidants Effects on Sperm Parameter in Varicocelized Male Rat

Authors: Mehdi Abbasi, Masoumeh Majidi Zolbin

Abstract:

Varicocele is one of the common causes of infertility in 30-50% of married men which occurs within the spermatic cord. It can be considered as an abnormal dilatation and stasis of veins of the pampiniform plexus that drain the testis. It occurs in 15-20% of the male population. Inducible nitric oxide synthase (NOS) activity has been frequently reported in varicose veins. Several studies have considered the relationship between varicocele and semen NO concentrations. NOS isoforms have been shown to regulate a number of functions, e.g., sperm motility and maturation and germ cell apoptosis in the testes. In adult patients with varicocele, the amount of NO levels in the varicose veins are 25 times higher than in serum of peripheral veins. The aim of this study was to review the effect of different antioxidant that we applied so far on sperm parameters as well as sperm DNA fragmentation. The findings of this study suggest that antioxidants improve sperm parameters which are associated with infertility in varicocelized rats, and treatment can reduce damage to sperm DNA and increase the chance of fertility.

Keywords: antioxidant, rat, sperm parameter, varicocele

Procedia PDF Downloads 280
18234 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: fuzzy logic, metal machining, process modeling, surface roughness

Procedia PDF Downloads 159
18233 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
18232 The Guidelines for Promoting Research Articles Publication in Faculty of Science and Technology, Suan Sunandha Rajabhat University Bangkok, Thailand

Authors: Tatsanawalai Utarasakul, Ch. Hirannukhrao

Abstract:

The purpose of this research was to investigate the appropriate guidelines for promoting manuscript publication of the academic staff in Faculty of Science and Technology, Suan Sunandha Rajabhat University (SciSSRU). Data were collected from 88 academic staff of SciSSRU. The qualitative approach and knowledge management were used to determine the guidelines for promoting manuscript publication. In addition, TUNA Model was applied in order to follow the process of knowledge management. Simplified techniques were presented and shared with academic staff in the Knowledge Management exhibition, brochure, and websites. The result of this study revealed that, the comparison of number of manuscript publication of academic staff between academic year 2012 and 2013 is rapidly increasing for 60 percentages.

Keywords: knowledge management, articles, publication, academic staff

Procedia PDF Downloads 410
18231 Sensitivity Analysis during the Optimization Process Using Genetic Algorithms

Authors: M. A. Rubio, A. Urquia

Abstract:

Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps.

Keywords: optimization, sensitivity, genetic algorithms, model calibration

Procedia PDF Downloads 436
18230 Effect of Clinical Parameters on Strength of Reattached Tooth Fragment in Anterior Teeth: Systematic Review and Meta-Analysis

Authors: Neeraj Malhotra, Ramya Shenoy

Abstract:

Objective: To assess the effect of clinical parameters (bonding agent, preparation design & storage media) on the strength of reattached anterior tooth fragment. Methodology: This is a systematic review and meta-analysis for articles referred from MEDLINE, PUBMED, and GOOGLE SCHOLAR. The articles on tooth reattachment and clinical factors affecting fracture strength/bond strength/fracture resistance of the reattached tooth fragment in anterior teeth and published in English from 1999 to 2016 were included for final review. Results: Out of 120 shortlisted articles, 28 articles were included for the systematic review and meta-analysis based on 3 clinical parameters i.e. bonding agent, tooth preparation design & storage media. Forest plot & funnel plots were generated based on individual clinical parameter and their effect on strength of reattached anterior tooth fragment. Results based on analysis suggest combination of both conclusive evidence favoring the experimental group as well as in-conclusive evidence for individual parameter. Conclusion: There is limited evidence as there are fewer articles supporting each parameter in human teeth. Bonding agent had showed better outcome in selected studies.

Keywords: bonding agent, bond strength, fracture strength, preparation design, reattachment, storage media

Procedia PDF Downloads 179
18229 Key Factors for Stakeholder Engagement and Sustainable Development

Authors: Jo Rhodes, Bruce Bergstrom, Peter Lok, Vincent Cheng

Abstract:

The aim of this study is to determine key factors and processes for multinationals (MNCs) to develop an effective stakeholder engagement and sustainable development framework. A qualitative multiple-case approach was used. A triangulation method was adopted (interviews, archival documents and observations) to collect data on three global firms (MNCs). 9 senior executives were interviewed for this study (3 from each firm). An initial literature review was conducted to explore possible practices and factors (the deductive approach) to sustainable development. Interview data were analysed using Nvivo to obtain appropriate nodes and themes for the framework. A comparison of findings from interview data and themes, factors developed from the literature review and cross cases comparison were used to develop the final conceptual framework (the inductive approach). The results suggested that stakeholder engagement is a key mediator between ‘stakeholder network’ (internal and external factors) and outcomes (corporate social responsibility, social capital, shared value and sustainable development). Key internal factors such as human capital/talent, technology, culture, leadership and processes such as collaboration, knowledge sharing and co-creation of value with stakeholders were identified. These internal factors and processes must be integrated and aligned with external factors such as social, political, cultural, environment and NGOs to achieve effective stakeholder engagement.

Keywords: stakeholder, engagement, sustainable development, shared value, corporate social responsibility

Procedia PDF Downloads 513
18228 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence

Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu

Abstract:

This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.

Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test

Procedia PDF Downloads 191
18227 Dynamic Effects of Charitable Giving in a Ramsey Model

Authors: Riham Barbar

Abstract:

This paper studies the dynamic effects of charitable giving in a Ramsey model à la Becker and Foias (1994), such that heterogeneity is reduced to two types of agents: rich and poor. It is assumed that rich show a great concern for poor and enjoy giving. The introduction of charitable giving in this paper is inspired from the notion of Zakat (borrowed from the Islamic Economics) and is defined according to the warm-glow of Andreoni (1990). In this framework, we prove the existence of a steady state where only the patient agent holds capital. Furthermore, we show that local indetermincay appears. While moderate values of charitable-giving elasticity makes the appearance of endogenous fluctuations due to self-fulfilling expectations more likely, high values of this elasticity stabilizes endogenous fluctuations, by narrowing down the range of parameter values compatible with local indeterminacy and may rule out expectations-driven fluctuations if it exceeds certain threshold. Finally, cycles of period two emerge. However, charitable-giving makes it less likely for these cycles to emerge.

Keywords: charitable giving, warm-glow, bifurcations, heterogeneous agents, indeterminacy, self-fulfilling expectations, endogenous fluctuations

Procedia PDF Downloads 316
18226 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model

Authors: Seydou Sinde

Abstract:

The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.

Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression

Procedia PDF Downloads 84
18225 The Extended Skew Gaussian Process for Regression

Authors: M. T. Alodat

Abstract:

In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.

Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model

Procedia PDF Downloads 554
18224 Analyzing the Impact of Migration on HIV and AIDS Incidence Cases in Malaysia

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

The human immunodeficiency virus (HIV) that causes acquired immune deficiency syndrome (AIDS) remains a global cause of morbidity and mortality. It has caused panic since its emergence. Relationships between migration and HIV/AIDS have become complex. In the absence of prospectively designed studies, dynamic mathematical models that take into account the migration movement which will give very useful information. We have explored the utility of mathematical models in understanding transmission dynamics of HIV and AIDS and in assessing the magnitude of how migration has impact on the disease. The model was calibrated to HIV and AIDS incidence data from Malaysia Ministry of Health from the period of 1986 to 2011 using Bayesian analysis with combination of Markov chain Monte Carlo method (MCMC) approach to estimate the model parameters. From the estimated parameters, the estimated basic reproduction number was 22.5812. The rate at which the susceptible individual moved to HIV compartment has the highest sensitivity value which is more significant as compared to the remaining parameters. Thus, the disease becomes unstable. This is a big concern and not good indicator from the public health point of view since the aim is to stabilize the epidemic at the disease-free equilibrium. However, these results suggest that the government as a policy maker should make further efforts to curb illegal activities performed by migrants. It is shown that our models reflect considerably the dynamic behavior of the HIV/AIDS epidemic in Malaysia and eventually could be used strategically for other countries.

Keywords: epidemic model, reproduction number, HIV, MCMC, parameter estimation

Procedia PDF Downloads 366
18223 Smartphone Video Source Identification Based on Sensor Pattern Noise

Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.

Keywords: digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification

Procedia PDF Downloads 428
18222 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9

Authors: Ulrich Wake, Eniman Syamsuddin

Abstract:

The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weights

Keywords: ​ One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation

Procedia PDF Downloads 208
18221 Breast Cancer Incidence Estimation in Castilla-La Mancha (CLM) from Mortality and Survival Data

Authors: C. Romero, R. Ortega, P. Sánchez-Camacho, P. Aguilar, V. Segur, J. Ruiz, G. Gutiérrez

Abstract:

Introduction: Breast cancer is a leading cause of death in CLM. (2.8% of all deaths in women and 13,8% of deaths from tumors in womens). It is the most tumor incidence in CLM region with 26.1% from all tumours, except nonmelanoma skin (Cancer Incidence in Five Continents, Volume X, IARC). Cancer registries are a good information source to estimate cancer incidence, however the data are usually available with a lag which makes difficult their use for health managers. By contrast, mortality and survival statistics have less delay. In order to serve for resource planning and responding to this problem, a method is presented to estimate the incidence of mortality and survival data. Objectives: To estimate the incidence of breast cancer by age group in CLM in the period 1991-2013. Comparing the data obtained from the model with current incidence data. Sources: Annual number of women by single ages (National Statistics Institute). Annual number of deaths by all causes and breast cancer. (Mortality Registry CLM). The Breast cancer relative survival probability. (EUROCARE, Spanish registries data). Methods: A Weibull Parametric survival model from EUROCARE data is obtained. From the model of survival, the population and population data, Mortality and Incidence Analysis MODel (MIAMOD) regression model is obtained to estimate the incidence of cancer by age (1991-2013). Results: The resulting model is: Ix,t = Logit [const + age1*x + age2*x2 + coh1*(t – x) + coh2*(t-x)2] Where: Ix,t is the incidence at age x in the period (year) t; the value of the parameter estimates is: const (constant term in the model) = -7.03; age1 = 3.31; age2 = -1.10; coh1 = 0.61 and coh2 = -0.12. It is estimated that in 1991 were diagnosed in CLM 662 cases of breast cancer (81.51 per 100,000 women). An estimated 1,152 cases (112.41 per 100,000 women) were diagnosed in 2013, representing an increase of 40.7% in gross incidence rate (1.9% per year). The annual average increases in incidence by age were: 2.07% in women aged 25-44 years, 1.01% (45-54 years), 1.11% (55-64 years) and 1.24% (65-74 years). Cancer registries in Spain that send data to IARC declared 2003-2007 the average annual incidence rate of 98.6 cases per 100,000 women. Our model can obtain an incidence of 100.7 cases per 100,000 women. Conclusions: A sharp and steady increase in the incidence of breast cancer in the period 1991-2013 is observed. The increase was seen in all age groups considered, although it seems more pronounced in young women (25-44 years). With this method you can get a good estimation of the incidence.

Keywords: breast cancer, incidence, cancer registries, castilla-la mancha

Procedia PDF Downloads 311
18220 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools

Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez

Abstract:

The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.

Keywords: flow-shop scheduling problem, makespan, Petri nets, state equation

Procedia PDF Downloads 298
18219 Effect of Homogeneous and Heterogeneous Chemical Reactions on Peristaltic Flow of a Jeffrey Fluid in an Asymmetric Channel

Authors: G. Ravi Kiran, G. Radhakrishnamacharya

Abstract:

In this paper, the dispersion of a solute in the peristaltic flow of a Jeffrey fluid in the presence of both homogeneous and heterogeneous chemical reactions has been discussed. The average effective dispersion coefficient has been found using Taylor's limiting condition under long wavelength approximation. It is observed that the average dispersion coefficient increases with amplitude ratio which implies that dispersion is more in the presence of peristalsis. The average effective dispersion coefficient increases with Jeffrey parameter in the cases of both homogeneous and combined homogeneous and heterogeneous chemical reactions. Further, dispersion decreases with a phase difference, homogeneous reaction rate parameters, and heterogeneous reaction rate parameter.

Keywords: peristalsis, dispersion, chemical reaction, Jeffrey fluid, asymmetric channel

Procedia PDF Downloads 587
18218 A Homogenized Mechanical Model of Carbon Nanotubes/Polymer Composite with Interface Debonding

Authors: Wenya Shu, Ilinca Stanciulescu

Abstract:

Carbon nanotubes (CNTs) possess attractive properties, such as high stiffness and strength, and high thermal and electrical conductivities, making them promising filler in multifunctional nanocomposites. Although CNTs can be efficient reinforcements, the expected level of mechanical performance of CNT-polymers is not often reached in practice due to the poor mechanical behavior of the CNT-polymer interfaces. It is believed that the interactions of CNT and polymer mainly result from the Van der Waals force. The interface debonding is a fracture and delamination phenomenon. Thus, the cohesive zone modeling (CZM) is deemed to give good capture of the interface behavior. The detailed, cohesive zone modeling provides an option to consider the CNT-matrix interactions, but brings difficulties in mesh generation and also leads to high computational costs. Homogenized models that smear the fibers in the ground matrix and treat the material as homogeneous are studied in many researches to simplify simulations. But based on the perfect interface assumption, the traditional homogenized model obtained by mixing rules severely overestimates the stiffness of the composite, even comparing with the result of the CZM with artificially very strong interface. A mechanical model that can take into account the interface debonding and achieve comparable accuracy to the CZM is thus essential. The present study first investigates the CNT-matrix interactions by employing cohesive zone modeling. Three different coupled CZM laws, i.e., bilinear, exponential and polynomial, are considered. These studies indicate that the shapes of the CZM constitutive laws chosen do not influence significantly the simulations of interface debonding. Assuming a bilinear traction-separation relationship, the debonding process of single CNT in the matrix is divided into three phases and described by differential equations. The analytical solutions corresponding to these phases are derived. A homogenized model is then developed by introducing a parameter characterizing interface sliding into the mixing theory. The proposed mechanical model is implemented in FEAP8.5 as a user material. The accuracy and limitations of the model are discussed through several numerical examples. The CZM simulations in this study reveal important factors in the modeling of CNT-matrix interactions. The analytical solutions and proposed homogenized model provide alternative methods to efficiently investigate the mechanical behaviors of CNT/polymer composites.

Keywords: carbon nanotube, cohesive zone modeling, homogenized model, interface debonding

Procedia PDF Downloads 129
18217 The Influence of Superordinate Identity and Group Size on Group Decision Making through Discussion

Authors: Lin Peng, Jin Zhang, Yuanyuan Miao, Quanquan Zheng

Abstract:

Group discussion and group decision-making have long been a topic of research interest. Traditional research on group decision making typically focuses on the strategies or functional models of combining members’ preferences to reach an optimal consensus. In this research, we want to explore natural process group decision making through discussion and examine relevant, influential factors--common superordinate identity shared by group and size of the groups. We manipulated the social identity of the groups into either a shared superordinate identity or different subgroup identities. We also manipulated the size to make it either a big (6-8 person) group or small group (3-person group). Using experimental methods, we found members of a superordinate identity group tend to modify more of their own opinions through the discussion, compared to those only identifying with their subgroups. Besides, members of superordinate identity groups also formed stronger identification with group decision--the results of group discussion than their subgroup peers. We also found higher member modification in bigger groups compared to smaller groups. Evaluations of decisions before and after discussion as well as group decisions are strongly linked to group identity, as members of superordinate group feel more confident and satisfied with both the results and decision-making process. Members’ opinions are more similar and homogeneous in smaller groups compared to bigger groups. This research have many implications for further research and applied behaviors in organizations.

Keywords: group decision making, group size, identification, modification, superordinate identity

Procedia PDF Downloads 307
18216 Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities

Authors: Sumit Kumar Vishwakarma

Abstract:

The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity.

Keywords: Rayleigh waves, orthotropic medium, gravity field, inhomogeneity

Procedia PDF Downloads 127
18215 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube

Authors: Shengjun Zhang, Xu Cheng, Feng Shen

Abstract:

The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.

Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy

Procedia PDF Downloads 350
18214 Electronic Mentoring: How Can It Be Used with Teachers?

Authors: Roberta Gentry

Abstract:

Electronic mentoring is defined as a relationship between a mentor and a mentee using computer mediated communication (CMC) that is intended to develop and improve mentee’s skills, confidence, and cultural understanding. This session will increase knowledge about electronic mentoring, its uses, and outcomes. The research behind electronic mentoring and descriptions of existing programs will also be shared.

Keywords: electronic mentoring, mentoring, beginning special educators, education

Procedia PDF Downloads 253